The Alexandroff unitization of a Lattice ordered algebra with a truncation

Presented By: Mounir Mahfoudhi

Faculty of Sciences of Tunis, University of Tunis El Manar

Positivity Conference 2023- University of Ljubljana, Slovenia

- Truncated vector lattice
- Alexandroff unitization of a truncated vector lattice.
- Universal properties of the Alexandroff unitization of a truncated vector lattice.
- Outilization of lattice ordered algebra with a truncation

э

イロト イヨト イヨト イヨト

1 Truncated vector lattice

2 Alexandroff unitization of a truncated vector lattice.

⁽³⁾ Universal properties of the Alexandroff unitization of a truncated vector lattice.

4 Unitization of lattice ordered algebra with a truncation

э

イロト イヨト イヨト イヨト

Definition (Ball, (2014))

▷ A *truncation* on a vector lattice *T* is a function that takes each positive element $x \in T$ to a positive element $\tau(x) \in T$ and has the following properties. (τ_1) $x \land \tau(y) \le \tau(x) \le x$ for all $0 \le x, y \in T$. (τ_2) If $0 \le x \in T$ and $\tau(x) = 0$ then x = 0.

 (τ_3) If $x \in T^+$ and $nx = \tau(nx)$ for all $n \in \{1, 2, ...\}$, then x = 0.

イロト 不得 トイヨト イヨト 二日

Definition (Ball, (2014))

▷ A *truncation* on a vector lattice T is a function that takes each positive element $x \in T$ to a positive element $\tau(x) \in T$ and has the following properties.

$$(au_1) \ x \wedge au\left(y\right) \leq au\left(x\right) \leq x \text{ for all } 0 \leq x, y \in T.$$

$$(\tau_2)$$
 If $0 \le x \in T$ and $\tau(x) = 0$ then $x = 0$.

 (τ_3) If $x \in T^+$ and $nx = \tau(nx)$ for all $n \in \{1, 2, ...\}$, then x = 0.

 \triangleright A truncated vector lattice is a vector lattice T along with a truncation τ . We denoted it by (T, τ) .

イロト 不得 トイヨト イヨト 二日

Definition (Ball, (2014))

▷ A *truncation* on a vector lattice *T* is a function that takes each positive element $x \in T$ to a positive element $\tau(x) \in T$ and has the following properties. (τ_1) $x \land \tau(y) \le \tau(x) \le x$ for all $0 \le x, y \in T$. (τ_2) If $0 \le x \in T$ and $\tau(x) = 0$ then x = 0. (τ_3) If $x \in T^+$ and $nx = \tau(nx)$ for all $n \in \{1, 2, ...\}$, then x = 0. ▷ A truncated vector lattice is a vector lattice *T* along with a truncation τ . We

denoted it by (T, τ) .

Definition

A truncated vector lattice U is said to be **unital** if there is an element u such that the truncation is provided by meet with u, i.e.,

$$\tau(x) = u \wedge x$$
 for all $0 \le x \in U$.

Such an element u is called a *truncation unit* of U.

3

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ ・

Furthermore, a truncated vector lattice need not be unital as the following example shows.

Example

Let E = C([0, 1]) the vector lattice of all continuous real-valued functions on the real interval [0, 1] and put

$$T = \Big\{ f \in E : f(0) = 0 \Big\}.$$

Obviously, T is a vector sublattice of E. Also, a truncation can be defined on T by

$$au\left(f
ight)\left(x
ight)=\min\left\{f\left(x
ight),1
ight\},\quad \textit{for all }f\in T^{+} \ \text{and} \ x\in\left[0,1
ight].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Ball, (2014))

Using a non-constructive representation by functions (ZFC), **Ball** proved that for any truncated vector lattice T, there exists a vector lattice ϵT with a weak order unit e such that

3

イロン イ団 とく ヨン イヨン

Theorem (Ball, (2014))

Using a non-constructive representation by functions (ZFC), **Ball** proved that for any truncated vector lattice T, there exists a vector lattice ϵT with a weak order unit e such that

- **1** T is a vector sublattice of ϵT , and
- 2 $\tau(x) = x \land e \text{ for all } x \in T^+$.

э

イロト 不得 トイヨト イヨト

We introduce the notion of unitizations of a truncated vector lattice next.

Definition

A unital vector lattice ϵT with truncation unit $u \ge 0$ is called a **unitization** of a truncated vector lattice (T, τ) if the following conditions hold.

1) T is a vector sublattice of ϵT , and

2
$$\tau(x) = u \wedge x$$
 for all $0 \le x \in T$.

For instance, any unital vector lattice is a unitization of itself. To set these ideas down we give another example.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

The real vector lattice of all continuous real-valued functions on \mathbb{R} that vanish at infinity is denoted by $C_0(\mathbb{R})$. Clearly, $C_0(\mathbb{R})$ is a truncated vector lattice with respect to the truncation defined by

 $au(x)(r) = \min \{x(r), 1\}$ for all $x \in C_0(\mathbb{R})$ and $r \in \mathbb{R}$.

Obviously, the vector lattice $C(\mathbb{R})$ of all continuous real-valued functions on \mathbb{R} is a unitization of $C_0(\mathbb{R})$. Analogously, the vector lattice $C^*(\mathbb{R})$ of all bounded functions in $C(\mathbb{R})$ is another unitization of $C_0(\mathbb{R})$.

イロト 不得 トイヨト イヨト 二日

Truncated vector lattice

2 Alexandroff unitization of a truncated vector lattice.

⁽³⁾ Universal properties of the Alexandroff unitization of a truncated vector lattice.

4 Unitization of lattice ordered algebra with a truncation

э

イロン イ団 とく ヨン イヨン

Let (T, τ) be a truncated vector lattice over \mathbb{R} . Then, the direct sum $T \oplus \mathbb{R}$ is endowed with an ordering such that the following properties hold.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let (T, τ) be a truncated vector lattice over \mathbb{R} . Then, the direct sum $T \oplus \mathbb{R}$ is endowed with an ordering such that the following properties hold.

• $\mathcal{T} \oplus \mathbb{R}$ is a vector lattice with positive cone the set

$$T^+ \cup \left\{ x + \alpha : \alpha > 0 \text{ and } \frac{1}{\alpha} x^- \in \tau(T) \right\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let (T, τ) be a truncated vector lattice over \mathbb{R} . Then, the direct sum $T \oplus \mathbb{R}$ is endowed with an ordering such that the following properties hold.

• $\mathcal{T} \oplus \mathbb{R}$ is a vector lattice with positive cone the set

$$\mathcal{T}^+ \cup \left\{ x + lpha : lpha > \mathsf{0} \, \, \mathsf{and} \, \, rac{1}{lpha} x^- \in au \left(\mathcal{T}
ight)
ight\}.$$

• $T \oplus \mathbb{R}$ has 1 as a weak unit.

<ロ> <四> <四> <四> <三</p>

Let (T, τ) be a truncated vector lattice over \mathbb{R} . Then, the direct sum $T \oplus \mathbb{R}$ is endowed with an ordering such that the following properties hold.

• $\mathcal{T} \oplus \mathbb{R}$ is a vector lattice with positive cone the set

$$\mathcal{T}^+ \cup \left\{ x + lpha : lpha > \mathsf{0} \, \, \mathsf{and} \, \, rac{1}{lpha} x^- \in au \left(\mathcal{T}
ight)
ight\}.$$

- $T \oplus \mathbb{R}$ has 1 as a weak unit.
- $\tau(x) = x \wedge 1$ for all $x \in T^+$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ののの

Let (T, τ) be a truncated vector lattice over \mathbb{R} . Then, the direct sum $T \oplus \mathbb{R}$ is endowed with an ordering such that the following properties hold.

• $\mathcal{T} \oplus \mathbb{R}$ is a vector lattice with positive cone the set

$$T^+ \cup \left\{ x + lpha : lpha > \mathsf{0} \, \, \mathsf{and} \, \, rac{1}{lpha} x^- \in au\left(T
ight)
ight\}.$$

- $T \oplus \mathbb{R}$ has 1 as a weak unit.
- $\tau(x) = x \wedge 1$ for all $x \in T^+$.
- T is an ℓ -ideal in $T \oplus \mathbb{R}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let (T, τ) be a truncated vector lattice over \mathbb{R} . Then, the direct sum $T \oplus \mathbb{R}$ is endowed with an ordering such that the following properties hold.

• $\mathcal{T} \oplus \mathbb{R}$ is a vector lattice with positive cone the set

$$\mathcal{T}^{+} \cup \left\{ x + lpha : lpha > \mathsf{0} \text{ and } rac{1}{lpha} x^{-} \in au\left(\mathcal{T}
ight)
ight\}.$$

- $T \oplus \mathbb{R}$ has 1 as a weak unit.
- $\tau(x) = x \wedge 1$ for all $x \in T^+$.
- T is an ℓ -ideal in $T \oplus \mathbb{R}$.
- $T \oplus \mathbb{R}$ is a unitization of T.

<ロ> <四> <四> <四> <三</p>

The vector lattice $T^* = T \oplus \mathbb{R}$ is called the *Alexandroff unitization* of T.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

How does a truncated vector lattice sit in its Alexandroff unitization?

Definition

The disjoint complements T^d of T in T^* is given by

$$T^d = \left\{ v \in T^* : |v| \land |x| = 0 \text{ for all } x \in T \right\}.$$

3

イロト イヨト イヨト イヨト

Let T be a truncated vector lattice. Then the following assertions hold.

Let T be a truncated vector lattice. Then the following assertions hold.

1) T contains at most one truncation unit.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let T be a truncated vector lattice. Then the following assertions hold.

- 1 T contains at most one truncation unit.
- **2** If T is not unital then $T^d = \{0\}$.

<ロ> <四> <四> <四> <三</p>

Let T be a truncated vector lattice. Then the following assertions hold.

- 1 T contains at most one truncation unit.
- **2** If T is not unital then $T^d = \{0\}$.

3 If T is unital with truncation unit u, then

$$T^{d} = \mathbb{R} (1-u) = \{ \alpha (1-u) : \alpha \in \mathbb{R} \}.$$

<ロ> <四> <四> <四> <三</p>

We are in position now to provide a complete answer of our question.

Corollary

Let T be a truncated vector lattice. Then the following assertions hold.

크

イロト イヨト イヨト イヨト

We are in position now to provide a complete answer of our question.

Corollary

Let T be a truncated vector lattice. Then the following assertions hold.

1 T is dense in T^* if and only if T is not unital.

3

イロト イヨト イヨト イヨト

We are in position now to provide a complete answer of our question.

Corollary

Let T be a truncated vector lattice. Then the following assertions hold.

- **1** T is dense in T^* if and only if T is not unital.
- **2** $T \oplus T^d = T^*$ if and only if T is unital.

- Truncated vector lattice
- 2 Alexandroff unitization of a truncated vector lattice.

(3) Universal properties of the Alexandroff unitization of a truncated vector lattice.

Output Unitization of lattice ordered algebra with a truncation

э

イロト イヨト イヨト イヨト

Let S and E be vector lattices.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆

Let S and E be vector lattices.

By a *truncation homomorphism* we mean a linear map S → E which is a lattice homomorphism and *perseveres truncations*, i.e.,

$$\omega(\tau(x)) = \tau(\omega(x))$$
 for all $x \in S^+$.

(日)

Let S and E be vector lattices.

By a *truncation homomorphism* we mean a linear map S → E which is a lattice homomorphism and *perseveres truncations*, i.e.,

$$\omega(\tau(x)) = \tau(\omega(x))$$
 for all $x \in S^+$.

On the other hand, let U and V be unital (truncated) vector lattices with truncation units u and v, respectively. A linear map U → V is called a unital lattice homomorphism if ω is a lattice homomorphism with ω (u) = v.

• Any unital lattice homomorphism on unital is a truncation homomorphism. However, truncation homomorphism on unital (truncated) vector lattice is a lattice homomorphism but need not be unital

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let T be a truncated vector lattice. Then T^* is the unique (up to a unital lattice isomorphism that leaves T pointwise fixed) unitization of T such that, for every unital vector lattice U, any truncation homomorphism $T \xrightarrow{f} U$ extends uniquely to a unital lattice homomorphism $T^* \xrightarrow{f^*} U$.

$$egin{array}{ccc} & f & U \ & \searrow & \uparrow_{f^*} \ & & T^* \end{array}$$

(Faculty of Sciences of Tunis, University of Tunis El 1 The Alexandroff unitization of a Lattice ordered algeb

(a)

Let T be a non-unital truncated vector lattice and U be a unital vector lattice. Then T^{*} is the unique (up to a unital lattice isomorphism that leaves T pointwise invariant) unitization of T such that any injective truncation homomorphism $T \xrightarrow{f} U$ extends uniquely to an injective unital lattice homomorphism $T^* \xrightarrow{f^*} U$.

イロト 不得 トイヨト イヨト

Corollary

Let T be a non-unital vector lattice. Then T^* is the smallest unitization of T, i.e., if ϵT is another unitization of T then T^* can be embedded in ϵT as a unital vector sublattice.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Truncated vector lattice
- 2 Alexandroff unitization of a truncated vector lattice.
- () Universal properties of the Alexandroff unitization of a truncated vector lattice.
- **4** Unitization of lattice ordered algebra with a truncation

э

イロン イ団 とく ヨン イヨン

Let A be an ℓ -algebra with a truncation τ . Drawing plenty of inspiration from the classical unitization process in Banach Algebra Theory, a natural multiplication can be introduced on the vector lattice $A^* = A \oplus \mathbb{R}$ by putting

$$(x + \alpha)(y + \beta) = xy + \beta x + \alpha y + \alpha \beta$$
, for all $x, y \in A$ and $\alpha, \beta \in \mathbb{R}$. (*)

It is clair that this multiplication makes A^* into an associative algebra with 1 as identity and A as an algebra ideal. It would seem plausible to think that A^* is even an ℓ -algebra, i.e., the positive cone of A^* is closed under this multiplication. Nevertheless, as the next example shows, such an attractive result cannot be expected without imposing an extra compatibility condition.

(日)

Example

The function
$$au: C(\mathbb{R})^+ o C(\mathbb{R})^+$$
 defined by

$$au\left(x
ight)\left(r
ight)=\min\left\{x\left(r
ight),1
ight\}$$
, for all $x\in\mathcal{C}\left(\mathbb{R}
ight)$ and $r\in\mathbb{R}$

is a truncation on $C(\mathbb{R})$. Moreover, it is easily checked that $C(\mathbb{R})$ is an ℓ -algebra under the multiplication given by

(xy)(r) = 2x(r)y(r), for all $x, y \in C(\mathbb{R})$ and $r \in \mathbb{R}$.

Define $x, y \in C(\mathbb{R})$ by

 $x(r) = \cos r$ and $y(r) = \sin r$, for all $r \in \mathbb{R}$.

Obviously, we have $x^-, y^- \in \tau\left(C\left(\mathbb{R}\right)^+\right)$ and so $x + 1, y + 1 \ge 0$ in $\left(C\left(\mathbb{R}\right)\right)^*$. Furthermore, a simple calculation leads to the equalities

$$(x+1)(y+1) = xy + x + y + 1$$
 and $(xy + x + y)^{-}(-\pi/4) = 2$.

э

・ロト ・四ト ・ヨト ・ヨト

We call an element x in an ℓ -algebra A with identity e > 0 an *infinitesimal* if

 $|n| |x| \le e$, for all $n \in \{1, 2, ...\}$.

イロト イヨト イヨト イヨト 二日二

We call an element x in an ℓ -algebra A with identity e > 0 an *infinitesimal* if

 $n\left|x
ight|\leq e$, for all $n\in\left\{ 1,2,...
ight\}$.

Theorem

Let A be a unital ℓ -algebra such that its identity is simultaneously a weak unit. If A has no non-zero infinitesimals, then A is a semi prime f-algebra.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We call an element x in an ℓ -algebra A with identity e > 0 an *infinitesimal* if

 $n\left|x
ight|\leq e$, for all $n\in\left\{ 1,2,...
ight\}$.

Theorem

Let A be a unital ℓ -algebra such that its identity is simultaneously a weak unit. If A has no non-zero infinitesimals, then A is a semi prime f-algebra.

Theorem

Let A be an ℓ -algebra with a truncation τ . Then A^* is an ℓ -algebra if and only if A^* is a semiprime f-algebra.

<ロ> <四> <四> <四> <三</p>

We are in position at this point to state the central result of this section.

Theorem (Boulabiar and M, (2019))

Let A be an l-algebra with a truncation τ . Then A^* is an l-algebra if and only if A is a semiprime f-algebra with

$$\tau\left(A^{+}\right) = \left\{x \in A : x^{2} \leq x\right\}.$$

イロト 不得 トイヨト イヨト

Theorem

Any semiprime Archimedean f-algebra A can be embedded as an f-subalgebra in the unital Archimedean f-algebra Orth(A) of all orthomorphisms on A.

3

イロン イ団 とく ヨン イヨン

Definition (Ben Amor, Boulabiar, and El Adeb, (2014))

We call the semiprime Archimedean f-algebra A a Stone f-algebra if

 $\operatorname{id}_A \wedge x \in A$, for all $x \in A^+$,

where id_A denotes the identity map on A (which is the identity of the algebra Orth(A)).

Example

• Any unital Archimedean *f*-algebra is a Stone *f*-algebra.

イロト イヨト イヨト イヨト

Definition (Ben Amor, Boulabiar, and El Adeb, (2014))

We call the semiprime Archimedean f-algebra A a Stone f-algebra if

 $\operatorname{id}_A \wedge x \in A$, for all $x \in A^+$,

where id_A denotes the identity map on A (which is the identity of the algebra Orth(A)).

Example

- Any unital Archimedean *f*-algebra is a Stone *f*-algebra.
- The *f*-algebra $C_0(\mathbb{R})$ is a Stone *f*-algebra.

イロト 不得 トイヨト イヨト

We call the **Stone function** on the Stone f-algebra A the function $\tau: A^+ \to A^+$ defined by

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

We call the **Stone function** on the Stone f-algebra A the function $\tau: A^+ \to A^+$ defined by

 $\tau(x) = \mathrm{id}_A \wedge x$, for all $x \in A^+$.

Theorem (Boulabiar and M, (2019))

The Stone function on a Stone f-algebra A is the unique truncation τ on A such that the Alexandroff unitization A^* of A is an ℓ -algebra.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Boulabiar and M, (2019))

Let A be an Archimedean ℓ -algebra with a truncation τ . Then A^{*} is an ℓ -algebra if and only if A is a Stone f-algebra and τ is the Stone function.

Thank you for your attention

◆□→ ◆圖→ ◆注→ ◆注→ □注。

