Weak essential norms of pointwise multipliers between distinct Banach function spaces Positivity XI

Tomasz Kiwerski

Poznań University of Technology

Ljubljana, 2023

Contents

- Function spaces
- Pointwise multipliers
- Order continuity
- Essential norms

2 Results

- Prologue: Compact multipliers
- Weak essential norms

Open ends

T. Kiwerski and J. Tomaszewski Essential norms of the multiplication operators: The non-algebraic case preprint available on arXiv.org (2023)

★ 3 → < 3</p>

T. Kiwerski and J. Tomaszewski Essential norms of the multiplication operators: The non-algebraic case preprint available on arXiv.org (2023)

T. Kiwerski, P. Kolwicz and J. Tomaszewski Quotients, ℓ_{∞} and abstract Cesàro spaces RACSAM **116** (2022)

4 E 5 4

T. Kiwerski and J. Tomaszewski Essential norms of the multiplication operators: The non-algebraic case preprint available on arXiv.org (2023)

- T. Kiwerski, P. Kolwicz and J. Tomaszewski Quotients, ℓ_{∞} and abstract Cesàro spaces RACSAM **116** (2022)
- K. Leśnik, J. Tomaszewski and L. Maligranda Weakly compact sets and weakly compact pointwise multipliers in Banach function lattices Math. Nachr. 295 (2022)

Toolbox	Function spaces
Results	
Open ends	Order continuity
Fin	

Contents

1 Toolbox

Function spaces

- Pointwise multipliers
- Order continuity
- Essential norms

2 Results

- Prologue: Compact multipliers
- Weak essential norms

3 Open ends

Functio
Order c

Function spaces Pointwise multipliers Order continuity Essential norms

Definition: Banach function spaces

A Banach space $(X, \|\cdot\|)$ is said to be a Banach function space on complete, σ -finite and non-atomic measure space $\Omega = (\Omega, \Sigma, \mu)$, if

・ 同 ト ・ ヨ ト ・ ヨ ト

Function spa
Order contin

ices

Definition: Banach function spaces

A Banach space $(X, \|\cdot\|)$ is said to be a Banach function space on complete, σ -finite and non-atomic measure space $\Omega = (\Omega, \Sigma, \mu)$, if (a) X is a linear subspace of $L_0(\Omega)$,

伺 ト イヨト イヨト

Toolbox	Function spac
Results	
Open ends	Order continu
Fin	

A Banach space $(X, \|\cdot\|)$ is said to be a Banach function space on complete, σ -finite and non-atomic measure space $\Omega = (\Omega, \Sigma, \mu)$, if

(a) X is a linear subspace of $L_0(\Omega)$,

(b) if $f \in L_0(\Omega)$, $g \in X$ and $|f| \leq |g|$, then $f \in X$ and $||f|| \leq ||g||$.

Function space
Order continu

A Banach space $(X, \|\cdot\|)$ is said to be a Banach function space on complete, σ -finite and non-atomic measure space $\Omega = (\Omega, \Sigma, \mu)$, if

- (a) X is a linear subspace of $L_0(\Omega)$,
- (b) if $f \in L_0(\Omega)$, $g \in X$ and $|f| \leq |g|$, then $f \in X$ and $||f|| \leq ||g||$.

• Lebesgue spaces L_p

Toolbox	Function spac
Results	
Open ends	Order continu
Fin	
FIN	Essential nor

A Banach space $(X, \|\cdot\|)$ is said to be a Banach function space on complete, σ -finite and non-atomic measure space $\Omega = (\Omega, \Sigma, \mu)$, if

(a) X is a linear subspace of $L_0(\Omega)$,

(b) if $f \in L_0(\Omega)$, $g \in X$ and $|f| \leq |g|$, then $f \in X$ and $||f|| \leq ||g||$.

- Lebesgue spaces L_p
- (Musielak–)Orlicz spaces L_M and L_{Φ}

Toolbox	Function spac
Results	
Open ends	Order continu
Fin	

A Banach space $(X, \|\cdot\|)$ is said to be a Banach function space on complete, σ -finite and non-atomic measure space $\Omega = (\Omega, \Sigma, \mu)$, if (a) X is a linear subspace of $L_0(\Omega)$,

(b) if $f \in L_0(\Omega)$, $g \in X$ and $|f| \leq |g|$, then $f \in X$ and $||f|| \leq ||g||$.

- Lebesgue spaces L_p
- (Musielak–)Orlicz spaces L_M and L_{Φ}
- Lorentz(–Zygmund) spaces Λ_{φ} and $L_{p,q}(\log L)^{lpha}$

Toolbox	Function spac
Results	
Open ends	Order continu
Fin	

- Lebesgue spaces L_p
- (Musielak–)Orlicz spaces L_M and L_{Φ}
- Lorentz(–Zygmund) spaces Λ_{φ} and $L_{p,q}(\log L)^{lpha}$
- Marcinkiewicz spaces M_{arphi} or $L_{p,\infty}$

Function space
Order continu

- Lebesgue spaces L_p
- (Musielak–)Orlicz spaces L_M and L_{Φ}
- Lorentz(–Zygmund) spaces Λ_{φ} and $L_{\rho,q}(\log L)^{lpha}$
- Marcinkiewicz spaces M_{arphi} or $L_{p,\infty}$
- Morrey–Campanato spaces $M_{p,\lambda}$

Toolbox	Function space
Results	
Open ends	Order continui
Fin	

- Lebesgue spaces L_p
- (Musielak–)Orlicz spaces L_M and L_{Φ}
- Lorentz(–Zygmund) spaces Λ_{φ} and $L_{p,q}(\log L)^{lpha}$
- Marcinkiewicz spaces M_{arphi} or $L_{p,\infty}$
- Morrey–Campanato spaces $M_{p,\lambda}$
- Optimal domains for positive sublinear operators [T, X]

Toolbox	Function space
Results	
Open ends	Order continui
Fin	

- Lebesgue spaces L_p
- (Musielak–)Orlicz spaces L_M and L_{Φ}
- Lorentz(–Zygmund) spaces Λ_{φ} and $L_{p,q}(\log L)^{lpha}$
- Marcinkiewicz spaces M_{arphi} or $L_{p,\infty}$
- Morrey–Campanato spaces $M_{p,\lambda}$
- Optimal domains for positive sublinear operators [T, X]
- Sinnamon's Down spaces X^{\downarrow} , and so on...

Toolbox	Function spaces
Results	
Open ends	Order continuity
Fin	

A Banach function space $(X, \|\cdot\|)$ is called rearrangement invariant if it has the following property

Toolbox	Function spaces
Results	
Open ends	Order continuity
Fin	

A Banach function space $(X, \|\cdot\|)$ is called rearrangement invariant if it has the following property

(c) if $g \in X$ and $f^* \leq g^*$, then $f \in X$ and $||f|| \leq ||g||$,

where

Toolbox	Function spaces
Results	
Open ends	Order continuity
Fin	

A Banach function space $(X, \|\cdot\|)$ is called rearrangement invariant if it has the following property

(c) if $g \in X$ and $f^* \leq g^*$, then $f \in X$ and $||f|| \leq ||g||$,

where f^* denote the so-called non-increasing rearrangement of f.

Toolbox	Function spaces
Results	
Open ends	Order continuity
Fin	

A Banach function space $(X, \|\cdot\|)$ is called rearrangement invariant if it has the following property

(c) if $g \in X$ and $f^* \leq g^*$, then $f \in X$ and $||f|| \leq ||g||$,

where f^* denote the so-called non-increasing rearrangement of f.

• A function from a rearrangement space space is determined by its "size" but not its "shape"

Toolbox	Function spaces
Results	
Open ends	Order continuity
Fin	

A Banach function space $(X, \|\cdot\|)$ is called rearrangement invariant if it has the following property

(c) if $g \in X$ and $f^* \leq g^*$, then $f \in X$ and $||f|| \leq ||g||$,

where f^* denote the so-called non-increasing rearrangement of f.

- A function from a rearrangement space space is determined by its "size" but not its "shape"
- Lebesgue spaces, Orlicz spaces, Lorentz spaces, Marcinkiewicz spaces...

Toolbox	Function spaces
Results	
Open ends	Order continuity
Fin	

A Banach function space $(X, \|\cdot\|)$ is called rearrangement invariant if it has the following property

(c) if $g \in X$ and $f^* \leq g^*$, then $f \in X$ and $||f|| \leq ||g||$,

where f^* denote the so-called non-increasing rearrangement of f.

- A function from a rearrangement space space is determined by its "size" but not its "shape"
- Lebesgue spaces, Orlicz spaces, Lorentz spaces, Marcinkiewicz spaces...
- but, in general, not Musielak–Orlicz spaces, Cesáro spaces, Tandori spaces, and so on...

Toolbox	
Results	Pointwise multipli
Open ends	Order continuity
Fin	

Contents

- Function spaces
- Pointwise multipliers
- Order continuity
- Essential norms

2 Results

- Prologue: Compact multipliers
- Weak essential norms

3 Open ends

Function spaces Pointwise multipliers Order continuity Essential norms

Definition: Space of pointwise multipliers

Let X and Y be two Banach function spaces defined on the same measure space.

< ロ > < 同 > < 三 > < 三 >

Function spaces Pointwise multipliers Order continuity Essential norms

Definition: Space of pointwise multipliers

Let X and Y be two Banach function spaces defined on the same measure space. The space of pointwise multipliers M(X, Y) is defined as a vector space

< ロ > < 同 > < 三 > < 三 >

Toolbox Funct Results Point Open ends Order Fin Essen

Pointwise multipliers Order continuity Essential norms

Definition: Space of pointwise multipliers

Let X and Y be two Banach function spaces defined on the same measure space. The space of pointwise multipliers M(X, Y) is defined as a vector space

$$M(X,Y) := \{ f \in L_0 \colon fg \in Y \text{ for all } g \in X \}$$
(1)

< ロ > < 同 > < 三 > < 三 >

Definition: Space of pointwise multipliers

Let X and Y be two Banach function spaces defined on the same measure space. The space of pointwise multipliers M(X, Y) is defined as a vector space

$$M(X,Y) := \{ f \in L_0 \colon fg \in Y \text{ for all } g \in X \}$$
(1)

furnished with the operator norm

$$||f||_{M(X,Y)} \coloneqq ||M_f \colon X \to Y|| = \sup_{||g||_X = 1} ||fg||_Y.$$
 (2)

• I > • I > • •

Definition: Space of pointwise multipliers

Let X and Y be two Banach function spaces defined on the same measure space. The space of pointwise multipliers M(X, Y) is defined as a vector space

$$M(X,Y) := \{ f \in L_0 \colon fg \in Y \text{ for all } g \in X \}$$
(1)

furnished with the operator norm

$$||f||_{M(X,Y)} \coloneqq ||M_f \colon X \to Y|| = \sup_{||g||_X = 1} ||fg||_Y.$$
 (2)

• $M(X, L_1) \equiv$ Köthe dual of X

Definition: Space of pointwise multipliers

Let X and Y be two Banach function spaces defined on the same measure space. The space of pointwise multipliers M(X, Y) is defined as a vector space

$$M(X,Y) := \{ f \in L_0 \colon fg \in Y \text{ for all } g \in X \}$$
(1)

furnished with the operator norm

$$||f||_{M(X,Y)} \coloneqq ||M_f \colon X \to Y|| = \sup_{||g||_X = 1} ||fg||_Y.$$
 (2)

•
$$M(X, L_1) \equiv$$
 Köthe dual of X

•
$$M(X,X) \equiv L_{\infty}$$

SQ C

Definition: Space of pointwise multipliers

Let X and Y be two Banach function spaces defined on the same measure space. The space of pointwise multipliers M(X, Y) is defined as a vector space

$$M(X,Y) := \{ f \in L_0 \colon fg \in Y \text{ for all } g \in X \}$$
(1)

furnished with the operator norm

$$\|f\|_{M(X,Y)} := \|M_f \colon X \to Y\| = \sup_{\|g\|_X = 1} \|fg\|_Y.$$
 (2)

- $M(X, L_1) \equiv$ Köthe dual of X
- $M(X,X) \equiv L_{\infty}$
- $M(L_p,L_q) \equiv L_r$ with $1 \leqslant q and <math>1/r = 1/q 1/p$

Definition: Space of pointwise multipliers

Let X and Y be two Banach function spaces defined on the same measure space. The space of pointwise multipliers M(X, Y) is defined as a vector space

$$M(X,Y) := \{ f \in L_0 \colon fg \in Y \text{ for all } g \in X \}$$
(1)

furnished with the operator norm

$$\|f\|_{M(X,Y)} := \|M_f \colon X \to Y\| = \sup_{\|g\|_X = 1} \|fg\|_Y.$$
 (2)

- $M(X, L_1) \equiv$ Köthe dual of X
- $M(X,X) \equiv L_{\infty}$
- $M(L_p, L_q) \equiv L_r$ with $1 \leqslant q and <math>1/r = 1/q 1/p$
- $M(L_M, L_N) = L_{N \ominus M}$, $M(M_{\varphi}, \Lambda_{\psi}) = \Lambda_{\psi/\varphi}$, ...

Function spaces Pointwise multipliers Order continuity Essential norms

Contents

- Function spaces
- Pointwise multipliers
- Order continuity
- Essential norms

2 Results

- Prologue: Compact multipliers
- Weak essential norms

3 Open ends

→ < Ξ → <</p>

Э

Function spaces Pointwise multipliers Order continuity Essential norms

Definition: Order continuity

Let $(X, \|\cdot\|)$ be a Banach function space over (Ω, Σ, μ) .

Function spaces Pointwise multipliers Order continuity Essential norms

Definition: Order continuity

Let $(X, \|\cdot\|)$ be a Banach function space over (Ω, Σ, μ) . A function, say f, from X is said to be order continuous if

Function spaces Pointwise multipliers Order continuity Essential norms

Definition: Order continuity

Let $(X, \|\cdot\|)$ be a Banach function space over (Ω, Σ, μ) . A function, say f, from X is said to be order continuous if

$$\lim_{n \to \infty} \|f\chi_{A_n}\| = 0 \tag{3}$$

Function spaces Pointwise multipliers Order continuity Essential norms

Definition: Order continuity

Let $(X, \|\cdot\|)$ be a Banach function space over (Ω, Σ, μ) . A function, say f, from X is said to be order continuous if

$$\lim_{n \to \infty} \|f \chi_{A_n}\| = 0 \tag{3}$$

for any family $\{A_n\}_{n=1}^{\infty} \subset \Sigma$ with

Function spaces Pointwise multipliers Order continuity Essential norms

Definition: Order continuity

Let $(X, \|\cdot\|)$ be a Banach function space over (Ω, Σ, μ) . A function, say f, from X is said to be order continuous if

$$\lim_{n \to \infty} \| f \chi_{A_n} \| = 0 \tag{3}$$

for any family $\{A_n\}_{n=1}^{\infty} \subset \Sigma$ with

$$A_1 \supset A_2 \supset \ldots \supset A_n \supset \ldots \tag{4}$$

and

Function spaces Pointwise multipliers Order continuity Essential norms

Definition: Order continuity

Let $(X, \|\cdot\|)$ be a Banach function space over (Ω, Σ, μ) . A function, say f, from X is said to be order continuous if

$$\lim_{n \to \infty} \|f \chi_{A_n}\| = 0 \tag{3}$$

for any family $\{A_n\}_{n=1}^{\infty} \subset \Sigma$ with

$$A_1 \supset A_2 \supset ... \supset A_n \supset ... \tag{4}$$

and

$$\mu\left(\bigcap_{n=1}^{\infty}A_n\right)=0.$$
(5)

Function spaces Pointwise multipliers Order continuity Essential norms

Definition: Order continuity

Let $(X, \|\cdot\|)$ be a Banach function space over (Ω, Σ, μ) . A function, say f, from X is said to be order continuous if

$$\lim_{n \to \infty} \|f\chi_{A_n}\| = 0 \tag{3}$$

for any family $\{A_n\}_{n=1}^{\infty} \subset \Sigma$ with

$$A_1 \supset A_2 \supset ... \supset A_n \supset ... \tag{4}$$

and

$$u\left(\bigcap_{n=1}^{\infty}A_n\right)=0.$$
 (5)

By X_o we denote the ideal of all order continuous functions from X.

SAG

Function spaces Pointwise multipliers Order continuity Essential norms

Definition: Order continuity

Let $(X, \|\cdot\|)$ be a Banach function space over (Ω, Σ, μ) . A function, say f, from X is said to be order continuous if

$$\lim_{n \to \infty} \|f \chi_{A_n}\| = 0 \tag{3}$$

for any family $\{A_n\}_{n=1}^{\infty} \subset \Sigma$ with

$$A_1 \supset A_2 \supset ... \supset A_n \supset ... \tag{4}$$

and

$$u\left(\bigcap_{n=1}^{\infty}A_n\right)=0.$$
 (5)

By X_o we denote the ideal of all order continuous functions from X. Moreover, we say that X has an order continuous norm if $X_o = X$.

SOA

Toolbox	Function spaces
Results	Pointwise multipliers
Open ends	Order continuity
Fin	Essential norms

• " $(L_1)_o = L_1$ " = Lebesgue's dominated convergence theorem

• • = • • = •

• " $(L_1)_o = L_1$ " = Lebesgue's dominated convergence theorem

• • = • • = •

Toolbox	
Results	
Open ends	Order continuity
Fin	

- " $(L_1)_o = L_1$ " = Lebesgue's dominated convergence theorem
- " $X_o = X$ " = "X is separable"

•
$$(L_p)_o = L_p$$
 provided $1 \leqslant p < \infty$

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

Toolbox	
Results	
Open ends	Order continuity
Fin	

• " $(L_1)_o = L_1$ " = Lebesgue's dominated convergence theorem

• "
$$X_o = X$$
" = "X is separable"

•
$$(L_p)_o = L_p$$
 provided $1 \leqslant p < \infty$

•
$$(L_{\infty})_o = \{0\}$$

Order c

ontinuity

Example: Spinning around the concept of order continuity

• " $(L_1)_o = L_1$ " = Lebesgue's dominated convergence theorem

• "
$$X_o = X$$
" = "X is separable"

•
$$(L_p)_o = L_p$$
 provided $1 \leqslant p < \infty$

•
$$(L_{\infty})_o = \{0\}$$

 Computing M(X, Y) and describing M(X, Y)_o are challenging tasks in themselves

Toolbox	
Results	
Open ends	Order continuity
Fin	Essential norms

Contents

- Function spaces
- Pointwise multipliers
- Order continuity
- Essential norms

2 Results

- Prologue: Compact multipliers
- Weak essential norms

3 Open ends

Toolbox	
Results	
Open ends	Order continuity
Fin	Essential norms

Let \mathscr{I} be a closed operator ideal in the sense of Pietsch.

→ < Ξ → <</p>

Toolbox	
Results	
Open ends	Order continuity
Fin	Essential norms

Let \mathscr{I} be a closed operator ideal in the sense of Pietsch. By the generalized essential norm of an operator $T: X \to Y$ acting between two Banach spaces we will understand here

Toolbox	
Results	
Open ends	Order continuity
Fin	Essential norms

Let \mathscr{I} be a closed operator ideal in the sense of Pietsch. By the generalized essential norm of an operator $T: X \to Y$ acting between two Banach spaces we will understand here

$$\begin{split} \|T \colon X \to Y\|_{\mathscr{L}/\mathscr{I}} &:= \mathsf{dist}(T \colon X \to Y, \mathscr{I}(X, Y)) \\ &= \inf_{J \in \mathscr{I}(X, Y)} \|T - J\| \end{split}$$

Toolbox	
Results	
Open ends	Order continuity
Fin	Essential norms

Let \mathscr{I} be a closed operator ideal in the sense of Pietsch. By the generalized essential norm of an operator $T: X \to Y$ acting between two Banach spaces we will understand here

$$\begin{split} \|T \colon X \to Y\|_{\mathscr{L}/\mathscr{I}} &:= \mathsf{dist}(T \colon X \to Y, \mathscr{I}(X, Y)) \\ &= \inf_{J \in \mathscr{I}(X, Y)} \|T - J\| \end{split}$$

• Calkin algebra $(\mathscr{L}(X, Y) / \mathscr{K}(X, Y), \|\cdot\|_{ess})$,

< ロ > < 同 > < 回 > < 回 > .

э

Toolbox	
Results	
Open ends	Order continuity
Fin	Essential norms

Let \mathscr{I} be a closed operator ideal in the sense of Pietsch. By the generalized essential norm of an operator $T: X \to Y$ acting between two Banach spaces we will understand here

$$\begin{split} \|T \colon X \to Y\|_{\mathscr{L}/\mathscr{I}} &:= \mathsf{dist}(T \colon X \to Y, \mathscr{I}(X,Y)) \\ &= \inf_{J \in \mathscr{I}(X,Y)} \|T - J\| \end{split}$$

Calkin algebra (ℒ(X, Y)/ℋ(X, Y), ||·||_{ess}),
weak Calkin algebra (ℒ(X, Y)/ℋ(X, Y), ||·||_w),

・ 同 ト ・ ヨ ト ・ ヨ ト

Toolbox	
Results	
Open ends	Order continuity
Fin	Essential norms

Let \mathscr{I} be a closed operator ideal in the sense of Pietsch. By the generalized essential norm of an operator $T: X \to Y$ acting between two Banach spaces we will understand here

$$\begin{split} \|T \colon X \to Y\|_{\mathscr{L}/\mathscr{I}} &\coloneqq \mathsf{dist}(T \colon X \to Y, \mathscr{I}(X,Y)) \\ &= \inf_{J \in \mathscr{I}(X,Y)} \|T - J\| \end{split}$$

- Calkin algebra $(\mathscr{L}(X, Y) / \mathscr{K}(X, Y), \|\cdot\|_{ess})$,
- weak Calkin algebra $(\mathscr{L}(X,Y)/\mathscr{W}(X,Y), \left\|\cdot\right\|_w)$,
- Since $\mathscr{K}(X,Y) \subset \mathscr{W}(X,Y)$, so

$$\|T: X \to Y\|_{w} \leqslant \|T: X \to Y\|_{ess}.$$
 (6)

ヘロト ヘ河ト ヘヨト ヘヨト

-

Prologue: Compact multipliers Weak essential norms

Contents

- Function spaces
- Pointwise multipliers
- Order continuity
- Essential norms

2 Results

• Prologue: Compact multipliers

• Weak essential norms

3 Open ends

< ∃ >

Prologue: Compact multipliers Weak essential norms

Theorem: Essential norms of pointwise multipliers [J. Tomaszewski and K, 2023]

Let X and Y be two Banach function spaces both defined on the same measure space.

・ 同 ト ・ ヨ ト ・ ヨ ト

Prologue: Compact multipliers Weak essential norms

Theorem: Essential norms of pointwise multipliers [J. Tomaszewski and K, 2023]

Let X and Y be two Banach function spaces both defined on the same measure space. Suppose that either X is order continuous or Y is reflexive.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Prologue: Compact multipliers Weak essential norms

Theorem: Essential norms of pointwise multipliers [J. Tomaszewski and K, 2023]

Let X and Y be two Banach function spaces both defined on the same measure space. Suppose that either X is order continuous or Y is reflexive. Then

$$\|M_{\lambda}\colon X \to Y\|_{ess} = \|\lambda\|_{M(X,Y)} = \|M_{\lambda}\colon X \to Y\|.$$
(7)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Prologue: Compact multipliers Weak essential norms

Theorem: Essential norms of pointwise multipliers [J. Tomaszewski and K, 2023]

Let X and Y be two Banach function spaces both defined on the same measure space. Suppose that either X is order continuous or Y is reflexive. Then

$$\|M_{\lambda}\colon X \to Y\|_{ess} = \|\lambda\|_{M(X,Y)} = \|M_{\lambda}\colon X \to Y\|.$$
(7)

• $M_{\lambda}: X \to Y$ is as far from being compact as it can be

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Prologue: Compact multipliers Weak essential norms

Theorem: Essential norms of pointwise multipliers [J. Tomaszewski and K, 2023]

Let X and Y be two Banach function spaces both defined on the same measure space. Suppose that either X is order continuous or Y is reflexive. Then

$$\|M_{\lambda} \colon X \to Y\|_{ess} = \|\lambda\|_{\mathcal{M}(X,Y)} = \|M_{\lambda} \colon X \to Y\|.$$
(7)

• $M_{\lambda} \colon X \to Y$ is as far from being compact as it can be

• (Schep, 2023)
$$\|M_{\lambda} \colon X \to X\|_{ess} = \|\lambda\|_{\mathcal{M}(X,X)} = \|\lambda\|_{L_{\infty}}$$

イロト イポト イヨト イヨト 三日

Prologue: Compact multipliers Weak essential norms

Contents

- Function spaces
- Pointwise multipliers
- Order continuity
- Essential norms

2 Results

- Prologue: Compact multipliers
- Weak essential norms

3 Open ends

< ∃ >

Prologue: Compact multipliers Weak essential norms

Definition: Positive Schur property

We say that a Banach function space X has the positive Schur property if

< ロ > < 同 > < 三 > < 三 >

Prologue: Compact multipliers Weak essential norms

Definition: Positive Schur property

We say that a Banach function space X has the positive Schur property if every weakly null sequence with positive terms is norm convergent.

< ロ > < 同 > < 三 > < 三 >

Prologue: Compact multipliers Weak essential norms

Definition: Positive Schur property

We say that a Banach function space X has the positive Schur property if every weakly null sequence with positive terms is norm convergent.

Definition: *p*-disjointly homogeneous space

We say that a Banach function space X is *p*-disjointly homogeneous with $1 \le p < \infty$ if

くロ と く 同 と く ヨ と 一

Prologue: Compact multipliers Weak essential norms

Definition: Positive Schur property

We say that a Banach function space X has the positive Schur property if every weakly null sequence with positive terms is norm convergent.

Definition: *p*-disjointly homogeneous space

We say that a Banach function space X is *p*-disjointly homogeneous with $1 \leq p < \infty$ if every normalized disjoint sequence has a subsequence equivalent to unit vector basis of ℓ_p .

ヘロト ヘ河ト ヘヨト ヘヨト

Prologue: Compact multipliers Weak essential norms

Definition: Positive Schur property

We say that a Banach function space X has the positive Schur property if every weakly null sequence with positive terms is norm convergent.

Definition: *p*-disjointly homogeneous space

We say that a Banach function space X is *p*-disjointly homogeneous with $1 \le p < \infty$ if every normalized disjoint sequence has a subsequence equivalent to unit vector basis of ℓ_p .

Useful note

Positive Schur = 1-DH!

< ロ > < 同 > < 回 > < 回 > .

Prologue: Compact multipliers Weak essential norms

Example: Banach function spaces with the positive Schur property

• $L_1 = \text{generic example}$,

< ロ > < 同 > < 三 > < 三 >

Example: Banach function spaces with the positive Schur property

- $L_1 = \text{generic example}$,
- L_M provided $M \in \Delta_2$, $M^* \in \Delta_0$ and $M(t) \approx t$ near zero,

< ロ > < 同 > < 三 > < 三 > <

Prologue: Compact multipliers Weak essential norms

Example: Banach function spaces with the positive Schur property

- $L_1 = \text{generic example}$,
- L_M provided $M \in \Delta_2$, $M^* \in \Delta_0$ and $M(t) \approx t$ near zero,
- $\Lambda_{arphi}(0,1)$ provided $\lim_{t \to 0} \varphi(t) = 0$, $\varphi(1) > 0$ and $\int_0^1 \varphi(t) dt = 1$,

くロ と く 同 と く ヨ と 一

Example: Banach function spaces with the positive Schur property

- $L_1 = \text{generic example}$,
- L_M provided $M \in \Delta_2$, $M^* \in \Delta_0$ and M(t) pprox t near zero,
- $\Lambda_{\varphi}(0,1)$ provided $\lim_{t\to 0} \varphi(t) = 0$, $\varphi(1) > 0$ and $\int_0^1 \varphi(t) dt = 1$,
- $L_{p,1}(0,1)$ and $L_{p,1}(0,\infty) \cap L_1(0,\infty)$ with 1 ,

- 4 回 ト 4 ヨ ト - 4 ヨ ト - -

Example: Banach function spaces with the positive Schur property

- $L_1 = \text{generic example}$,
- L_M provided $M \in \Delta_2$, $M^* \in \Delta_0$ and M(t) pprox t near zero,
- $\Lambda_{\varphi}(0,1)$ provided $\lim_{t\to 0} \varphi(t) = 0$, $\varphi(1) > 0$ and $\int_0^1 \varphi(t) dt = 1$,
- $L_{p,1}(0,1)$ and $L_{p,1}(0,\infty) \cap L_1(0,\infty)$ with 1 ,
- Positive Schur spaces are somehow "close" to L_1 .

Prologue: Compact multipliers Weak essential norms

Theorem: Weak essential norms of pointwise multipliers [J. Tomaszewski and K, 2023]

Let X and Y be two Banach function spaces both defined on the same measure space.

< ロ > < 同 > < 三 > < 三 >

Prologue: Compact multipliers Weak essential norms

Theorem: Weak essential norms of pointwise multipliers [J. Tomaszewski and K, 2023]

Let X and Y be two Banach function spaces both defined on the same measure space. Suppose that Y has the positive Schur property and

・ 同 ト ・ ヨ ト ・ ヨ ト

Prologue: Compact multipliers Weak essential norms

Theorem: Weak essential norms of pointwise multipliers [J. Tomaszewski and K, 2023]

Let X and Y be two Banach function spaces both defined on the same measure space. Suppose that Y has the positive Schur property and that every simple function in M(X, Y) has an absolutely continuous norm.

・ 同 ト ・ ヨ ト ・ ヨ ト

Prologue: Compact multipliers Weak essential norms

Theorem: Weak essential norms of pointwise multipliers [J. Tomaszewski and K, 2023]

Let X and Y be two Banach function spaces both defined on the same measure space. Suppose that Y has the positive Schur property and that every simple function in M(X, Y) has an absolutely continuous norm. Then

$$\|M_{\lambda} \colon X \to Y\|_{w} = \lim_{n \to \infty} \left\| \lambda \chi_{\mathcal{U}_{n}(\lambda)} \right\|_{\mathcal{M}(X,Y)}, \tag{8}$$

where

・ 同 ト ・ ヨ ト ・ ヨ ト

Prologue: Compact multipliers Weak essential norms

Theorem: Weak essential norms of pointwise multipliers [J. Tomaszewski and K, 2023]

Let X and Y be two Banach function spaces both defined on the same measure space. Suppose that Y has the positive Schur property and that every simple function in M(X, Y) has an absolutely continuous norm. Then

$$\|M_{\lambda} \colon X \to Y\|_{w} = \lim_{n \to \infty} \left\| \lambda \chi_{\mathcal{U}_{n}(\lambda)} \right\|_{M(X,Y)},$$
(8)

where

$$\mathcal{U}_n(\lambda) \coloneqq \bigcup_{N \geqslant n} \Omega_N \cup \{ \omega \in \Omega \colon |\lambda(\omega)| > n \}$$
(9)

and $\{\Omega_N\}_{N=1}^{\infty}$ is a decomposition of Ω into a pairwise disjoint family of sets of finite measure.

< ロ > < 同 > < 回 > < 回 >

Prologue: Compact multipliers Weak essential norms

Theorem: Multiplier via its symbol [J. Tomaszewski and K, 2023]

Let X and Y be two Banach function spaces both defined on the same measure space.

・ 同 ト ・ ヨ ト ・ ヨ ト

Prologue: Compact multipliers Weak essential norms

Theorem: Multiplier via its symbol [J. Tomaszewski and K, 2023]

Let X and Y be two Banach function spaces both defined on the same measure space. Suppose that Y has the positive Schur property and every simple function in the space M(X, Y) has an absolutely continuous norm.

・ 同 ト ・ ヨ ト ・ ヨ ト

Prologue: Compact multipliers Weak essential norms

Theorem: Multiplier via its symbol [J. Tomaszewski and K, 2023]

Let X and Y be two Banach function spaces both defined on the same measure space. Suppose that Y has the positive Schur property and every simple function in the space M(X, Y) has an absolutely continuous norm. Then

$$dist(M_{\lambda} \colon X \to Y, \mathscr{W}(X, Y)) = dist(\lambda, M(X, Y)_{o}).$$
(10)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Prologue: Compact multipliers Weak essential norms

Theorem: Multiplier via its symbol [J. Tomaszewski and K, 2023]

Let X and Y be two Banach function spaces both defined on the same measure space. Suppose that Y has the positive Schur property and every simple function in the space M(X, Y) has an absolutely continuous norm. Then

$$dist(M_{\lambda} \colon X \to Y, \mathscr{W}(X, Y)) = dist(\lambda, M(X, Y)_{o}).$$
(10)

Theorem [P. Kolwicz, J. Tomaszewski and K, 2022]

Let X be an exact interpolation space between L_1 and L_∞ . Then

Prologue: Compact multipliers Weak essential norms

Theorem: Multiplier via its symbol [J. Tomaszewski and K, 2023]

Let X and Y be two Banach function spaces both defined on the same measure space. Suppose that Y has the positive Schur property and every simple function in the space M(X, Y) has an absolutely continuous norm. Then

$$dist(M_{\lambda} \colon X \to Y, \mathscr{W}(X, Y)) = dist(\lambda, M(X, Y)_{o}).$$
(10)

Theorem [P. Kolwicz, J. Tomaszewski and K, 2022]

Let X be an exact interpolation space between L_1 and L_∞ . Then

$$dist(f, X_o) = dist(f^*, X_o).$$
(11)

Prologue: Compact multipliers Weak essential norms

Corollary [J. Tomaszewski and K, 2023]

Let X and Y be two rearrangement invariant function spaces with the Fatou property both defined on the same measure space.

< ロ > < 同 > < 三 > < 三 >

Prologue: Compact multipliers Weak essential norms

Corollary [J. Tomaszewski and K, 2023]

Let X and Y be two rearrangement invariant function spaces with the Fatou property both defined on the same measure space. Suppose that Y has the positive Schur property and that the ideal $M(X, Y)_o$ is non-trivial. Then

くロ と く 同 と く ヨ と 一

Prologue: Compact multipliers Weak essential norms

Corollary [J. Tomaszewski and K, 2023]

Let X and Y be two rearrangement invariant function spaces with the Fatou property both defined on the same measure space. Suppose that Y has the positive Schur property and that the ideal $M(X, Y)_o$ is non-trivial. Then

$$\|M_{\lambda}\colon X \to Y\|_{w} = \lim_{n \to \infty} \left\|\lambda^{*}\chi_{(0,\frac{1}{n})\cup(n,\infty)}\right\|_{\mathcal{M}(X,Y)}.$$
 (12)

Prologue: Compact multipliers Weak essential norms

Corollary [J. Tomaszewski and K, 2023]

Let X and Y be two rearrangement invariant function spaces with the Fatou property both defined on the same measure space. Suppose that Y has the positive Schur property and that the ideal $M(X, Y)_o$ is non-trivial. Then

$$\|M_{\lambda}\colon X \to Y\|_{w} = \lim_{n \to \infty} \left\|\lambda^{*}\chi_{(0,\frac{1}{n})\cup(n,\infty)}\right\|_{M(X,Y)}.$$
 (12)

Corollary [K. Leśnik, L. Maligranda and J. Tomaszewski, 2022]

Let X and Y be two Banach function spaces with the Fatou property both defined on the same measure space. Suppose that X is reflexive and Y has the positive Schur property. Then

< ロ > < 同 > < 回 > < 回 >

Prologue: Compact multipliers Weak essential norms

Corollary [J. Tomaszewski and K, 2023]

Let X and Y be two rearrangement invariant function spaces with the Fatou property both defined on the same measure space. Suppose that Y has the positive Schur property and that the ideal $M(X, Y)_o$ is non-trivial. Then

$$\|M_{\lambda}\colon X \to Y\|_{w} = \lim_{n \to \infty} \left\|\lambda^{*}\chi_{(0,\frac{1}{n})\cup(n,\infty)}\right\|_{M(X,Y)}.$$
 (12)

Corollary [K. Leśnik, L. Maligranda and J. Tomaszewski, 2022]

Let X and Y be two Banach function spaces with the Fatou property both defined on the same measure space. Suppose that X is reflexive and Y has the positive Schur property. Then M(X, Y)has an order continuous norm.

< ロ > < 同 > < 回 > < 回 >

Prologue: Compact multipliers Weak essential norms

Example: Multipliers between Lorentz spaces

Let 1 . Then

Tomasz Kiwerski Weak essential norms of pointwise multipliers between distinct B

ヘロト ヘ団ト ヘヨト ヘヨト

Prologue: Compact multipliers Weak essential norms

Example: Multipliers between Lorentz spaces

Let 1 . Then

$$M(L_{\rho}(0,1),L_{\rho,q}(0,1)) = L_{\infty}(0,1).$$
(13)

Prologue: Compact multipliers Weak essential norms

Example: Multipliers between Lorentz spaces

Let 1 . Then

$$M(L_{p}(0,1), L_{p,q}(0,1)) = L_{\infty}(0,1).$$
(13)

Clearly,

Tomasz Kiwerski Weak essential norms of pointwise multipliers between distinct B

Prologue: Compact multipliers Weak essential norms

Example: Multipliers between Lorentz spaces

Let 1 . Then

$$M(L_{\rho}(0,1),L_{\rho,q}(0,1)) = L_{\infty}(0,1).$$
(13)

Clearly,

$$(L_{\infty}(0,1))_o = \{0\}.$$
 (14)

イロト イヨト イヨト

Prologue: Compact multipliers Weak essential norms

Example: Multipliers between Lorentz spaces

Let 1 . Then

$$M(L_{\rho}(0,1),L_{\rho,q}(0,1)) = L_{\infty}(0,1).$$
(13)

Clearly,

$$(L_{\infty}(0,1))_o = \{0\}.$$
 (14)

Moreover, $L_{p,q}$ -spaces does not have the positive Schur property.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Prologue: Compact multipliers Weak essential norms

Example: Multipliers between Lorentz spaces

Let 1 . Then

$$M(L_{\rho}(0,1),L_{\rho,q}(0,1)) = L_{\infty}(0,1).$$
(13)

Clearly,

$$(L_{\infty}(0,1))_o = \{0\}.$$
 (14)

Moreover, $L_{p,q}$ -spaces does not have the positive Schur property. However, since L_p is reflexive, so

Prologue: Compact multipliers Weak essential norms

Example: Multipliers between Lorentz spaces

Let 1 . Then

$$M(L_{\rho}(0,1),L_{\rho,q}(0,1)) = L_{\infty}(0,1).$$
(13)

Clearly,

$$(L_{\infty}(0,1))_o = \{0\}.$$
 (14)

Moreover, $L_{p,q}$ -spaces does not have the positive Schur property. However, since L_p is reflexive, so

$$\mathscr{L}(L_{p}(0,1),L_{p,q}(0,1)) = \mathscr{W}(L_{p}(0,1),L_{p,q}(0,1)).$$
(15)

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Question 🄶

What about other closed operator ideals?

イロト イボト イヨト イヨト

э

Question \blacklozenge

What about other closed operator ideals? Or, perhaps, only closed subspaces of $\mathscr{L}?$

→ < Ξ → <</p>

-

Question \blacklozenge

What about other closed operator ideals? Or, perhaps, only closed subspaces of $\mathscr{L}?$

Question \heartsuit

What can we say about strictly singular or *p*-summing multipliers?

伺 ト イヨト イヨト

Question 🧄

What about other closed operator ideals? Or, perhaps, only closed subspaces of $\mathscr{L}?$

Question \heartsuit

What can we say about strictly singular or *p*-summing multipliers? In general, what about not necessairly closed operator ideals?

伺 ト イヨト イヨト

Question 🍐

What about other closed operator ideals? Or, perhaps, only closed subspaces of $\mathscr{L}?$

Question \heartsuit

What can we say about strictly singular or *p*-summing multipliers? In general, what about not necessairly closed operator ideals?

Question 🐥

Can we somehow extend our results beyond the class of spaces having the positive Schur property?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Question 🍐

What about other closed operator ideals? Or, perhaps, only closed subspaces of $\mathscr{L}?$

Question \heartsuit

What can we say about strictly singular or *p*-summing multipliers? In general, what about not necessairly closed operator ideals?

Question 🐥

Can we somehow extend our results beyond the class of spaces having the positive Schur property?

Question \diamondsuit

Can we find more examples of positive Schur spaces among, say, Cesáro function spaces?

Question 🍐

What about other closed operator ideals? Or, perhaps, only closed subspaces of $\mathscr{L}?$

Question \heartsuit

What can we say about strictly singular or *p*-summing multipliers? In general, what about not necessairly closed operator ideals?

Question 🐥

Can we somehow extend our results beyond the class of spaces having the positive Schur property?

Question \diamondsuit

Can we find more examples of positive Schur spaces among, say, Cesáro function spaces? More generally, some other optimal domains?

Thank you for your attention!

Tomasz Kiwerski Weak essential norms of pointwise multipliers between distinct B

→ Ξ →