Diagonal processes

Youssef AZOUZI

IPEST, University of Carthage, Tunisia University Tunis El Manar

> Slovenia July 2023

Y. Azouzi (IPEST)

э

3

Diagonal argument : An idea of Cantor

• This talk is devoted to the

Diagonal argument : An idea of Cantor

• This talk is devoted to the

Diagonal process

• We formulate a concrete statement for it.

Diagonal argument : An idea of Cantor

• This talk is devoted to the

- We formulate a concrete statement for it.
- We generalize it for nets by giving

Diagonal argument : An idea of Cantor

• This talk is devoted to the

- We formulate a concrete statement for it.
- We generalize it for nets by giving
 - a constructive countable version;

Diagonal argument : An idea of Cantor

• This talk is devoted to the

- We formulate a concrete statement for it.
- We generalize it for nets by giving
 - a constructive countable version;
 - a general version.

• This talk is devoted to the

- We formulate a concrete statement for it.
- We generalize it for nets by giving
 - a constructive countable version;
 - a general version.
- We provide some applications

• This talk is devoted to the

- We formulate a concrete statement for it.
- We generalize it for nets by giving
 - a constructive countable version;
 - 2 a general version.
- We provide some applications
 - New short proofs

• This talk is devoted to the

- We formulate a concrete statement for it.
- We generalize it for nets by giving
 - a constructive countable version;
 - a general version.
- We provide some applications
 - New short proofs
 - Answers to some open questions

Let (x_n) be a sequence in (a nonempty set) E and $(\mathcal{P}_k)_{k \in \mathbb{N}}$ a sequence of properties.

3

Let (x_n) be a sequence in (a nonempty set) E and $(\mathcal{P}_k)_{k \in \mathbb{N}}$ a sequence of properties. We assume that

• each property \mathcal{P}_k is preserved under passing to eventual subsequences.

Let (x_n) be a sequence in (a nonempty set) E and $(\mathcal{P}_k)_{k \in \mathbb{N}}$ a sequence of properties. We assume that

each property \$\mathcal{P}_k\$ is preserved under passing to eventual subsequences.
for each k and for each subsequence (y_n) of (x_n) there is a further subnet (z_n) satisfying \$\mathcal{P}_k\$.

Let (x_n) be a sequence in (a nonempty set) E and $(\mathcal{P}_k)_{k \in \mathbb{N}}$ a sequence of properties. We assume that

each property \$\mathcal{P}_k\$ is preserved under passing to eventual subsequences.
for each k and for each subsequence (y_n) of (x_n) there is a further subnet (z_n) satisfying \$\mathcal{P}_k\$.
Then

Let (x_n) be a sequence in (a nonempty set) E and $(\mathcal{P}_k)_{k \in \mathbb{N}}$ a sequence of properties. We assume that

each property P_k is preserved under passing to eventual subsequences.
 for each k and for each subsequence (y_n) of (x_n) there is a further subnet (z_n) satisfying P_k.
 Then there is a subsequence (z_θ) of (x_α) satisfying all properties P_k.

Definition

A net in a set S is a map

$$A \longrightarrow S : \alpha \longmapsto x_{\alpha}$$
 (A is a directed set).

э

Definition

A net in a set S is a map

$$A \longrightarrow S : \alpha \longmapsto x_{\alpha}$$
 (A is a directed set).

- We just write $(x_{\alpha})_{\alpha \in A}$.
- A is directed means that A is equipped with a binary relation (preorder) ≤ such that

1
$$x \le x$$

2 $x \le y$ and $y \le z \implies x \le z$.
3 $\forall \alpha, \beta \in A \implies \exists \gamma : \gamma \ge \alpha$ and $\gamma \ge \beta$

Let $(x_{\alpha})_{\alpha \in A}$ be a net in (a nonempty set) E and $(\mathcal{P}_k)_{k \in \mathbb{N}}$ a sequence of properties. We assume that

Let $(x_{\alpha})_{\alpha \in A}$ be a net in (a nonempty set) E and $(\mathcal{P}_k)_{k \in \mathbb{N}}$ a sequence of properties. We assume that

() each property \mathcal{P}_k is preserved under passing to eventual subnets.

Let $(x_{\alpha})_{\alpha \in A}$ be a net in (a nonempty set) E and $(\mathcal{P}_k)_{k \in \mathbb{N}}$ a sequence of properties. We assume that

- **()** each property \mathcal{P}_k is preserved under passing to eventual subnets.
- for each k and for each subnet (y_β)_{β∈B} of (x_α) there is a further subnet satisfying P_k.

Let $(x_{\alpha})_{\alpha \in A}$ be a net in (a nonempty set) E and $(\mathcal{P}_k)_{k \in \mathbb{N}}$ a sequence of properties. We assume that

() each property \mathcal{P}_k is preserved under passing to eventual subnets.

of or each k and for each subnet (y_β)_{β∈B} of (x_α) there is a further subnet satisfying P_k.
 Then there is a subnet (z_θ) of (x_α) satisfying P_k for all k.

Denote by $x = x^0 = (x_{\alpha})_{\alpha \in A}$ the initial net.

3

3 → 4 3

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Denote by $x = x^0 = (x_{\alpha})_{\alpha \in A}$ the initial net.

Denote by $x = x^0 = (x_{\alpha})_{\alpha \in A}$ the initial net.

•
$$x^n = (x^n_{\alpha_n})_{\alpha_n \in A_n}$$
 satisfies \mathcal{P}_n ;

Denote by $x = x^0 = (x_{\alpha})_{\alpha \in A}$ the initial net.

•
$$x^n = (x^n_{\alpha_n})_{\alpha_n \in A_n}$$
 satisfies \mathcal{P}_n ;
• x^n is a subnet of x^{n-1} .

Denote by $x = x^0 = (x_{\alpha})_{\alpha \in A}$ the initial net.

• By our assumptions that there is a sequence x^n of subnets of x such that

• For some cofinal maps $\varphi_n : A_n \longrightarrow A_{n-1}, x_{\alpha_n}^n = x_{\varphi_n(\alpha_n)}^{n-1}$.

Denote by $x = x^0 = (x_{\alpha})_{\alpha \in A}$ the initial net.

•
$$x^n = (x^n_{\alpha_n})_{\alpha_n \in A_n}$$
 satisfies \mathcal{P}_n ;
• x^n is a subnet of x^{n-1} .

- For some cofinal maps $\varphi_n : A_n \longrightarrow A_{n-1}, x_{\alpha_n}^n = x_{\varphi_n(\alpha_n)}^{n-1}$.
- The subnet x^n satisfies \mathcal{P}_k for $1 \leq k \leq n$.

The expected subnet.

The expected subnet.

• Let B be the set of all β of the form

$$\beta = (\beta_0, \beta_1, ..., \beta_k) \in A_0 \times A_1 \times ... \times A_k,$$

where $k \in \mathbb{N}$; $\beta_{i-1} = \varphi_i(\beta_i)$, $1 \le i \le k$.

The expected subnet.

• Let B be the set of all β of the form

$$eta=(eta_0,eta_1,...,eta_k)\in A_0 imes A_1 imes... imes A_k,$$

where $k \in \mathbb{N}$; $\beta_{i-1} = \varphi_i(\beta_i)$, $1 \le i \le k$.

• B is ordered as follows :

$$\left(\beta_{0},\beta_{1},...,\beta_{p}\right) \preccurlyeq \left(\gamma_{0},\gamma_{1},...,\gamma_{q}\right) \Leftrightarrow p \leq q \text{ and } \beta_{i} \leq \gamma_{i} \text{ for } 0 \leq i \leq p$$

The expected subnet.

• Let B be the set of all β of the form

$$eta=(eta_0,eta_1,...,eta_k)\in A_0 imes A_1 imes... imes A_k,$$

where $k \in \mathbb{N}$; $\beta_{i-1} = \varphi_i(\beta_i)$, $1 \le i \le k$.

• B is ordered as follows :

$$\left(eta_0,eta_1,...,eta_p
ight) \preccurlyeq \left(\gamma_0,\gamma_1,...,\gamma_q
ight) \Leftrightarrow p \leq q ext{ and } eta_i \leq \gamma_i ext{ for } 0 \leq i \leq p$$

● (B, \preccurlyeq) is directed.

The expected subnet.

• Let B be the set of all β of the form

$$\boldsymbol{\beta} = (\beta_0, \beta_1, ..., \beta_k) \in \boldsymbol{A}_0 \times \boldsymbol{A}_1 \times ... \times \boldsymbol{A}_k$$

where $k \in \mathbb{N}$; $\beta_{i-1} = \varphi_i(\beta_i)$, $1 \le i \le k$.

• B is ordered as follows :

$$\left(\beta_{0},\beta_{1},...,\beta_{p}\right) \preccurlyeq \left(\gamma_{0},\gamma_{1},...,\gamma_{q}\right) \Leftrightarrow p \leq q \text{ and } \beta_{i} \leq \gamma_{i} \text{ for } 0 \leq i \leq p$$

1 (B, ≼) is directed.
2
$$y = (y_{\beta})_{\beta \in B}$$
 is a subnet of (x_{α}) via the cofinal map
 $\varphi : B \longrightarrow A;$ $(\beta_0, \beta_1, ..., \beta_p) \longmapsto \beta_0$

The expected subnet.

• Let B be the set of all β of the form

$$\boldsymbol{\beta} = (\beta_0, \beta_1, ..., \beta_k) \in \boldsymbol{A}_0 \times \boldsymbol{A}_1 \times ... \times \boldsymbol{A}_k$$

where $k \in \mathbb{N}$; $\beta_{i-1} = \varphi_i(\beta_i)$, $1 \le i \le k$.

• B is ordered as follows :

$$\left(eta_0,eta_1,...,eta_p
ight) \preccurlyeq \left(\gamma_0,\gamma_1,...,\gamma_q
ight) \Leftrightarrow p \leq q ext{ and } eta_i \leq \gamma_i ext{ for } 0 \leq i \leq p$$

• To conclude see that y is an eventual subnet of x^n , $\forall n$.

Y. Azouzi (IPEST)

7 / 1

э

æ

Image: A mathematical states and a mathem

Theorem (Tychonoff Theorem, countable product)

Theorem (Tychonoff Theorem, countable product)

A countable product of compact spaces is compact.

Theorem (Tychonoff Theorem, countable product)

A countable product of compact spaces is compact.

Theorem (Banach-Alaoglu Theorem, separable case)

Theorem (Tychonoff Theorem, countable product)

A countable product of compact spaces is compact.

Theorem (Banach-Alaoglu Theorem, separable case)

If a Banach space X is separable then the unit ball B_{X^*} of X^* is weakly* compact.

The following Theorem answers a question of M. Kandić, M. Marabeh, V.G. Troitsky.

The following Theorem answers a question of M. Kandić, M. Marabeh, V.G. Troitsky.

Theorem

Let E be a Banach space and X a Banach lattice. Then the set $K_{un}(E, X)$ of all un-compact operators from E to X is a closed subspace of L(E, X).

Let $(x_{\alpha})_{a \in A}$ be a net in some space X and consider a family of properties (\mathcal{P}_i) . W'e assume that

() every property \mathcal{P}_i is preserved under passing to eventual subets.

Let $(x_{\alpha})_{a \in A}$ be a net in some space X and consider a family of properties (\mathcal{P}_i) . W'e assume that

- **(**) every property \mathcal{P}_i is preserved under passing to eventual subets.
- for each i every subnet of (x_α) has a further subnet satisfying property P_i

Let $(x_{\alpha})_{a \in A}$ be a net in some space X and consider a family of properties (\mathcal{P}_i) . W'e assume that

- **(**) every property \mathcal{P}_i is preserved under passing to eventual subets.
- for each i every subnet of (x_α) has a further subnet satisfying property P_i
 Then there is a subnet (u_β) of (x_α) satifying all properties P_i.

Applications : Short and neat proofs

We present here very short proofs of some classical results.

Theorem (Tychonoff)

The product of compact spaces is compact.

Applications : Short and neat proofs

We present here very short proofs of some classical results.

Theorem (Tychonoff)

The product of compact spaces is compact.

Proof.

Let
$$X = \prod_{i \in I} X_i$$
, X_i compact and (f_{α}) be a net in X .

• As X_i is compact every subnet of $f_{\alpha}(i)$ has a convergent subnet in X_i .

We present here very short proofs of some classical results.

Theorem (Tychonoff)

The product of compact spaces is compact.

Proof.

Let
$$X = \prod_{i \in I} X_i$$
, X_i compact and (f_{α}) be a net in X .

- As X_i is compact every subnet of $f_{\alpha}(i)$ has a convergent subnet in X_i .
- By the Diagonal Process (f_α) has a subnet (g_β) such that g_β(i) converges for all i ∈ I.

We present here very short proofs of some classical results.

Theorem (Tychonoff)

The product of compact spaces is compact.

Proof.

Let
$$X = \prod_{i \in I} X_i$$
, X_i compact and (f_{α}) be a net in X .

- As X_i is compact every subnet of $f_{\alpha}(i)$ has a convergent subnet in X_i .
- By the Diagonal Process (f_α) has a subnet (g_β) such that g_β(i) converges for all i ∈ I.
- We are done.

Theorem (Banach-Alaoglu)

Let X be a Banach space. Then the unit ball B_{X^*} is weak* compact.

Proof.

- Let (f_{α}) be a net in B_{X^*} .
 - Then for every $x \in E$, every subnet of (f_{α}) has a subnet g_{β} such that $g_{\beta}(x)$ converges.
 - 2 It follows that (f_{α}) has a subnet g_{β} which converges pointwise on E.
 - Its pointwise limit is linear and |g(x)| ≤ ||x||. So $g ∈ B_{X^*}$ and we are done.

Theorem (Ascoli)

Let A be a subset of C(X), X compact. Assume that A is equicontinuous, bounded and closed. Then A is compact.

A 🖓 h

∃ ▶ ∢

3

Theorem (Ascoli)

Let A be a subset of C(X), X compact. Assume that A is equicontinuous, bounded and closed. Then A is compact.

Theorem (Schauder)

If $T: X \longrightarrow Y$ is compact then T^* is compact.

Theorem (Schauder)

If $T: X^* \longrightarrow Y^*$ is compact then T is compact.

- 4 同 6 4 日 6 4 日 6

•
$$x_{\alpha} \xrightarrow{o} x$$
: $\exists y_{\beta} \downarrow 0 : \forall \beta \exists \alpha_{\beta} : \alpha \geq \alpha_{\beta} \Longrightarrow |x_{\alpha} - x| \leq y_{\beta}$

æ

• $x_{\alpha} \xrightarrow{o} x$: $\exists y_{\beta} \downarrow 0 : \forall \beta \exists \alpha_{\beta} : \alpha \ge \alpha_{\beta} \Longrightarrow |x_{\alpha} - x| \le y_{\beta}$

•
$$x_{\alpha} \xrightarrow{o_1} x$$
: $\exists z_{\alpha} \downarrow 0 : |x_{\alpha} - x| \leq z_{\alpha} \text{ for } \alpha \geq \alpha_0.$

2

Image: A matrix of the second seco

• $x_{\alpha} \xrightarrow{o} x$: $\exists y_{\beta} \downarrow 0 : \forall \beta \exists \alpha_{\beta} : \alpha \ge \alpha_{\beta} \Longrightarrow |x_{\alpha} - x| \le y_{\beta}$

•
$$x_{\alpha} \xrightarrow{o_1} x$$
: $\exists z_{\alpha} \downarrow 0 : |x_{\alpha} - x| \leq z_{\alpha} \text{ for } \alpha \geq \alpha_0.$

2

Image: A matrix of the second seco

•
$$x_{\alpha} \xrightarrow{o} x$$
: $\exists y_{\beta} \downarrow 0 : \forall \beta \exists \alpha_{\beta} : \alpha \ge \alpha_{\beta} \Longrightarrow |x_{\alpha} - x| \le y_{\beta}$
• $x_{\alpha} \xrightarrow{o_{1}} x$: $\exists z_{\alpha} \downarrow 0 : |x_{\alpha} - x| \le z_{\alpha} \text{ for } \alpha \ge \alpha_{0}.$

Theorem

Let X be a vector lattice

3 🕨 🖌 3

æ

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

•
$$x_{\alpha} \xrightarrow{o} x$$
: $\exists y_{\beta} \downarrow 0 : \forall \beta \exists \alpha_{\beta} : \alpha \ge \alpha_{\beta} \Longrightarrow |x_{\alpha} - x| \le y_{\beta}$
• $x_{\alpha} \xrightarrow{o_{1}} x$: $\exists z_{\alpha} \downarrow 0 : |x_{\alpha} - x| \le z_{\alpha} \text{ for } \alpha \ge \alpha_{0}.$

Theorem

Let X be a vector lattice

•
$$x_{\alpha} \xrightarrow{o_1} x \Longrightarrow x_{\alpha} \xrightarrow{o} x.$$

• $x_{\alpha} \xrightarrow{o} x \text{ in } X \iff x_{\alpha} \xrightarrow{o_1} x \text{ in } X^{\delta}.$
• $\xrightarrow{o} \iff \xrightarrow{o_1} \text{ if } X \text{ is dedekind complete.}$
• What's new?

-

Image: A matrix and a matrix

æ

•
$$x_{\alpha} \xrightarrow{o} x$$
: $\exists y_{\beta} \downarrow 0 : \forall \beta \exists \alpha_{\beta} : \alpha \ge \alpha_{\beta} \Longrightarrow |x_{\alpha} - x| \le y_{\beta}$
• $x_{\alpha} \xrightarrow{o_{1}} x$: $\exists z_{\alpha} \downarrow 0 : |x_{\alpha} - x| \le z_{\alpha} \text{ for } \alpha \ge \alpha_{0}.$

Theorem

Let X be a vector lattice

What's new?

Theorem

Let (x_{α}) is a net in a vector lattice X. If $x_{\alpha} \xrightarrow{o} x$ then $y_{\gamma} \xrightarrow{o_1} x$ for some subnet (y_{γ}) of (x_{α}) . If $x_{\alpha} \xrightarrow{uo} x$ then $y_{\gamma} \xrightarrow{uo_1} x$ for some subnet (y_{γ}) of (x_{α}) .

14 / 1

The following answers a question of Taylor.

Theorem

Let (X, τ) be a Hausdorff locally solid vector lattice.

- **(**) τ has the o-Lebesgue property iff it has the o_1 -Lebesgue property.
- **2** τ has the uo-Lebesgue property iff it has the uo₁-Lebesgue property.

Thank you for your attention

Y. Azouzi (IPEST)

э