Weak compactness in variable exponent Lebesgue spaces

Mauro Sanchiz Alonso

UNIVERSIDAD COMPLUTENSE DE MADRID Joint work with **Francisco L. Hernández** and **César Ruiz**

Positivity XI, Ljubljana July 11, 2023 Hernández, F., Ruiz, C. & Sanchiz, M. Weak compactness in variable exponent spaces. J. Func. Anal. 281, 109087 (2021)
 Hernández, F., Ruiz, C. & Sanchiz, M. Weak compactness and representation in variable exponent Lebesgue spaces on infinite measure spaces. RACSAM. 116 (2022), 152
 Hernández, F., Ruiz, C. & Sanchiz, M. Remarks on weak compactness criteria in variable exponent Lebesgue spaces.

Quaestiones Math. (2023), (accepted)

Variable Lebesgue spaces

Let (Ω, Σ, μ) be a finite or σ -finite separable non-atomic measure space.

Definition

Given $p(\cdot) : \Omega \to [1, \infty)$, the variable exponent Lebesgue space (or Nakano space) $L^{p(\cdot)}(\Omega)$ is the Banach function space consisting of all $f \in L_0(\Omega, \mu)$ with

$$ho\left(rac{f}{r}
ight):=\int_{\Omega}\left|rac{f(t)}{r}
ight|^{
ho(t)}d\mu(t)<\infty, ext{ for some } r>0,$$

endowed with the Luxemburg norm

$$\|f\|_{p(\cdot)} := \inf\left\{r > 0 \colon \rho\left(\frac{f}{r}\right) \le 1\right\}.$$

Variable Lebesgue spaces

Let (Ω, Σ, μ) be a finite or σ -finite separable non-atomic measure space.

Definition

Given $p(\cdot) : \Omega \to [1, \infty)$, the variable exponent Lebesgue space (or Nakano space) $L^{p(\cdot)}(\Omega)$ is the Banach function space consisting of all $f \in L_0(\Omega, \mu)$ with

$$ho\left(rac{f}{r}
ight):=\int_{\Omega}\left|rac{f(t)}{r}
ight|^{
ho(t)}d\mu(t)<\infty, ext{ for some } r>0,$$

endowed with the Luxemburg norm

$$\|f\|_{\rho(\cdot)} := \inf\left\{r > 0 \colon \rho\left(\frac{f}{r}\right) \le 1\right\}.$$

•
$$p^+ := ess \sup_{t \in \Omega} p(t).$$

• $p^- := ess \inf_{t \in \Omega} p(t)$.

•
$$R_{p(\cdot)} := \left\{ q \in [1,\infty) \colon \forall \varepsilon > 0, \mu \left(p^{-1}(q-\varepsilon,q+\varepsilon) \right) > 0
ight\}.$$

Definition

A Musielak-Orlicz function is a measurable function $\Phi: \Omega \times [0, \infty) \rightarrow [0, \infty)$ such that $\Phi(t, \cdot)$ is an Orlicz function for every $t \in \Omega$.

The Musielak-Orlicz space is the space of all $f \in L_0(\Omega)$ with

$$\int_{\Omega} \Phi\left(t, \left|\frac{f(t)}{r}\right|\right) dt < \infty, \text{ for some } r > 0,$$

with the Luxemburg norm

$$\|f\|_{\Phi} = \inf\left\{r > 0: \int_{\Omega} \Phi\left(t, \left|\frac{f(t)}{r}\right|\right) dt \le 1\right\}.$$

Definition

A Musielak-Orlicz function is a measurable function $\Phi: \Omega \times [0, \infty) \rightarrow [0, \infty)$ such that $\Phi(t, \cdot)$ is an Orlicz function for every $t \in \Omega$.

The Musielak-Orlicz space is the space of all $f \in L_0(\Omega)$ with

$$\int_{\Omega} \Phi\left(t, \left|\frac{f(t)}{r}\right|\right) dt < \infty, \text{ for some } r > 0,$$

with the Luxemburg norm

$$\|f\|_{\Phi} = \inf\left\{r > 0: \ \int_{\Omega} \Phi\left(t, \left|\frac{f(t)}{r}\right|\right) dt \leq 1\right\}.$$

- If $\Phi(t, x) = \varphi(x)$, then $L^{\Phi}(\Omega) = L^{\varphi}(\Omega)$ is an Orlicz space.
- If Φ(t, x) = x^{p(t)}, then L^Φ(Ω) = L^{p(·)}(Ω) is a variable exponent Lebesgue space.

・ 同 ト ・ ヨ ト ・ ヨ

• $L^{p(\cdot)}(\Omega)$ is separable $\Leftrightarrow p^+ < \infty$.

|印 ト イ ヨ ト イ ヨ ト ニ ヨ

- $L^{p(\cdot)}(\Omega)$ is separable $\Leftrightarrow p^+ < \infty$.
- If $p^+ < \infty$, then $(L^{p(\cdot)}(\Omega))^* = L^{p^*(\cdot)}(\Omega)$, where $\frac{1}{p(t)} + \frac{1}{p^*(t)} = 1$, μ -a.e.

A B > A B >

3

- $L^{p(\cdot)}(\Omega)$ is separable $\Leftrightarrow p^+ < \infty$.
- If $p^+ < \infty$, then $(L^{p(\cdot)}(\Omega))^* = L^{p^*(\cdot)}(\Omega)$, where $\frac{1}{p(t)} + \frac{1}{p^*(t)} = 1$, μ -a.e.
- $L^{p(\cdot)}(\Omega)$ is reflexive $\Leftrightarrow 1 < p^- \le p^+ < \infty$.

- $L^{p(\cdot)}(\Omega)$ is separable $\Leftrightarrow p^+ < \infty$.
- If $p^+ < \infty$, then $(L^{p(\cdot)}(\Omega))^* = L^{p^*(\cdot)}(\Omega)$, where $\frac{1}{p(t)} + \frac{1}{p^*(t)} = 1$, μ -a.e.
- $L^{p(\cdot)}(\Omega)$ is reflexive $\Leftrightarrow 1 < p^{-} \le p^{+} < \infty$.
- By Eberlein-Smulian, if 1 < p⁻ ≤ p⁺ < ∞, every bounded subset S ⊂ L^{p(·)}(Ω) is relatively weakly compact.

- $L^{p(\cdot)}(\Omega)$ is separable $\Leftrightarrow p^+ < \infty$.
- If $p^+ < \infty$, then $(L^{p(\cdot)}(\Omega))^* = L^{p^*(\cdot)}(\Omega)$, where $\frac{1}{p(t)} + \frac{1}{p^*(t)} = 1$, μ -a.e.
- $L^{p(\cdot)}(\Omega)$ is reflexive $\Leftrightarrow 1 < p^{-} \le p^{+} < \infty$.
- By Eberlein-Smulian, if 1 < p⁻ ≤ p⁺ < ∞, every bounded subset S ⊂ L^{p(·)}(Ω) is relatively weakly compact.
- Which subsets S ⊂ L^{p(·)}(Ω) are weakly compact for variable exponents with p⁻ = 1?

- $L^{p(\cdot)}(\Omega)$ is separable $\Leftrightarrow p^+ < \infty$.
- If $p^+ < \infty$, then $(L^{p(\cdot)}(\Omega))^* = L^{p^*(\cdot)}(\Omega)$, where $\frac{1}{p(t)} + \frac{1}{p^*(t)} = 1$, μ -a.e.
- $L^{p(\cdot)}(\Omega)$ is reflexive $\Leftrightarrow 1 < p^{-} \le p^{+} < \infty$.
- By Eberlein-Smulian, if 1 < p⁻ ≤ p⁺ < ∞, every bounded subset S ⊂ L^{p(·)}(Ω) is relatively weakly compact.
- Which subsets S ⊂ L^{p(·)}(Ω) are weakly compact for variable exponents with p⁻ = 1?
- Variable Lebesgue spaces are not rearrangement invariant (symmetric) Banach function spaces.

周 ト イ ヨ ト イ ヨ ト

- $L^{p(\cdot)}(\Omega)$ is separable $\Leftrightarrow p^+ < \infty$.
- If $p^+ < \infty$, then $(L^{p(\cdot)}(\Omega))^* = L^{p^*(\cdot)}(\Omega)$, where $\frac{1}{p(t)} + \frac{1}{p^*(t)} = 1$, μ -a.e.
- $L^{p(\cdot)}(\Omega)$ is reflexive $\Leftrightarrow 1 < p^{-} \le p^{+} < \infty$.
- By Eberlein-Smulian, if 1 < p⁻ ≤ p⁺ < ∞, every bounded subset S ⊂ L^{p(·)}(Ω) is relatively weakly compact.
- Which subsets S ⊂ L^{p(·)}(Ω) are weakly compact for variable exponents with p⁻ = 1?
- Variable Lebesgue spaces are not rearrangement invariant (symmetric) Banach function spaces.
- ℓ_r is lattice embedded in $L^{p(\cdot)}(\Omega) \Leftrightarrow r \in R_{p(\cdot)}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Weak compactness in $L_1(\Omega)$

 $S \subset L^{p(\cdot)}(\Omega)$ is equi-integrable if it BOTH is uniformly integrable, i.e.

$$\lim_{\mu(E)\to 0} \sup_{f\in S} \int_E |f(t)|^{p(t)} dt = 0$$

and **decays uniformly at infinity**, i.e. given $\varepsilon > 0$ there exists $A \subset \Omega$ with $\mu(A) < \infty$ such that

$$\sup_{t\in S}\int_{\Omega\setminus A}|f(t)|^{p(t)}dt<\varepsilon.$$

.

Weak compactness in $L_1(\Omega)$

 $S \subset L^{p(\cdot)}(\Omega)$ is equi-integrable if it BOTH is uniformly integrable, i.e.

$$\lim_{\mu(E)\to 0} \sup_{f\in S} \int_E |f(t)|^{p(t)} dt = 0$$

and **decays uniformly at infinity**, i.e. given $\varepsilon > 0$ there exists $A \subset \Omega$ with $\mu(A) < \infty$ such that

$$\sup_{f\in S}\int_{\Omega\setminus A}|f(t)|^{p(t)}dt<\varepsilon.$$

Theorem (De La Vallée Poussin)

 $S \subset L_1(\Omega)$ for a finite measure space Ω is equi-integrable $\Leftrightarrow S$ is norm bounded in some Orlicz space $L^{\varphi}(\Omega)$ for a N-function φ , i.e.

$$\lim_{x\to\infty}\frac{\varphi(x)}{x}=\infty.$$

Weak compactness in $L_1(\Omega)$

 $S \subset L^{p(\cdot)}(\Omega)$ is equi-integrable if it BOTH is uniformly integrable, i.e.

$$\lim_{\mu(E)\to 0} \sup_{f\in S} \int_E |f(t)|^{p(t)} dt = 0$$

and **decays uniformly at infinity**, i.e. given $\varepsilon > 0$ there exists $A \subset \Omega$ with $\mu(A) < \infty$ such that

$$\sup_{f\in S}\int_{\Omega\setminus A}|f(t)|^{p(t)}dt<\varepsilon.$$

Theorem (De La Vallée Poussin)

 $S \subset L_1(\Omega)$ for a finite measure space Ω is equi-integrable $\Leftrightarrow S$ is norm bounded in some Orlicz space $L^{\varphi}(\Omega)$ for a N-function φ , i.e.

$$\lim_{x\to\infty}\frac{\varphi(x)}{x}=\infty.$$

Theorem (Dunford-Pettis)

 $S \subset L_1(\Omega)$ is relatively weakly compact $\Leftrightarrow S$ is equi-integrable.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Equi-integrability in $L^{p(\cdot)}(\Omega)$ (for $\mu(\Omega) < \infty$)

For finite measures μ , $S \subset L^{p(\cdot)}(\Omega)$ is equi-integrable \Leftrightarrow

$$\lim_{x\to\infty}\sup_{f\in \mathcal{S}}\int_{\{|f|>x\}}|f(t)|^{p(t)}d\mu=0.$$

Theorem (De La Vallée-Poussin's type)

Let $L^{p(\cdot)}(\Omega)$ with $\mu(\Omega) < \infty$ and $p^+ < \infty$. $S \subset L^{p(\cdot)}(\Omega)$ is equi-integrable \Leftrightarrow it is bounded and there exists an N-function φ such that $\sup_{\sigma(\Omega) < \infty} \|\varphi(f)\|_{\sigma(\Omega)} < \infty$

$$\sup_{f\in S} \|\varphi(f)\|_{p(\cdot)} < \infty.$$

Equi-integrability in $L^{p(\cdot)}(\Omega)$ (for $\mu(\Omega) < \infty$)

For finite measures μ , $S \subset L^{p(\cdot)}(\Omega)$ is equi-integrable \Leftrightarrow

f∈S

$$\lim_{x\to\infty}\sup_{f\in \mathcal{S}}\int_{\{|f|>x\}}|f(t)|^{p(t)}d\mu=0.$$

Theorem (De La Vallée-Poussin's type)

Let $L^{p(\cdot)}(\Omega)$ with $\mu(\Omega) < \infty$ and $p^+ < \infty$. $S \subset L^{p(\cdot)}(\Omega)$ is equi-integrable \Leftrightarrow it is bounded and there exists an N-function φ such that $\sup \|\varphi(f)\|_{p(\cdot)} < \infty$.

There is not an analogous to Dunford-Pettis's theorem, since we can find non-equi-integrable weakly compact subsets in $L^{p(\cdot)}(\Omega)$ spaces. For example, $\ell_r \subseteq L^{p(\cdot)}(\Omega)$ for $r \in R_{p(\cdot)}$ (and $r \neq 1$).

Weak compactness in Orlicz spaces (for $\mu(\Omega) < \infty$)

Theorem (Luxemburg)

 $S \subset L^{\varphi}(\Omega)$ for an N-function φ satisfying the Δ_2 -condition is relatively weakly compact \Leftrightarrow for every $g \in L^{\varphi^*}(\Omega)$,

$$\lim_{\mu(E)\to 0} \sup_{f\in \mathcal{S}} \int_{E} |f(t) \cdot g(t)| dt = 0$$

and, given $\varepsilon > 0$, there exists $A \subset \Omega$ with $\mu(A) < \infty$ such that

$$\sup_{t\in \mathcal{S}}\int_{\Omega\setminus \mathcal{A}}|f(t)\cdot g(t)|dt<\varepsilon.$$

Weak compactness in Orlicz spaces (for $\mu(\Omega) < \infty$)

Theorem (Luxemburg)

 $S \subset L^{\varphi}(\Omega)$ for an N-function φ satisfying the Δ_2 -condition is relatively weakly compact \Leftrightarrow for every $g \in L^{\varphi^*}(\Omega)$,

$$\lim_{\mu(E)\to 0} \sup_{f\in S} \int_{E} |f(t) \cdot g(t)| dt = 0$$

and, given $\varepsilon > 0$, there exists $A \subset \Omega$ with $\mu(A) < \infty$ such that

$$\sup_{t\in S}\int_{\Omega\setminus A}|f(t)\cdot g(t)|dt<\varepsilon.$$

Theorem (Ândo, Nowak)

 $S \subset L^{\varphi}(\Omega)$ for an N-function φ satisfying the Δ_2 -condition is relatively weakly compact \Leftrightarrow

$$\lim_{\lambda\to 0} \sup_{f\in S} \frac{1}{\lambda} \int_{\Omega} \varphi\left(|\lambda \cdot f(t)| \right) dt = 0.$$

Weak compactness in $L^{p(\cdot)}(\Omega)$ -spaces

Theorem (Luxemburg's type)

Let $L^{p(\cdot)}(\Omega)$ with $\mu(\Omega) < \infty$ and $p^+ < \infty$. $S \subset L^{p(\cdot)}(\Omega)$ is relatively weakly compact \Leftrightarrow it is norm bounded and, for every $g \in L^{p^*(\cdot)}(\Omega)$,

$$\lim_{\mu(E)\to 0}\sup_{f\in \mathcal{S}}\int_{E}|fg|d\mu=0.$$

Weak compactness in $L^{p(\cdot)}(\Omega)$ -spaces

Theorem (Luxemburg's type)

Let $L^{p(\cdot)}(\Omega)$ with $\mu(\Omega) < \infty$ and $p^+ < \infty$. $S \subset L^{p(\cdot)}(\Omega)$ is relatively weakly compact \Leftrightarrow it is norm bounded and, for every $g \in L^{p^*(\cdot)}(\Omega)$,

$$\lim_{\mu(E)\to 0}\sup_{f\in S}\int_{E}|fg|d\mu=0.$$

Denote $\Omega_1 := p^{-1}(\{1\}).$

Theorem (Andô's type)

Let $L^{p(\cdot)}(\Omega)$ with $p^+ < \infty$ and $\mu(\Omega_1) = 0$. $S \subset L^{p(\cdot)}(\Omega)$ is relatively weakly compact \Leftrightarrow

$$\lim_{\lambda\to 0}\sup_{f\in S}\frac{1}{\lambda}\int_{\Omega}|\lambda f(t)|^{p(t)}d\mu=0.$$

伺 ト イヨ ト イヨ ト

Consequences

Proposition

Let $L^{p(\cdot)}(\Omega)$ with $\mu(\Omega) < \infty$ and $p^+ < \infty$. A sequence (f_n) in $L^{p(\cdot)}(\Omega)$ converges weakly to $f \in L^{p(\cdot)}(\Omega) \Leftrightarrow$

(i)
$$\lim_{n \to A} (f_n - f) d\mu = 0$$
 for each $A \in \Sigma$, and

(*ii*) $\lim_{\mu(A)\to 0} \sup_n \int_A |(f_n - f)g| d\mu = 0$ for each function $g \in L^{p^*(\cdot)}(\Omega)$.

Proposition

Let $L^{p(\cdot)}(\Omega)$ with $p^+ < \infty$. A sequence (f_n) in $L^{p(\cdot)}(\Omega)$ converges weakly to $f \in L^{p(\cdot)}(\Omega) \Leftrightarrow$ (*i*) $\lim_{n} \int_A f_n dt = \int_A f dt$ for each measurable set $A \subset \Omega$, and (*ii*) $\lim_{\lambda \to 0} \sup_n \frac{1}{\lambda} \int_{\Omega} |\lambda(f_n - f)|^{p(t)} dt = 0.$

(ロ) (同) (ヨ) (ヨ) 三日

Consequences

Proposition

Let $L^{p(\cdot)}(\Omega)$ with $\mu(\Omega) < \infty$ and $p^+ < \infty$. A sequence (f_n) in $L^{p(\cdot)}(\Omega)$ converges weakly to $f \in L^{p(\cdot)}(\Omega) \Leftrightarrow$

(i)
$$\lim_{n \to A} (f_n - f) d\mu = 0$$
 for each $A \in \Sigma$, and

(*ii*) $\lim_{\mu(A)\to 0} \sup_n \int_A |(f_n - f)g|d\mu = 0$ for each function $g \in L^{p^*(\cdot)}(\Omega)$.

Proposition

Let $L^{p(\cdot)}(\Omega)$ with $p^+ < \infty$. A sequence (f_n) in $L^{p(\cdot)}(\Omega)$ converges weakly to $f \in L^{p(\cdot)}(\Omega) \Leftrightarrow$

(*i*) $\lim_{n \to A} f_n dt = \int_A f dt$ for each measurable set $A \subset \Omega$, and

(*ii*)
$$\lim_{\lambda\to 0} \sup_n \frac{1}{\lambda} \int_{\Omega} |\lambda(f_n - f)|^{p(t)} dt = 0.$$

Theorem

 $L^{p(\cdot)}(\Omega)$ is weakly Banach-Saks $\Leftrightarrow p^+ < \infty$.

< ロ > < 同 > < 回 > < 回 >

The purely atomic case. Nakano sequence spaces

Corolary

Let ℓ_{p_n} be a Nakano sequence space with (p_n) bounded and $p_n \neq 1$. $S \subset \ell_{p_n}$ is relatively weakly compact \Leftrightarrow

$$\lim_{\lambda\to 0}\sup_{x=(x_n)\in S}\frac{1}{\lambda}\sum_{n=1}^{\infty}|\lambda x_n|^{p_n}=0.$$

Corolary

Let ℓ_{p_n} with $p^+ < \infty$ and $p_n \neq 0$. A sequence $(x^k)_k$ in ℓ_{p_n} converges weakly to $y = (y_n) \in \ell_{p_n} \Leftrightarrow$ (*i*) For each coordinate n, $\lim_{k\to\infty} x_n^k = y_n$, and (*ii*) $\lim_{\lambda\to 0} \sup_{k\in\mathbb{N}} \frac{1}{\lambda} \sum_{n=1}^{\infty} |\lambda(x_n^k - y_n)|^{p_n} = 0.$

Corolary (Kaminska and Lee)

A Nakano sequence space ℓ_{p_n} is weakly Banach-Saks $\Leftrightarrow p_n^+ < \infty$.

< ロ > < 同 > < 回 > < 回 >

A criterion through Musielak-Orlicz spaces

Definition

A Musielak-Orlicz function $\Psi(t, x)$ increases uniformly more rapidly than another function $\Phi(t, x)$ at infinity if, $\forall \varepsilon > 0 \exists \delta > 0$ and $x_0 > 0$ such that $\forall x \ge x_0$ and a.e.t $\in \Omega$,

$$\varepsilon \Psi(t, x) \geq \frac{1}{\delta} \Phi(t, \delta x).$$

Theorem (Andô's type)

Let $L^{p(\cdot)}(\Omega)$ with $\mu(\Omega) < \infty$ and $p_+ < \infty$. $S \subset L^{p(\cdot)}(\Omega)$ is relatively weakly compact \Leftrightarrow there exists a Musielak-Orlicz function $\Psi(t, x)$ increasing uniformly more rapidly than $\Phi(t, x) = x^{p(t)}$ at infinity such that S is norm bounded in $L^{\Psi}(\Omega)$.

Theorem (Nowak's type)

Let $L^{p(\cdot)}(\Omega)$ be with $\mu(\Omega) = \infty$ and $p_+ < \infty$. $S \subset L^{p(\cdot)}(\Omega)$ is relatively weakly compact \Leftrightarrow there exists a Musielak-Orlicz function $\Psi(t, x)$ increasing uniformly more rapidly than $\Phi(t, x) = x^{p(t)}$ for all x such that S is norm bounded in $L^{\Psi}(\Omega)$.

Proposition

Let Ω be a non-atomic measure space and $p(\cdot), q(\cdot) \in \mathcal{P}(\Omega)$. The inclusion $L^{p(\cdot)}(\Omega) \subset L^{q(\cdot)}(\Omega)$ holds if and only if $p(t) \ge q(t)$ a.e- μ and there exists $\lambda > 1$ such that

$$\int_{\Omega_d} \lambda^{-r(t)} \boldsymbol{d} \mu < \infty,$$

where $\Omega_d = \{t \in \Omega : p(t) > q(t)\}$ and $r(\cdot)$ is the defect exponent defined by

$$\frac{1}{r(\cdot)}:=\frac{1}{q(\cdot)}-\frac{1}{p(\cdot)}.$$

Proposition

Let Ω be a non-atomic measure space and $p(\cdot), q(\cdot) \in \mathcal{P}(\Omega)$. The inclusion $L^{p(\cdot)}(\Omega) \subset L^{q(\cdot)}(\Omega)$ holds if and only if $p(t) \ge q(t)$ a.e- μ and there exists $\lambda > 1$ such that

$$\int_{\Omega_d} \lambda^{-r(t)} \boldsymbol{d} \mu < \infty,$$

where $\Omega_d = \{t \in \Omega : p(t) > q(t)\}$ and $r(\cdot)$ is the defect exponent defined by

$$\frac{1}{r(\cdot)}:=\frac{1}{q(\cdot)}-\frac{1}{p(\cdot)}.$$

Note that, if $\mu(\Omega) < \infty$, then the condition $\int_{\Omega_d} \lambda^{-r(t)} d\mu < \infty$ is trivially satisfied, so the inclusion holds if and only if $p(\cdot) \ge q(\cdot)$. The atomic case will be considered later.

Weakly compact and L-weakly compact inclusions

Definition

• An operator $T : X \to Y$ is weakly compact if the image of the unit ball $T(B_X)$ is a relatively weakly compact set in Y.

• An operator $T : X \to E(\Omega)$ is L-weakly compact if the image of the unit ball $T(B_X)$ is an equi-integrable set in $E(\Omega)$.

Weakly compact and L-weakly compact inclusions

Definition

• An operator $T : X \to Y$ is weakly compact if the image of the unit ball $T(B_X)$ is a relatively weakly compact set in Y.

• An operator $T : X \to E(\Omega)$ is L-weakly compact if the image of the unit ball $T(B_X)$ is an equi-integrable set in $E(\Omega)$.

Proposition

The inclusion $L^{p(\cdot)}(\Omega) \subset L^{q(\cdot)}(\Omega)$ for bounded exponent functions $p(\cdot) \geq q(\cdot)$ and $\mu(\Omega) < \infty$ is L-weakly compact \Leftrightarrow if there exists an *N*-function φ such that $L^{p(\cdot)}(\Omega) \subset L^{\Phi}(\Omega)$, where Φ is the Musielak-Orlicz function $\Phi(t, x) := (\varphi(x))^{q(t)}$.

Proposition

The inclusion $L^{p(\cdot)}(\Omega) \subset L^{q(\cdot)}(\Omega)$ for bounded exponent functions $p(\cdot) \ge q(\cdot)$ and $\mu(\Omega_1^{q(\cdot)}) = 0$ is weakly compact \Leftrightarrow

$$\lim_{\lambda\to 0} \sup_{\|f\|_{\rho(\cdot)}\leq 1} \frac{1}{\lambda} \int_{\Omega} |\lambda f(t)|^{q(t)} d\mu = 0.$$

We can say a bit more when Ω is non-atomic and $\mu(\Omega) = \infty$.

Theorem

Let the inclusion $L^{p(\cdot)}(\Omega) \subset L^{q(\cdot)}(\Omega)$ hold for a non-atomic space Ω with $\mu(\Omega) = \infty$ and $p^+ < \infty$. Then, it is not L-weakly compact.

We can say a bit more when Ω is non-atomic and $\mu(\Omega) = \infty$.

Theorem

Let the inclusion $L^{p(\cdot)}(\Omega) \subset L^{q(\cdot)}(\Omega)$ hold for a non-atomic space Ω with $\mu(\Omega) = \infty$ and $p^+ < \infty$. Then, it is not L-weakly compact.

Denote
$$\Omega_{1+\varepsilon}^{p(\cdot)} := \{ x \in \Omega : p(x) < 1 + \varepsilon \}.$$

Proposition

Let $L^{p(\cdot)}(\Omega) \subset L^{q(\cdot)}(\Omega)$ for a non-atomic separable measure space. If $\mu(\Omega_{1+\varepsilon}^{p(\cdot)}) = \infty$ for every $\varepsilon > 0$, then the inclusion $L^{p(\cdot)}(\Omega) \hookrightarrow L^{q(\cdot)}(\Omega)$ is not weakly compact.

・ 同 ト ・ ヨ ト ・ ヨ

THANK YOU VERY MUCH

э

A B > A B >