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Introduction and Background
Theorem (Grothendieck, 1955)
Every norm compact subset of a Banach space is contained in the
closed convex hull of a norm null sequence.

Example: The closed unit ball of ℓ2, considered as a subset of c0,
is not contained in the closed convex hull of a weakly null sequence
in c0. (E. Odell and Y. Sternfeld, 1981).

Theorem (P. N. Dowling et al, 2012)
Every weakly compact subset of a Banach space is contained in the
closed convex hull of a weakly null sequence if and only if the
Banach space has the Schur property.

P. N. Dowling, D. Freeman, C.J. Lennard, E. Odell, B.
Randrianantoanina and B. Turett, A weak Grothendieck
compactness principle, J. Funct. Anal. 263(5) (2012) 1378-1381.
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As expected, Grothendieck compactness-type principles have been
considered for different topologies...

P. N. Dowling and D. Mupasiri, A Grothendieck compactness
principle for the Mackey dual topology, J. Math. Anal. Appl. 410
(2014), 483-486.

K. Beanland and R. Causey, A ξ-weak Grothendieck compactness
principle, Math. Proc. Cambridge Philos. Soc. 172(1) (2022),
231-246.
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In Banach lattice theory, a well known topology is the absolute
weak topology |σ|(E, E∗) on a Banach lattice E, which lies
between the weak and norm topologies, that is

w(E, E∗) ⊂ |σ|(E, E∗) ⊂ τ∥·∥(E).

Let us recall, that for a Banach lattice E, the absolute weak
topology |σ|(E, E∗) is the locally convex-solid topology on E
generated by the family {px∗ : x∗ ∈ A} of lattice seminorms,
where px∗(x) = |x∗|(|x|) for all x ∈ E and x∗ ∈ E∗.

It should be noted that a net (xα)α in E is absolutely weakly
null, i.e. xα

|σ|(E,E∗)−→ 0, if and only if |xα| ω→ 0.
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In order to replace the weak topology in the weak Grothendieck’s
compactness principle (Dowling et al, 2012), a natural candidate
to replace the Schur property is the positive Schur property...

A Banach space X is said to have the Schur property if every
weakly null sequence in X is norm null, that is

xn
ω→ 0 in X ⇒ ∥xn∥ → 0.

A Banach lattice E is said to have the positive Schur property
if every positive weakly null sequence in E is norm null, that is

0 ≤ xn
ω→ 0 in E ⇒ ∥xn∥ → 0.

Or equivalently, if every absolutely weakly null sequence in E
is norm null, that is

xn
|σ|(E,E∗)−→ 0 in E ⇒ ∥xn∥ → 0.
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Conjecture
Every absolutely weakly compact subset of a Banach lattice is
contained in the closed convex hull of an absolutely weakly null
sequence if and only if the Banach lattice has the positive Schur
property.

In our way to prove this conjecture, we realized that we would need
a version of the well known Eberlein-Smulian theorem for the
absolutely weak topology...
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Eberlein-Smulian Theorem

Theorem
1 (Smulian) Every weakly compact subset of a Banach space is

sequentially weakly compact.

2 (Eberlein) Every sequentially weakly compact subset of a
Banach space is weakly compact.
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Theorem 1
Absolutely weakly compact subsets of Banach lattices are
absolutely weakly sequentially compact.

As a first application we give an example of a weakly compact set
which is neither absolutely weakly compact nor absolutely weakly
sequentially compact:

Example: Letting K := {rn : n ∈ N} ∪ {0}, where (rn)n denotes
the Rademcher’s sequence in L1[0, 1], we have that K is a weakly
compact subset of L1[0, 1]. Nevertheless, K is not absolutely
weakly sequentially compact, and so it can not be absolutely
weakly compact.
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Since the usual proof of the Eberlein part of the Eberlein-Šmulian
Theorem uses the weak∗ compactness of the closed unit ball of the
dual of any Banach space (Alaoglu’s Theorem), we considered the
absolute weak∗ topology |σ|(E∗, E) on the dual E∗ of a Banach
lattice, which is the locally convex-solid topology on E∗ generated
by the family {qx : x ∈ E} of lattice seminorms, where
qx(x∗) = |x∗|(|x|) for all x∗ ∈ E∗ and x ∈ E. In particular, we
have that

σ(E∗, E) ⊂ |σ|(E∗, E) ⊂ |σ|(E∗, E∗∗).

It happens, however, that, in general, BE∗ is not absolutely weak*
compact.

Proposition
If BE∗ is absolutely weak* compact, then E has order continuous
norm.
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Theorem 2
Let K be an absolutely weakly sequentially compact subset of a
Banach lattice E. If E is separable or BE∗∗ is absolutely weak∗

compact, then K is absolutely weakly compact.

To establish the usefulness of the theorem above in the
nonseparable case, we should give examples of nonseparable
Banach lattices E for which BE∗∗ is absolutely weak∗ compact.

Proposition
Let E be Banach lattice such that E∗ and E∗∗ have order
continuous norms and E∗∗ is atomic. Then BE∗∗ is absolutely
weak∗ compact. In particular, BE∗∗ = BE is absolutely weak∗

compact for every reflexive atomic Banach lattice.

Example: Let Γ be an uncountable set and 1 < p < ∞. Then
E = ℓp(Γ) is a nonseparable reflexive atomic Banach lattice such
that BE = BE∗∗ is absolutely weak∗ compact.
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Main theorem

Theorem theorem
A Banach lattice E has the positive Schur property if and only if
every absolutely weakly compact subset of E is contained in the
closed convex hull of an absolutely weakly null sequence.
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Proof: (⇒) Assume first that E has the positive Schur property
and let K be an absolutely weakly compact subset of E.

Since absolutely weakly compact sets are sequentially
absolutely weakly compact (Theorem 1), every sequence
(xn)n ⊂ K has an absolutely weakly convergent subsequence
(xnk

)k, that is

xnk

|σ|(E,E∗)−→ x ∈ K.

So (xnk
− x)k is an absolutely weakly null sequence, and

therefore ∥xnk
− x∥ → 0.

Consequently, K is a norm compact subset of E, and by the
Grothendieck’s compactness principle K is contained in the
closed convex hull of a norm null sequence.

As norm null sequences are absolutely weakly null, we get this
implication.
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To prove the other implication, we will need following lemma:

Lemma 1
In a Banach space X one cannot find weakly null sequences (xn)n

and (yn)n with ∥xn∥ = 1 for every n ∈ N such that

∞⋃
n=1

[
(n · co({xn : n ∈ N})) ∩ 1

n
BX

]
⊂ co({yn : n ∈ N}).

The proof of this lemma can be found within the proof of the weak
Grothendieck’s compactness principle (Dowling et al). Actually the
fact stated in the lemma above is one of the most difficult parts of
the proofs of this result, and fortunately, it can also be used in our
case.
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(⇐) Now assume that every absolutely weakly compact subset of
E is contained in the closed convex hull of an absolutely weakly
null sequence.

If E fails to have the positive Schur property, there exists an
absolutely weakly null sequence (xn)n such that ∥xn∥ = 1 for
all n ∈ N.

Since xn
|σ|(E,E∗)−→ 0, an standard diagonal argument shows

that C = co({xn : n ∈ N}) is sequentially absolutely weakly
compact. By considering the separable vector subspace
[xn : n ∈ N], we may find a separable Banach sublattice F of
E containing [xn : n ∈ N].

In particular, C is a sequentially absolutely weakly compact
subset of F , and by Theorem 2, we obtain that C is
absolutely weakly compact in F , and consequently in E.
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Therefore

Kn = (n · co({xn : n ∈ N})) ∩ 1
n

BE

is absolutely weakly compact for every n ∈ N,

and by using an
open cover argument, we obtain that K =

⋃
n∈N Kn is also

absolutely weakly compact.

By the assumption, there exists an absolutely weakly null
sequence (yn)n in E such that K is contained in the closed
convex hull of {yn : n ∈ N}, that is

∞⋃
n=1

(n · co({xn : n ∈ N})) ∩ 1
n

BE ⊂ co({yn : n ∈ N}),

which contradicts Lemma 1, since absolutely weakly null
sequences are weakly null.

Therefore, E has the positive Schur property, and we are
done.
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Application

Recall that a Banach lattice E has the dual positive Schur
property if every positive weak* null sequence in E∗ is norm
null, that is

0 ≤ x∗
n

ω∗
→ 0 in E∗ ⇒ ∥x∗

n∥ → 0.

Recall that a Banach lattice E has the positive Grothendieck
property if every positive weak* null sequence in E∗ is weakly
null, that is

0 ≤ x∗
n

ω∗
→ 0 in E∗ ⇒ xn

ω→ 0.

Proposition (Wnuk)
A Banach lattice E has the dual positive Schur property if and
only if E has both the positive Grothendieck property and E∗ has
the positive Schur property.

W. Wnuk, On the dual positive Schur property in Banach lattices,
Positivity 17 (2013), 759-773.
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Corollary
The following are equivalent for a Banach lattice E:
(a) E has the dual positive Schur property.
(b) Every absolutely weak* null sequence in E∗ is norm null.
(c) E has the positive Grothendieck property and every
sequentially absolutely weak∗-compact subset of E∗ is contained in
the closed convex hull of an absolutely weak∗ null sequence.
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Thank you!
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