A Stone-Weierstrass type theorem for truncated vector lattices of functions

Sameh Bouaoun

Positivity XI-Liubljana 2023

Sameh Bouaoun ()

Positivity XI-Liubljana 2023 1 / 13

入 くほん くほん

 ℓ[∞] (X) denote the Banach lattice algebra of all real-valued bounded functions on a given non empty set X.

- ℓ[∞] (X) denote the Banach lattice algebra of all real-valued bounded functions on a given non empty set X.
- By a **Banach space of functions** on *X* we shall mean any (uniformly) closed vector subspace of $\ell^{\infty}(X)$.

- ℓ[∞] (X) denote the Banach lattice algebra of all real-valued bounded functions on a given non empty set X.
- By a **Banach space of functions** on *X* we shall mean any (uniformly) closed vector subspace of $\ell^{\infty}(X)$.
 - A Banach space of functions on *X*, say B(X), is called a **Banach** algebra of functions on *X* if B(X) is a subalgebra of $\ell^{\infty}(X)$.

- ℓ[∞] (X) denote the Banach lattice algebra of all real-valued bounded functions on a given non empty set X.
- By a **Banach space of functions** on *X* we shall mean any (uniformly) closed vector subspace of $\ell^{\infty}(X)$.
 - A Banach space of functions on *X*, say B(X), is called a **Banach** algebra of functions on *X* if B(X) is a subalgebra of $\ell^{\infty}(X)$.
 - We call a **Banach lattice of functions** on *X* any Banach space B(X) of functions on *X* which is a sublattice of $\ell^{\infty}(X)$.

- ℓ[∞] (X) denote the Banach lattice algebra of all real-valued bounded functions on a given non empty set X.
- By a **Banach space of functions** on *X* we shall mean any (uniformly) closed vector subspace of $\ell^{\infty}(X)$.
 - A Banach space of functions on *X*, say B(X), is called a **Banach** algebra of functions on *X* if B(X) is a subalgebra of $\ell^{\infty}(X)$.
 - We call a **Banach lattice of functions** on *X* any Banach space B(X) of functions on *X* which is a sublattice of $\ell^{\infty}(X)$.
 - A **Banach lattice algebra of functions** on *X* is a Banach lattice of functions on *X* which is simultanouesly a Banach algebra of functions on *X*.

Let *X* be a topological space. A continuous real-valued function *f* on a topological space *X* is said to be **vanishing at infinity** if, for every $\varepsilon > 0$, the set

$$K(f,\varepsilon) = \{x \in X : |f(x)| \ge \varepsilon|\}$$

is compact. We denote by $C_0(X)$ the set of all continuous functions on X vanishing at infinity.

Let *X* be a topological space. A continuous real-valued function *f* on a topological space *X* is said to be **vanishing at infinity** if, for every $\varepsilon > 0$, the set

$$K(f,\varepsilon) = \{x \in X : |f(x)| \ge \varepsilon|\}$$

is compact. We denote by $C_0(X)$ the set of all continuous functions on X vanishing at infinity.

• $C_0(X)$ is a Banach lattice algebra of functions.

(日)

Theorem

Any Banach algebra of functions on X is a Banach lattice of functions on X.

3

Theorem

Any Banach algebra of functions on X is a Banach lattice of functions on X.

Example

For each real number *a*, let f_a denote the real-valued function on the real interval X = [0; 1] defined by

$$f_a(x) = ax \quad (x \in X)$$

Consider

$$B(X)=\left\{f_a:a\in\mathbb{R}\right\}.$$

イロト イ理ト イヨト イヨ

Positivity XI-Liubljana 2023

4/13

Problem

What is the missing condition for a Banach lattice of functions on X to be a Banach algebra of functions on X?

• • • • • • • • • • • •

A non-empty set S(X) of real-valued functions on X is said to have the **Stone prpoperty** or to be **truncated** if

 $1 \wedge f \in L$ for all $f \in L$.

A non-empty set S(X) of real-valued functions on X is said to have the **Stone prpoperty** or to be **truncated** if

 $1 \wedge f \in L$ for all $f \in L$.

- Any vector sublattice L of \mathbb{R}^X containing 1 is truncated.
- If *X* is a topological space, then $C_0(X)$ is truncated.

A non-empty set S(X) of real-valued functions on X is said to have the **Stone prpoperty** or to be **truncated** if

 $1 \wedge f \in L$ for all $f \in L$.

- Any vector sublattice L of \mathbb{R}^X containing 1 is truncated.
- If *X* is a topological space, then $C_0(X)$ is truncated.

Theorem

A set B(X) of real-valued functions on X is a Banach algebra of functions on X if and only if B(X) a truncated Banach lattice of functions on X.

イロト イヨト イヨト

- 32

• separate the points of *X* if for every $x_1, x_2 \in X$, the condition $f(x_{1,}) = f(x_2)$ for all $f \in S$ implies that $x_{1,} = x_2$, and

- separate the points of *X* if for every $x_1, x_2 \in X$, the condition $f(x_{1,}) = f(x_2)$ for all $f \in S$ implies that $x_{1,} = x_2$, and
- **vanish nowhere** if there is no $x \in X$ such that f(x) = 0 for all $f \in S$.

- separate the points of *X* if for every $x_1, x_2 \in X$, the condition $f(x_{1,}) = f(x_2)$ for all $f \in S$ implies that $x_{1,} = x_2$, and
- **vanish nowhere** if there is no $x \in X$ such that f(x) = 0 for all $f \in S$.

Lemma

Let X be a locally compact Hausdorff space and L be a truncated vector sublattice of $C_0(X)$. If L separates the points of X and vanishes nowhere on X then L is uniformly dense in $C_0(X)$.

A non empty set *S* of *B*(*X*) is **algebraically dense** in *B*(*X*) if for every algebra homomorphisms δ_1 and δ_2 on *B*(*X*), the equality $\delta_1 = \delta_2$ holds whenever $\delta_1 f = \delta_2 f$ for all $f \in S$.

A non empty set *S* of *B*(*X*) is **algebraically dense** in *B*(*X*) if for every algebra homomorphisms δ_1 and δ_2 on *B*(*X*), the equality $\delta_1 = \delta_2$ holds whenever $\delta_1 f = \delta_2 f$ for all $f \in S$.

Theorem

Let B(X) be a Banach algebra on a non-empty set X. If L is either a subalgebra or a truncated vector sublattice of B(X) then L is algebraically dense in B(X) if and only if L is uniformly dense in B(X).

A Banach algebra B(X) on a non empty set X is said to be B(X)-realcompact if every nonzero (real-valued) algebra homomorphism on B(X) is an evaluation δ_x at some $x \in X$, where

$$\delta_x(f) = f(x) \text{ for all } f \in B(X).$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A Banach algebra B(X) on a non empty set X is said to be B(X)-realcompact if every nonzero (real-valued) algebra homomorphism on B(X) is an evaluation δ_x at some $x \in X$, where

$$\delta_x(f) = f(x)$$
 for all $f \in B(X)$.

Corollary

Let B(X) be a Banach algebra on a non empty set X which is B(X)-realcompact and E be either a subalgebra or a truncated vector sublattice of B(X). If E separates the points of X and vanishes nowhere on X then E is uniformly dense in B(X).

Let L(X) be a truncated vector sublattice of $\ell^{\infty}(X)$. Then there exists a locally compact Hausdorff space Y and a linear map $T : L(X) \to C_0(Y)$ such that

1 *T is an isometry,*

Let L(X) be a truncated vector sublattice of $\ell^{\infty}(X)$. Then there exists a locally compact Hausdorff space Y and a linear map $T : L(X) \to C_0(Y)$ such that

- **1** *T is an isometry,*
- **2** *T* is a lattice homomorphism with uniformly dense range (in $C_0(Y)$), *and*

Let L(X) be a truncated vector sublattice of $\ell^{\infty}(X)$. Then there exists a locally compact Hausdorff space Y and a linear map $T : L(X) \to C_0(Y)$ such that

- **1** *T* is an isometry,
- **2** *T* is a lattice homomorphism with uniformly dense range (in $C_0(Y)$ *), and*
- T preserves truncation, i.e.,

$$T(1 \wedge f) = 1 \wedge Tf \quad (f \in L(X)).$$

Let L(X) be a truncated vector sublattice of $\ell^{\infty}(X)$. Then there exists a locally compact Hausdorff space Y and a linear map $T : L(X) \to C_0(Y)$ such that

- **1** *T* is an isometry,
- **2** *T* is a lattice homomorphism with uniformly dense range (in $C_0(Y)$ *), and*
- T preserves truncation, i.e.,

$$T(1 \wedge f) = 1 \wedge Tf \quad (f \in L(X)).$$

Let L(X) be a truncated vector sublattice of $\ell^{\infty}(X)$. Then there exists a locally compact Hausdorff space Y and a linear map $T : L(X) \to C_0(Y)$ such that

- **1** *T* is an isometry,
- **2** *T* is a lattice homomorphism with uniformly dense range (in $C_0(Y)$ *), and*
- T preserves truncation, i.e.,

$$T(1 \wedge f) = 1 \wedge Tf \quad (f \in L(X)).$$

Corollary

For any truncated Banach lattice B(X) there exists a locally compact Hausdorff space Y such that $B(X) = C_0(Y)$.

Representation of truncated vector sublattices of AM spaces.

A norm on a real vector lattice *L* is called an *M*-norm if $|f| \le |g|$ implies $||f|| \le ||g||$ in *L* and $||f \lor g|| = \max \{||f||, ||g||\}$ for all *f*, *g* positive in *L*. If in addition the *M*-norm is complete, we call *L* an Abstract *M*-space (briefly, an *AM*-space). An element e > 0 in the *AM*-space *L* is called a (strong) unit if the set $\{f \in L : -e \le f \le e\}$ coincides with the closed ball of *L*.

Theorem (The Kakutani-Krein Representation)

For any AM-space with unit e > 0, there exists a compact Hausdorff space X such that L and C (X) are lattice isometric.

A vector sublattice of *AM*-space *E* with unit e > 0 is **truncated** if $e \wedge f \in L$ for all $f \in L$.

Corollary

Let E be an AM-*space with unit* e > 0. *Then any closed truncated vector sublattice of E is lattice isometric to* $C_0(Y)$ *for some locally compact Hausdorff space Y*.

- **A B A B A B A**

- K. Boulabiar and S. Bououn, Evaluating characterizations of truncation homomorphisms on vector lattices of functions, *Annals Functional Analy.*, 34 (2021), 45-57.
- K. Boulabiar and S. Bououn, Truncated vector lattices of bounded real-valued functions, Submitted.
- K. Boulabiar and R. Hajji, Representation of strongly truncated Riesz spaces, *Indag. Math.*, 31 (2020), 741-757.