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Noetherian vector lattice

Inspired by ring theory:

Definition

A vector lattice E is Noetherian if every increasing sequence of
ideals stabilizes (i.e., is eventually constant).

Examples?

If E is Archimedean and infinite-dimensional, then it contains
a disjoint sequence (un). Then (Iu1+...+un)∞n=1 is a strictly
increasing sequence of ideals.

So if E is Archimedean, it is Noetherian if and only if it is
finite-dimensional (∼= Rn)

Next slide: towards finding non-Archimedean examples.
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Rγ
lex

Let γ be an ordinal.

Vector space: Rγlex = {f : γ → R}
Ordered by cone C of functions f that are positive in the
smallest element of its support.

Is Rγlex Noetherian?

For β ∈ γ, define eβ(α) := δαβ

Then Iβ := Ieβ = {f ∈ Rγlex : (∀α < β) f (α) = 0}
All nonzero ideals of Rγlex are of this form

If α < β, then Iβ ( Iα

The set I (Rγlex) of ideals of Rγlex ordered by inclusion is order
anti-isomorphic with γ + 1

Increasing sequences of ideals correspond to decreasing
sequences in γ + 1, which stabilize since γ + 1 is well-ordered.

Marten Wortel joint work with Marko Kandic and Mark Roelands Representing Noetherian vector lattices



RP
lex

Goal: generalize Rγlex to a class containing Archimedean Rn. For
this we have to drop the requirement on γ that it is totally ordered,
while somehow keeping the requirement that it is well-ordered.

Definition

Let P be a partially ordered set (poset). Then P is well-founded if
every nonempty subset has a minimal element.

Let P be a well-founded poset.

Vector space: RP
lex = {f : P → R}

Ordered by cone C of functions f that are positive in all
minimal elements of its support.

RP
lex is a partially ordered vector space

Rn ∼= RP
lex with P the poset of n incomparable elements.

Questions: When is RP
lex a vector lattice? When is it Noetherian?
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Let P be a well-founded poset.

Definition

P is a forest if incomparable elements have no common upper
bound

A ⊂ P is an antichain if no elements in A are comparable

P has finite width if every antichain is finite

Theorem

RP
lex is a vector lattice iff P is a forest.

Theorem

Let P be a forest. Then RP
lex is Noetherian iff P is a well-founded

forest with finite width.
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Lex(P)

Let P be a well-founded forest with finite width.

Define Lex(P) to be the functions in RP
lex with finite support

For x ∈ P, define ex(y) := δxy , then ex ∈ Lex(P)

Lex(P) is the smallest sublattice of RP
lex containing

{ex : x ∈ P}.

Proposition

Any sublattice of RP
lex containing Lex(P) has the same ideals as

RP
lex.

Corollary

Let P be a well-founded forest with finite width. Then any
sublattice of RP

lex containing Lex(P) is Noetherian.
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Goal:

Theorem

Let E be a Noetherian vector lattice. Then there exists a
well-founded forest with finite width P such that E is isomorphic
to a sublattice of RP

lex containing Lex(P).

For the proof:

How to find P?

How to show that E is isomorphic to a sublattice of RP
lex

containing Lex(P)?
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Local vector lattices

Again inspired by ring theory:

Definition

A vector lattice E is called local if it is unital and has a unique
maximal ideal M.

Theorem

For a vector lattice E , the following are equivalent:

1 E is local

2 E contains an ideal M and an element e ∈ E \M such that
E = {λe + u : λ ∈ R, u ∈ M} and λe + u ∈ E+ iff λ > 0 or
λ = 0 and u ∈ M+.

3 E ∼= R ◦M
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Local ideals

Definition

An ideal L in a vector lattice is called local if it is a local vector
lattice.

Example:

P well-founded forest with finite width

E sublattice of RP
lex containing Lex(P)

For x ∈ P, the ideal Lx = {f ∈ E : supp(f ) ⊂ {y ≥ x}} is
local with unit ex and maximal ideal
M = {f ∈ E : supp(f ) ⊂ {y > x}}.
These are the only local ideals in E

So P is in bijection with the set of local ideals L(E ) of E
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Semi-local

Definition

A vector lattice E (or an ideal of a vector lattice) is called
semi-local if it is unital and has 1 ≤ n <∞ maximal ideals.

Theorem

E is semi-local iff there are local ideals L1, . . . , Ln such that

E ∼=
n⊕

i=1

Li ∼=
n⊕

i=1

(R ◦Mi ).

Theorem

If E is Noetherian, then E is semi-local.

Proof.

Noetherian ⇒ codim(Rad(E )) <∞.
(Schaefer) codim(Rad(E )) <∞⇒ semi-local.
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Goal:

Theorem

Let E be a Noetherian vector lattice. Then there exists a
well-founded forest with finite width P such that E is isomorphic
to a sublattice of RP

lex containing Lex(P).

Let P be the set of local ideals of E ordered by reverse
inclusion

For each L ∈ P, pick a unit eL

Idea: construct a lattice homomorphism T : E → RP
lex with

TeL(J) = δLJ (J local)

For u ∈ E , how to construct Tu(L)?

If u ∈ L ∼= R ◦M, then u = λeL + v and we can define
ϕL(u) := λ, and so we can set Tu(L) = ϕL(u)

In general u /∈ L so we have to construct a map from E into L
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Theorem

Let E be a Noetherian vector lattice. Then there exists a collection
of idempotents {QL : E → E}L∈L(E) with QL(E ) = L such that:

If L1 ∩ L2 = {0}, then QL1QL2 = 0

If L1 ⊂ L2, then QL1QL2 = QL1

Now we can define T : E → RP
lex by Tu(L) := ϕL(QLu), and this

can be shown to be a lattice homomorphism.

How to find the idempotents QL?
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Constructing QL

Recall that Noetherian implies semi-local.

E ∼= ⊕n
i=1Li

Define QLi to be the band projection onto Li

Li ∼= R ◦Mi , so define QMi
:= (λeLi + v 7→ v) ◦ QLi

Mi is Noetherian, so Mi
∼= ⊕n

k=1Lik

Define QLik to be the composition of QMi
with the band

projection of Mi onto Lik

Lik ∼= R ◦Mik , so define QMik
:= (λeLik + v 7→ v) ◦ QLik

... and so on...

Problem: in Rγlex, this procedure only obtains QLn for n < ω but
not QLα for α ≥ ω. Something is needed to go “infinity and
beyond”.
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Well-founded recursion

Transfinite recursion: technique for constructing objects Oα
for every ordinal α

Example: Closure in convergence structures is obtained by
“taking adherences transfinitely many times”

Transfinite recursion can be easily generalized to well-founded
posets (instead of well-ordered)

The poset of ideals of a Noetherian vector lattice equipped
with reverse inclusion is well-founded

Well-founded recursion allows us to go “infinity and beyond”,
obtaining the desired QL for all local ideals L
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Summary

In this presentation:

Theorem

Let E be a vector lattice. Then E is Noetherian if and only if there
exists a well-founded poset P with finite width such that E is
isomorphic to a sublattice of RP

lex containing Lex(P).

We also have a full characterization of Artinian vector lattices:

Theorem

Let E be a vector lattice. Then E is Artinian if and only if there
exists a reverse well-founded poset P with finite width such that
E ∼= Lex(P).
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Thank you for your attention!
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