ON LIMITED AND ALMOST LIMITED OPERATORS BETWEEN BANACH LATTICES

0

Safak Alpay

Em. Middle East Technical University

Svetlana Gorokhova

Institut VNC, Vladikavkaz, Russia

Recall that an operator T:X \rightarrow F is called semi-compact if it takes bounded sets of X onto almost order bounded subsets of F. Compact operators are semi-compact. Alternatively, T is semi-compact if for each $\varepsilon > 0$, there exists $u\varepsilon F^+$ such that $T(B_x) \subseteq [-u,u] + \varepsilon B_F$.

An operator T:E \rightarrow X is called M-weakly compact if $||Tx_n|| \rightarrow 0$ for each disjoint bounded sequence (x_n) in E.

An operator T: X \rightarrow E is called L-weakly compact if $||y_n|| \rightarrow 0$ for each disjoint sequence (y_n) in the solid hull of T(B_X).

A Banach lattice E has property (d) if $|f_n| \rightarrow 0$ for every disjoint weak*null sequence (f_n) in E*. If E is a σ -Dedekind complete Banach lattice, then E has (d). if E* has weak* sequentially continuous lattice operations then E has (d). L^p[0,1], $1 \le p \le \infty$ has (d) whereas C[0,1] does not have (d) see Example 2.2:3 in [3].

T: $X \rightarrow F$ is called almost L-weakly compact (aLwc) if it maps relatively weakly compact subsets of X onto L-weakly compact subsets in F. Or $f_n(Tx_n) \rightarrow 0$ for each disjoint bounded (f_n) in F* and weakly null (x_n) in B_E and $T(X) \subseteq F^a$.

T: $E \rightarrow X$ is called almost M-weakly compact (aMwc) if for each disjoint sequence (x_n) in B_E and weakly null (f_n) in X*, $f_n(Tx_n) \rightarrow 0$.

a Mwc operators contain M-weakly compact operators. Id of I^∞ is a Mwc but it is not M-weakly compact .

Order intervals of E are limited if and only if lattice operations in E* are weak*sequentially continuous.

A norm bounded subset A of X is limited iff $f_n(a_n) \rightarrow 0$ for all weak* null (f_n) in X* and all (a_n) in A.

Compact subsets in X are limited. If each limited subset of X is relatively compact then X is said to be a Gelfand-Phillips (GP-space, for short). Reflexive spaces, separable spaces, σ -Dedekind complete Banach lattices with order continuous norms are GP-spaces. l^1 and c_0 are GP-spaces but l^{∞} is not. Order intervals of a Banach lattice are not necessarly limited sets. For example the interval [-1,1] in c is not limited

If F is a KB-space, then for every Banach lattice E where E* has PSP, each regular operator is M and L- weakly compact.(Theorem 3.8)

If E* is a KB-space, then for every Banach lattice F with PSP every regular operator T:E \rightarrow F is M and L-weakly compact.(Theorem 3.8)

Assertion 1) If F is discrete with order continuous norm, then every regular Mwc T: $E \rightarrow X$ is compact.(Theorem 3.4)

If E* is discrete with order continuous norm, then every regular Lwc operator T:E \rightarrow F is compact (Theorem 4.2)

If Y contains c_0 , then every Mwc T:E \rightarrow Y is compact iff (E*)^a is discrete.

An operator T: $X \rightarrow Y$ is called limited if $T(B_X)$ is a limited subset of Y. T: $X \rightarrow E$ is called almost limited if $T(B_X)$ is almost limited in E. The embedding of c_0 into l^{∞} is limited, but not compact. The closed unit ball of l^{∞} is almost limited. Phillip's lemma (Theorem 54.67 [2] says closed unit ball of c_0 is limited in l^{∞}

Let $T:X \rightarrow F$ and suppose F has order continuous norm. If T is limited then it is L-weakly compact and therefore is weakly compact and semi-compact.

The adjoint T^{*} is almost Dunford-Pettis and order weakly compact. If F^{*} has weak^{*} continuous lattice operations, then limited operators is an order ideal in L-weakly compact operators.

THE EFFECT OF WEAK* CONTINUITY OF LATTICE OPERATIONS IN THE DUAL

A operator $T:X \rightarrow F$ is called limitedly *L*-weakly compact(*l*-Lwc) if T maps limited subsets of X onto L-weakly compact subsets of F.

l-Lwc operators were defined and studied in [3]. An operator T is *l*-Lwc if and only if $T^* f_n \rightarrow 0$ in weak* topology of X* for each bounded disjoint (f_n) by Lemma 2.3.1. in [3].

Let $T:X \rightarrow F$ be a semi-compact operator:

If F has limited order intervals, then T is limited.
If F has almost limited intervals, then T is almost limited.

- *If F has compact order intervals, then T is compact.*
- If F has order continuous norm, then T is weakly compact

It follows that L-weakly compact, order bounded M-weakly compact, and operators dominated by semi-compact operators taking values in a Riesz space with limited order intervals are limited operators as each of these operators are semi-compact. See Prop.2.1. in [5].

A semi-compact operator need not be compact, weakly compact, L or M-weakly compact. The identity of l^{∞} is semi-compact but it does not have any of the compactness properties mentioned.

Let $T: E \rightarrow F$ be a semi-compact operator. If F has limited order intervals and order continuous norm, then T is compact.

Let E have limited order intervals and F have order continuous norm and let T be a regular semicompact operator $E \rightarrow F$, then T is AM-compact.

Let T: E \rightarrow X be a weakly compact operator. If E has limited order intervals then T is AM-compact

Let us note that not every weakly compact operator is AM-compact. The identity of $L^2[0,1]$ is weakly compact but it is not AM-compact.

Suppose E has limited order intervals. Let T: $E \rightarrow X$ be order weakly compact, then T is AM-compact

Suppose E^* has order continuous norm and E has limited order intervals and F has PSP, then every order bounded weakly compact operator $T: E \rightarrow F$ is limited.

Proof. Since F has PSP, F has order continuous norm. As E* and F has order continuous norms an order bounded T: $E \rightarrow F$ is compact if and only if T is semi-compact and AM compact by Theorem 125.5 in [22]. Let T: $E \rightarrow F$ be a weakly compact operator. Then T is AM compact by Proposition 2.2. above. On the other hand T is M-weakly compact by Theorem 3.3 in [11]. As order bounded M-weakly compact operators are semi-compact, T is semi-compact and therefore compact.

Suppose E* has order continuous norm and F* has weak* continuous lattice operations, then each positive aDP operator is limited.

Suppose E^* has weak* sequentially continuous lattice operations, then each Mwc operator T: $E \rightarrow F$ is limited.

Proof. Let (f_n) be a weak*null sequence in F*. We need to show $|| T^*(f_n) || \rightarrow 0$. For this it suffices to show $|T^*(f_n)| \rightarrow 0$ in $\sigma(E^*,E)$ and $T^*(f_n)(x_n) \rightarrow 0$ for each norm bounded disjoint sequence (x_n) in E_+ . Since T is bounded $(T^*f_n) \rightarrow 0$ in $\sigma(E^*,E)$. Continuity of lattice operations in E* gives us $|T^*f_n| \rightarrow 0$ in $\sigma(E^*,E)$. $|T^*(f_n)(x_n)| = |f_n(Tx_n)| \le ||f_n|| ||Tx_n||$ Since (f_n) is norm bounded and T is Mwc, The claim follows.

If every positive limited operator T: $E \rightarrow F$ is Mwc, then E^* is a KB space.

Proof. Assume E* does not have order continuous norm. Then there exists an order bounded disjoint sequence in E* such that $(f_n) \subseteq [o, f]$ which does not converge to zero in norm. Choose $y \in F_+$ such that ||y|| = 1 and a functional $g \in F^*$ with ||g|| = 1 and g(y) = ||g|| = 1. Define T: $E \rightarrow F$ by T(x) = g(x)y for x $\in E$. As T is compact, it is limited. We claim T is not Mwc. For this it is enough to show T* is not Lwc. Let us observe that T*(h) = h(y)f. Taking h=g, we see that T*g =f. So that the sequence (f_n) is a sequence in the solid hull of T*(B_F). This shows that T*is not Lwc and therefore T is not Mwc. If Dunford-Pettis operators from E to F are limited, then one of E* has order continuous norm, or order bounded subsets of F are limited holds.

If every weakly compact T: $E \rightarrow X$ is limited, then one of the following holds:

- •*X* has the Dunford-Pettis property,
- •*E** has order continuous norm,

If each semi-compact operator $T: X \rightarrow F$ is aLwc for every X then F has order continuous norm. Each limited operator $T: E \rightarrow F$ is aLwc if and only if F has order continuous norm.

1) If each limited operator $T:E \rightarrow F$ is a Mwc then, E^* has order continuous norm.

2) If E^* has order continuous norm, then each regular $T:E \rightarrow F$ limited operator is aMwc.

If *E* has order continuous norm and limited order intervals, then *T*² is compact for each positive semi-compact operator on *E*.

Suppose *E* has limited order intervals and *T*: $E \rightarrow E$ be semi-compact and weakly compact. Then T^2 compact.

an operator T:E \rightarrow F is called limitedy M-weakly compact if, each bounded disjoint sequence (x_n) in E, (Tx_n) is weakly null.

Suppose F has Schur property, then $l - Mwc(E,F) \subseteq W_o(E,F)$.

Proof. Let Tɛ *l*-Mwc. We need to show

 $||Tx_n|| \rightarrow 0$ for each order bounded disjoint sequence (x_n) in E. (x_n) is weakly null as it is order bounded and disjoint. Thus, (x_n) is bounded, as T is *l*-Mwc, (Tx_n) is weakly null and therefore norm null by the Schur property of F.

ALMOST LIMITED OPERATORS

Recall that E has positive disjoint Schur property(PDSP) if every positive disjoint weak^{*} null sequence in the dual is norm null. It follows that whenever E has PDSP then every bounded operator into E is almost limited. Also notice that since each L-weakly compact set in a Banach lattice is almost limited by Theorem 2.6. in [10], each L-weakly compact operator T:X \rightarrow E is almost limited.

Recall that a Banach lattice is said to have weak Dunford-Pettis* Property (wDP*P, for short) if every relatively weakly compact set is almost limited. if E has wDP*property then each weakly compact operator T:X \rightarrow E is almost limited. In particular, every L and M-weakly compact operator is almost limited.

The identity of l^{∞} is almost limited but it is not limited as the closed unit ball of l^{∞} is not a limited set.

If F has dual disjoint Schur property then, each bounded operator $T:E \rightarrow F$ is almost limited. If F has (d) then, each regular Mwc $T:E \rightarrow F$ is almost limited.

Let (f_n) be a disjoint weak*null sequence in E*.By the (d) property of F, $(|f_n|) \rightarrow 0$ is also weak*null in F*.As $|T^*f_n| \leq T^*|f_n|$ the sequence $(|T^*f_n|)$ is also weak*null in E*.Thus to show $||T^*f_n|| \rightarrow 0$, it suffices to show $T^*f_n(x_n) \rightarrow 0$ for each disjoint bounded sequence (x_n) in E_+ Consider $||T^*f_n(x_n)| = |f_n(Tx_n)| \leq ||f_n|| ||Tx_n||$ Since $||f_n|| \leq N$ for some N and all n, and since $||Tx_n|| \rightarrow 0$ as T is Mwc, it follows that $|T^*f_n(x_n)| \rightarrow 0$ and therefore $||T^*f_n|| \rightarrow 0$ and T is almost limited.

Corollary If E*has positive Schur property, then for Banach lattice F with (d) each $T:E \rightarrow F$ weakly compact is almost limited.

Corollary Suppose E*has the PSP and F is a KB space. Then every regular T:E \rightarrow F is almost limited.

Proof. As they are L and M weakly compact operators.■

For a Banach lattice F, the following are equivalent;

- •F has order continuous norm,
- For every X, each almost limited operator $T:X \rightarrow F$ is Lwc,
- •For every X, each limited operator $T:X \rightarrow F$ is Lwc,
- •For every E, each positive rank one operator is Lwc.

iv) implies i).For each $y \in F_+$, there exits a positive operator $T \to F$ such that T(E) = span(y), then by [3, Theorem 5.66], $y \in F^{a}$, and as $y \in F_+$ is arbitrary, this implies that $F = F^{a}$ and hence F has order continuous norm.

Let F has positive Grothendieck property and has (d), then every aMwc operator is almost limited.

Suppose E has (d) and let $T:E \rightarrow F$. If T is both *l*-Lwc and Mwc, then T is almost limited.

Proof. We need to show $||T^*f_n|| \rightarrow 0$ for each weak*null disjoint sequence (f_n) in F*. For this it suffices to show $|T^*f_n| \rightarrow 0$ weak* and $(T^*f_n)(x_n) \rightarrow 0$ for each disjoint bounded sequence (x_n) in E_+ . Since T is *l*-Lwc (T^*f_n) is weak* null in E*. Property (d) ensures that $|T^*f_n| \rightarrow 0$ in weak* topology. Since (f_n) is weak*null, it is bounded and it follows from $|T^*(f_n(x_n)|=|f_n(Tx_n)| \le ||f_n|| ||Tx_n||$ AsT is Mwc $||Tx_n|| \rightarrow 0$ and $T^*(f_n(x_n)) \rightarrow 0$

Suppose each positive weak Dunford-Pettis operator from E to F is Mwc and F is σ -Dedekind complete then one of E has positive Schur property or F has order continuous norm holds.

Let E, F be Banach lattices where E has almost-DP* property. F is σ -Dedekind complete and E* has order continuous norm, then each regular operator T: E \rightarrow F is almost limited.

Corollary Suppose E is a Banach lattice such that E^* has the PSP, then for each KB-space F and regular operator T:E \rightarrow F, T is almost limited.

Corollary. Suppose F is a KB-space. Then for every Banach lattice E with E* has PSP, every regular operator is almost limited.

Corollary. Suppose E* is a KB-space, then for every Banach lattice with PSP, each regular operator is almost limited.

Every positive aDPO is almost limited iff F has DDSP or E* has order continuous norm.

Suppose F has (d) and DPSP (or equivalently F has DDSP) or E* is KB, then each positive aLwc operator is almost limited.

Not every almost limited operator is M-weakly compact. The identity on l^∞ is almost limited but it is neither M nor L-weakly compact

Suppose E has order continuous norm and F has (d). If every positive almost limited operator T: $E \rightarrow F$ is Mwc, then E* and F have order continuous norms.

Almost limited operators are contained in aLwc (X,E) operators iff E has order continuous norm.

Each almost limited positive operator $T: E \rightarrow F$ is a Mwc iff E^* has order continuous norm.

Suppose E has order continuous norm and each positive weakly compact operator $T: X \rightarrow E$ is almost limited. Then one of E is a KB-space or X has the Dunford-Pettis Property holds.

Let E and F be σ -Dedekind complete Banach lattices. If one of E or F has order continuous norm, then each almost limited T:E \rightarrow F is order weakly compact.

Suppose E^* and F have order continuous norms and E has the property that each bounded positive disjoint sequence in E is order bounded and E has limited order intervals. Then each regular operator $T:E \rightarrow F$ is positively limited.

Let E be an AL-space and F be a Banach lattice with order continuous norm, then each almost

Limited operator $T: E \rightarrow F$ has an almost limited modulus. |T|.

Proof. Since F has order continuous norm, almost limited T is L-weakly compact. Hence T has an L-weakly compact modulus. |T| by Theorem2.4. in[11]. Thus |T| is almost limited by Theorem 2.6 in[8].

It is well known that adjoints of almost limited operators are almost Dunford-Pettis and order weakly compact. On the other hand an almost limited operator itself need not be order weakly compact. For example the identity on l^{∞} is almost limited but not order weakly compact. Duality of order weakly compact operators was studied in [6].

Let *E* and *F* be σ -Dedekind complete Banach lattices. If one of *E* or *F* has order continuous norm, then each almost limited T:E \rightarrow F is order weakly compact.

Proof. Let T:E→F be almost limited. Then T* is order weakly compact. Then T is also order weakly compact by Theorem 2.8 in [6]. ■

References

[1] Afkir F.,Bouras,K.,Elbour,A.S.El Filali. Weak compactness of almost L-weakly compact and almost M-weakly compact operators.Questa.Math202144(9)1145- 1154

[2] C.D.Aliprantis , O.Burkinshaw Positive Operators.

[3] Alpay,S.Emelyanov,E,Gorokova S, Generalizations of L-and M-weakly compact operators

[4] Aqzzouz B., Elbour A., Hmichane, J., On some propertie s of semi-compact operators. Bull. Bel. Math. Soc. 18 (2011) 761-767

[5]Aqzzouz,B.B.,Nourira,R.,Zraoula,L.Semi-compactness of positive Dunford-Pettis operators Proc.Ams.136(2008)1997-2006
[6] Aqzzouz,A.,J.Hmichane. Duality problem for order weakly compact operators Glasgow Math.J.51(2009)101-108
[7] Aqzzouz,B.,Bouras,K. weak and almostDunford-Pettis operators on Banach lattices Demon.Math.XLVI(2013)165-17
[8].Aqzzouz,B.,Elbour,A.,Hmichane,J.Some Properties of the class of positive Dunford-Pettis Operarors J.Math.Appl.354(2009)295-300.
[9] Aqzzouz,B,Elbour a.,.Wickstead.A.C.Compactness of L-weaklyand M-weaklycompact operators on Banach lattices.
Rend.Circ.Palerm (2011)60:43-50

[9] Bouras,K.,Lhaimer,D., Moussa,M. On the class of almost L-weakly and almost M-weakly compact operators Positivity 22(2015)1433-1443

[10] Chen J.X., Chen Zi-Li, Gun Xing Ji Almost limited sets in Banach Lattices JMAA 412(2014)547--553
[11] Chen, Z.L., Wickstead A.W. L-weakly and M-weakly compact operators Indag Math 10(1999)321-336.
[12] Elbour A., Afkir F., M. Some properties of almost L-weakly and M-weakly compact operators. Positivity 24(2020)141-149.

[13] Elbour,A. Some chararacterizations of almost limited operators. Positivity (2017) 21,865-874
[14]Elbour A.,.Machrafi N.,Moussa M.Weak compactness of almost limited opertorsArXiv:14033348v2
[15]Fahri,K.,H'michane,J.H The relationship between almost Dunford-Pettis operators and almost limited operators
Questiones Math.39(4)2016 487-496

[16] H'michaneJ.H.,Kaddouri,A.Bouras,K,Moussa,M On the class of limited operators.Acta Math.VolLXXXV,2(2016)

[17] Kaddouri, A., Fahri, K., Moussa, M. Some results on limited operators

[18] Machrafi, N., Elbour A., M. Moussa Some Characterizations of almost limited sets and applications ArXiv.1312.2770v2

[19] Meyer-Nieberg P. Banach Lattices Springer-Verlag.

[20] Wickstead A. Converses forDodds-Fremlin and Kalton-Saab Theorem.

Math.Proc.Camb.Phil.Soc.120(1996)175-179

[21] Wnuk,W. Banach lattices with order continuous norms Polish Sci.Pub.Warshaw 1990.

[22] Zaanen, A. Riez spaces II

The following result was proved for order weakly compact operators $T:E \rightarrow F$ where E has the property that each bounded disjoint sequence (x_n) is order bounded.

Proposition 3.19. Suppose E* and F have order continuous norms and E has the property that each bounded positive disjoint sequence in E is order bounded and E has limited order intervals. Then each regular operator T:E \rightarrow F is almost limited.

Proof. The operator T admits a factorization over a Banach lattice G with G and G* have order continuous norms, say T = SR where R and S are both positive. We claim R is positively limited. Let (z_n^*) be a positive weak*null sequence in E* and (x_n) be a positive disjoint bounded sequence in E. By the assumption there exists x with $0 \le x_n \le x$ for each n. As R is positive $0 \le Rx_n \le Rx$. Thus $0 \le R^*(z_n^*)(x_n) \le (z_n^*)(R x_n) \le (z_n^*)(x)$ which shows $R^*(z_n^*)(x_n) \rightarrow 0$. By the Lemma we conclude that R is positively limited. Let (x_n^{**}) be a positive weak*null sequence in $E^{**}(y_n^*)$ be a positive disjoint bounded sequence in F*. Since F hs order continuous norm, (y_n^*) is weak*-null and hence $R^*(y_n^*) \rightarrow 0$ in norm proving R is positive limited. It follows that T is almost limited as S is bounded.