The Choquet integral representability in a general setting

Jun Kawabe

Shinshu University

Positivity XI

University of Ljubljana, Ljubljana, Slovenia

July 10-14, 2023

- X is a nonempty set.
- \mathcal{D} is a collection of subsets of X containing \emptyset .

Definition 1 (nonadditive measure)

A set function $\mu: \mathcal{D} \to [0, \infty]$ is called a nonadditive measure on \mathcal{D} if it satisfies (1) $\mu(\emptyset) = 0$, (1) $\mu(\emptyset) = 0$,

② $\mu(A) \le \mu(B)$ whenever $A, B \in \mathcal{D}$ and $A \subset B$.

Nonadditive measures are widely used in theory and applications and have already appeared in many papers under various names: Hausdorff dimension (Hausdorff 1918), lower/upper numerical probability (Koopman 1940), Maharam's submeasure problem (Maharam 1947), capacity (Choquet 1953/54), semivariation (Dunford-Schwartz 1955), quasimeasure (Alexiuk 1968), maxitive measure (Shilkret 1971), participation measure (Tsichritzis 1971), submeasure (Drewnowski 1972, Dobrakov 1974), fuzzy measure (Sugeno 1974), *k*-triangular set function (Agafanova-Klimkin 1974), game of characteristic function form, distorted measure (Alumann-Shapley 1974), belief/plausibility function (Shafer 1976), possibility measure (Zadeh 1978), pre-measure (Šipoš 1979), necessity measure (Dubois-Prade 1980), approximately additive (Kalton-Roberts 1983), decomposable measure (Weber 1984), Minkowski-Bouligrand dimension (Schroeder 1991), subjective probabilities in decision making,

• $\mathcal{M}_b(X)$ is the set of all finite nonadditive measures on \mathcal{D} .

We focus on the following continuity of nonadditive measures.

Definition 2

A nonadditive measure $\mu \colon \mathcal{D} \to [0, \infty]$ is called

- τ -inner continuous if $\mu(D_{\tau}) \to \mu(D)$ whenever $\{D_{\tau}\}_{\tau \in \Gamma}$ is a nondecreasing net, $D \in \mathcal{D}$, and $D = \bigcup_{\tau \in \Gamma} D_{\tau}$,
- τ -outer continuous if $\mu(D_{\tau}) \to \mu(D)$ whenever $\{D_{\tau}\}_{\tau \in \Gamma}$ is a nonincreasing net, $D \in \mathcal{D}$, and $D = \bigcap_{\tau \in \Gamma} D_{\tau}$,
- inner continuous if $\mu(D_n) \to \mu(D)$ whenever $\{D_n\}_{n \in \mathbb{N}}$ is a nondecreasing sequence, $D \in \mathcal{D}$, and $D = \bigcup_{n \in \mathbb{N}} D_n$,
- outer continuous if µ(D_n) → µ(D) whenever {D_n}_{n∈ℕ} is a nonincreasing sequence, D ∈ D, and D = ∩ D_n,

It is obvious that

- τ -inner continuous \Rightarrow inner continuous
- *τ*-outer continuous ⇒ outer continuous

The Choquet integral and the asymmetric Choquet integral

The Choquet integral is a nonlinear integral and widely used in theory and its applications, such as subjective evaluation, decision making, expected utility theory, economic models under Knightian uncertainty, data mining, and others.

Definition 3 (G. Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953-54) 131-295.)

Let $\mu: \mathcal{D} \to [0, \infty]$ be a nonadditive measure and $f: X \to \mathbb{R}$ a \mathcal{D} -measurable function, that is, $\{f > t\}, \{f \ge t\} \in \mathcal{D}$ for every $t \in \mathbb{R}$.

• For $f \ge 0$, the Choquet integral of f with respect to μ is defined by

$$\mathsf{Ch}(\mu, f) := \int_0^\infty \mu(\{f \ge t\}) dt.$$

The Choquet integral can be extended to an integral of functions taking negative values. One of them is the following:

If µ is finite, the asymmetric Choquet integral of f is defined by

$$Ch^{a}(\mu, f) := \int_{0}^{\infty} \mu(\{f \ge t\}) dt - \int_{-\infty}^{0} \{\mu(X) - \mu(\{f \ge t\})\}$$

These integrals are the honest extension of the Lebesgue integral since they are equal to the abstract Lebesgue integral if \mathcal{D} is a σ -field and μ is σ -additive.

The asymmetric Choquet integral has the following properties that will be important in this talk. Let $||f||_{\infty} := \sup_{x \in X} |f(x)|$.

1
$$\operatorname{Ch}^{a}(\mu, f) = \operatorname{Ch}(\mu, f)$$
 if $f \ge 0$.

- 2 $\operatorname{Ch}^{a}(\mu, f) \leq \operatorname{Ch}^{a}(\mu, g)$ if $f \leq g$ (monotonicity).
- **3** $\operatorname{Ch}^{a}(\mu, cf) = c \operatorname{Ch}^{a}(\mu, f)$ if c > 0 (positive homogeneity).
- 4 $\operatorname{Ch}^{a}(\mu, -f) = -\operatorname{Ch}^{a}(\bar{\mu}, f)$ (asymmetry), where $\bar{\mu}(A) := \mu(X) \mu(X \setminus A)$.
- **5** $\operatorname{Ch}^{a}(\mu, f + c) = \operatorname{Ch}^{a}(\mu, f) + c\mu(X)$ for $c \in \mathbb{R}$ (translation-invariance).
- 6 $|Ch^{a}(\mu, f)| \le \mu(X) ||f||_{\infty}$ (boundedness).
- O Ch^a(µ, f + g) = Ch^a(µ, f) + Ch^a(µ, g) if f and g are comonotonic¹ (f ~ g for short), i.e., ∀x₁, x₂ ∈ X, f(x₁) < f(x₂) ⇒ g(x₁) ≤ g(x₂) (comonotonic additivity).

¹ It is called similarly ordered in "Inequalities" written by Hardy, Littlewood, and Pólya.

We introduce the same characteristics of a functional as the asymmetric Choquet integral has.

Definition 4

Let Ψ be a vector lattice of functions $f \colon X \to \mathbb{R}$. Then a functional $I \colon \Psi \to \mathbb{R}$ is called

- monotone if $I(f) \leq I(g)$ whenever $f, g \in \Psi$ and $f \leq g$,
- positively homogeneous if l(cf) = cl(f) whenever $f \in \Psi$ and c > 0,
- translation-invariant if I(f + c) = I(f) + I(c) whenever $c \in \mathbb{R}$ and $f, c \in \Psi$,
- bounded if there is M > 0 such that |I(f)| ≤ M ||f||_∞ for all f ∈ Ψ,
- comonotonically additive if I(f + g) = I(f) + I(g) whenever $f, g \in \Psi$ and $f \sim g$.

To explain the purpose of the talk, we introduce only two results of the Choquet integral representation theorems in the literature among others.

- ► *X* is a compact Hausdorff space.
- $C_b(X)$ is the vector lattice of all (bounded) continuous functions on X.
- ▶ *I*: $C_b(X) \to \mathbb{R}$ is comonotonically additive and monotone (C.M. for short).

(1) There is a finite nonadditive measure β on 2^{*X*} such that β is outer continuous on the collection \sum_{1} of the compact G_{δ} -sets and satisfies

$$I(f) = Ch^{a}(\beta, f) \tag{1}$$

for every $f \in C_b(X)$. Hereafter, β is called a representing measure of *I*.

(2) Conversely, if a nonadditive measure β on 2^X is outer continuous on \sum_1 , then the functional *I* defined by (1) is a C.M. functional on $C_b(X)$.

Remark 1

We can find a finite representing measure α of *I* that is inner continuous on the collection \sum_2 of the open K_{σ} -sets. However, it has not been discussed whether it is possible to find a representing measure that is outer continuous on \sum_1 and inner continuous on \sum_2 .

- ► X is a locally compact Hausdorff space.
- C₀₀(X) is the vector lattice of all continuous functions on X with compact support.
- ▶ $I: C_{00}(X) \rightarrow \mathbb{R}$ is C.M.

(1) If *I* is asymptotically translatable, then there is a finite nonadditive measure α on 2^{*X*} such that is α is τ -inner continuous on the collection \mathcal{G} of the open sets and satisfies

$$I(f) = Ch^{a}(\alpha, f)$$
(2)

for every $f \in C_{00}(X)$.

(2) Conversely, if a nonadditive measure α on 2^X is τ -inner continuous on \mathcal{G} , then the functional *I* defined by (2) is an asymptotically translatable C.M. functional on $C_{00}(X)$.

Remark 2

We can find a finite representing measure β of *I* that is τ -outer continuous on the collection \mathcal{K} of the compact sets. However, it has not been discussed whether it is possible to find a representing measure that is τ -inner continuous on \mathcal{G} and τ -outer continuous on \mathcal{K} .

We would like to

- obtain a representing measure that is *τ*-inner continuous and *τ*-outer continuous on the respective collections of tractable sets such as the open sets, the closed sets, and the compact sets,
- unify and improve previous Choquet integral representation theorems in the literature.

The main tools are our improvement of the Greco theorem² on the Choquet representation theorem in a general setting and König's scheme³ to obtain a "continuous Daniell-Stone representation theorem".

²G.H. Greco, Sulla rappresentazione di funzionali mediante integrali, Rend. Sem. Mat. Univ. Padova 66 (1982) 21–42.

³H. König, Measure and Integration, An Advanced Course in Basic Procedures and Applications, Chapter V, Springer 1997.

We introduce the Greco theorem⁴ that is our starting point in this talk. It gives a primitive form of the Choquet integral representation theorem.

- X is a nonempty set.
- Φ is a collection of functions $f: X \to [0, \infty]$ with $0 \in \Phi$.

Given a monotone functional $I: \Phi \to [0, \infty]$ with I(0) = 0, define the set functions $\alpha, \beta: 2^{\chi} \to [0, \infty]$ by

$$\alpha(A) := \sup \{ I(f) \colon f \in \Phi, f \leq \chi_A \}$$

and

$$\beta(A) := \inf \{ I(f) \colon f \in \Phi, \chi_A \leq f \}$$

for every subset A of X. Then, they are nonadditive measures on 2^X with $\alpha \leq \beta$.

⁴G.H. Greco, Sulla rappresentazione di funzionali mediante integrali, Rend. Sem. Mat. Univ. Padova 66 (1982) 21–42.

Theorem 5 (Greco 1982)

Let X be a nonempty set and Φ a collection of functions $f : X \to [0, \infty]$ with $0 \in \Phi$. Assume that Φ satisfies the Greco condition, i.e.,

cf,
$$f \wedge c$$
, $f - f \wedge c = (f - c)^+ \in \Phi$

for every $f \in \Phi$ and c > 0.

If a C.M. functional I: $\Phi \to [0,\infty]$ with I(0)=0 satisfies

() sup_{*a*>0} $I(f - f \land a) = I(f)$ for every *f* ∈ Φ (lower marginal continuity),

(i) $\sup_{b>0} l(f \land b) = l(f)$ for every $f \in \Phi$ (upper marginal continuity),

then, for any nonadditive measure λ on 2^{χ} the following are equivalent.

(a)
$$\alpha \leq \lambda \leq \beta$$
.

b
$$I(f) = Ch(\lambda, f)$$
 for every $f \in \Phi$.

Hence, α is the smallest representing measure of I and β is the largest one.

Next we recall König's scheme⁵ to obtain a continuous Deniell-Stone representation, which was formed in his book in 1997.

Let X be a nonempty set. For a nonempty subset Φ of $[0, \infty]^X$, define the following collections of functions.

$$\begin{split} \Phi^* &:= \left\{ \sup_{f \in \Phi_0} f \colon \Phi_0 \text{ at most countable nonempty subsets of } \Phi \right\} \\ \Phi^{**} &:= \left\{ \sup_{f \in \Phi_0} f \colon \Phi_0 \text{ nonempty subsets of } \Phi \right\} \\ \Phi_* &:= \left\{ \inf_{f \in \Phi_0} f \colon \Phi_0 \text{ at most countable nonempty subsets of } \Phi \right\} \\ \Phi_{**} &:= \left\{ \inf_{f \in \Phi_0} f \colon \Phi_0 \text{ nonempty subsets of } \Phi \right\} \end{split}$$

⁵H. König, Measure and Integration, An Advanced Course in Basic Procedures and Applications, Springer, Heidelberg, 1997.

We also define the collections of sets as follows.

$$\begin{aligned} \mathcal{H}_{\Phi} &:= \left\{ \{f > t\} \colon f \in \Phi, t > 0 \right\} \\ \mathcal{H}_{\Phi}^{*} &:= \left\{ \bigcup_{H \in \mathcal{H}_{0}} H \colon \mathcal{H}_{0} \text{ at most countable nonempty subsets of } \mathcal{H}_{\Phi} \right\} \\ \mathcal{H}_{\Phi}^{**} &:= \left\{ \bigcup_{H \in \mathcal{H}_{0}} H \colon \mathcal{H}_{0} \text{ nonempty subsets of } \mathcal{H}_{\Phi} \right\} \\ \mathcal{L}_{\Phi} &:= \left\{ \{f \ge t\} \colon f \in \Phi, t > 0 \right\} \\ \mathcal{L}_{\Phi}^{*} &:= \left\{ \bigcap_{L \in \mathcal{L}_{0}} L \colon \mathcal{L}_{0} \text{ at most countable nonempty subsets of } \mathcal{L}_{\Phi} \right\} \\ \mathcal{L}_{\Phi}^{**} &:= \left\{ \bigcap_{L \in \mathcal{H}_{0}} L \colon \mathcal{L}_{0} \text{ nonempty subsets of } \mathcal{L}_{\Phi} \right\} \end{aligned}$$

The regulalizations of α and β

Recall that

$$\alpha(\mathbf{A}) := \sup \{ I(f) : f \in \Phi, f \le \chi_{\mathbf{A}} \},$$

$$\beta(\mathbf{A}) := \inf \{ I(f) : f \in \Phi, \chi_{\mathbf{A}} \le f \}.$$

By using the collections of sets on the previous slide, define the regularizations of α and β by

$$\begin{aligned} \alpha^{\bullet}(A) &:= \inf \left\{ \alpha(H) \colon A \subset H, H \in \mathcal{H}_{\Phi} \right\}, \\ \beta^{\bullet}(A) &:= \sup \left\{ \beta(L) \colon L \subset A, L \in \mathcal{L}_{\Phi} \right\}, \\ \alpha^{*}(A) &:= \inf \left\{ \alpha(H^{*}) \colon A \subset H^{*}, H^{*} \in \mathcal{H}_{\Phi}^{*} \right\}, \\ \beta^{*}(A) &:= \sup \left\{ \beta(L^{*}) \colon L^{*} \subset A, L^{*} \in \mathcal{L}_{\Phi}^{*} \right\}, \\ \alpha^{**}(A) &:= \inf \left\{ \alpha(H^{**}) \colon A \subset H^{**}, H^{**} \in \mathcal{H}_{\Phi}^{**} \right\}, \\ \beta^{**}(A) &:= \sup \left\{ \beta(L^{**}) \colon L^{**} \subset A, L^{**} \in \mathcal{L}_{\Phi}^{**} \right\}. \end{aligned}$$

for every subset A of X, which are nonadditive measures.

Theorem 6 (K: 2022)

Let Φ be a lattice of bounded functions $f: X \to [0, \infty)$ with $0 \in \Phi$. Assume that

- Φ satisfies the Greco condition, i.e., cf, $f \land c$, $f f \land c = (f c)^+ \in \Phi$ for every $f \in \Phi$ and c > 0.
- ⊕ separates sets in L^{**}_Φ and H^{**}_Φ, i.e., for any L^{**} ∈ L^{**}_Φ and H^{**} ∈ H^{**}_Φ with L^{**} ⊂ H^{**}, there is an f ∈ Φ such that χ_{L^{**}} ≤ f ≤ χ_{H^{**}}.

Let I: $\Phi \rightarrow [0, \infty)$ be a C.M. functional satisfying

(i)
$$\inf_{a>0} l(f \wedge a) = 0$$
 for every $f \in \Phi$.

Then the following hold.

1 For any nonadditive measure μ on 2^{χ} , the following are equivalent.

a)
$$\alpha \leq \lambda \leq \beta$$
.

b $I(f) = Ch(\lambda, f)$ for every $f \in \Phi$.

2 The regularizations of α and β are compatible, that is,

 $\alpha \leq \beta^{\bullet} \leq \beta^* \leq \beta^{**} \leq \alpha^{**} \leq \alpha^* \leq \alpha^{\bullet} \leq \beta.$

Theorem 6 (Continued)

3 For any $L^{**} \in \mathcal{L}^{**}_{\Phi}$, we have

$$\alpha^{\bullet}(L^{**}) = \alpha^{*}(L^{**}) = \alpha^{**}(L^{**}) = \beta(L^{**}) = \beta^{**}(L^{**}) < \infty.$$

4 For any $H^{**} \in \mathcal{H}^{**}_{\Phi}$, we have

$$\alpha^{**}(H^{**}) = \alpha(H^{**}) = \beta^{\bullet}(H^{**}) = \beta^{*}(H^{**}) = \beta^{**}(H^{**}).$$

6 Assume that

- \$\mathcal{L}_{\phi}^{**}\$ is a compact system, i.e., every nonempty subcollection of \$\mathcal{L}_{\phi}^{**}\$ whose intersection is empty has a further subcollectoin whose intersection is empty,
- $(1-f) \land g \in \Phi_{**}$ whenever $f, g \in \Phi$ and $0 \le f \le 1$,

then α^* is τ -inner continuous on \mathcal{H}^*_{Φ} , and β^* is τ -outer continuous on \mathcal{L}^*_{Φ} .

By Theorem 6 (the improved Greco theorem) we see that if \mathcal{L}_{Φ}^{**} is a compact system and $(1 - f) \land g \in \Phi_{**}$ whenever $f, g \in \Phi$ and $0 \le f \le 1$, then α^{**} is a representing measure we are looking for since

- α^{**} is τ -inner continuous on \mathcal{H}_{Φ}^{**} by (5),
- $a^{**} = \beta^{**}$ on \mathcal{L}_{Φ}^{**} by (3), and β^{**} is τ -outer continuous on \mathcal{L}_{Φ}^{**} by (5).

Likewise, we see that β^{**} is another representing measure we are looking for.

Note that our improvement of the Greco theorem (Theorem 6) can be only applied to a functional defined on the collection Ψ of nonnegative functions.

To handle the case where Ψ contains functions taking negative values and does not have the identity, say, $\Psi = C_{00}(X)$ and $C_0(X)$, the following notion of a functional is needed to obtain a representing measure.

Definition 7

Let Ψ be a vector lattice of functions $f: X \to \mathbb{R}$. A functional $I: \Psi \to \mathbb{R}$ is called asymptotically translatable if for any $f \in \Psi$, any nondecreasing net $\{g_{\tau}\}_{\tau \in \Gamma} \subset \Psi$, and any c > 0, if $0 \le g_{\tau} \le c$ and $f + g_{\tau} \ge 0$ for all $\tau \in \Gamma$ and $g_{\tau} \uparrow c$, then

$$\lim_{\tau\in\Gamma} I(f+g_{\tau}) = I(f) + \lim_{\tau\in\Gamma} I(g_{\tau}).$$

Remark 3

The asymmetric Choquet integral $Ch^{a}(\mu, \cdot)$ is asymptotically translatable if μ is τ -inner continuous on \mathcal{H}_{Φ}^{**} and $\Phi = \Psi^{+}$.

Theorem 8 (K: 2022)

Let Ψ be a vector lattice of bounded functions $f\colon X\to\mathbb{R}.$ Let $\Phi=\Psi^+$ satisfy

- (1) Φ is Stonean, i.e., $f \land 1 \in \Phi$ for every $f \in \Phi$,
- (i) Φ separates sets in \mathcal{L}^*_{Φ} and \mathcal{H}^*_{Φ} ,
- Φ possesses an approximate identity net,
- $\textcircled{V} \mathcal{L}_{\Phi}^{**}$ is a compact system,
- **v** (1 f) ∧ $g \in \Phi_{**}$ whenever $f, g \in \Phi$ and $0 \le f \le 1$.

Let $I: \Psi \to \mathbb{R}$ be an asymptotically translatable C.M. functional satisfying $\inf_{a>0} I(f \land a) = 0$ for every $f \in \Phi$. Then there is a $\mu \in \mathcal{M}_b(X)$ such that

- a $I(f) = Ch^{a}(\mu, f)$ for every $f \in \Psi$.
- **b** μ is τ -inner continuous on \mathcal{H}^*_{Φ} and τ -outer continuous on \mathcal{L}^*_{Φ} .

In addition, the following hold.

1 If $\mu \in \mathcal{M}_b(X)$ satisfies (a) and (b), then it is uniquely determined on $\mathcal{H}^*_{\Phi} \cup \mathcal{L}^*_{\Phi}$.

Por any μ ∈ M_b(X) satisfying (b), if the functional I on Ψ is defined by (a), then it is an asymptotically translatable C.M. functional on Ψ satisfying inf_{a>0} I(f ∧ a) = 0 for every f ∈ Φ.

A variety of the continuous Choquet integral representation theorems

We introduce various continuous Choquet integral representation theorems that can be derived from Theorems 6 and 8 in a general setting.

- **1** *X* is locally compact and *I*: $C^+_{00}(X) \to \mathbb{R}$ is C.M. ⇒ *μ* is *τ*-inner continuous on the open sets and *τ*-outer continuous on the compact sets (an improvement of Narukawa in 2007).
- 2 X is locally compact and I: C⁺₀(X) → ℝ is bounded C.M. ⇒ µ is τ-inner continuous on the open sets and τ-outer continuous on the compact sets (an improvement of K. in 2011).
- S X is compact and *I*: C_b(X) → ℝ is C.M. ⇒ μ is τ-inner continuous on the open sets and τ-outer continuous on the compact sets since every C.M. functional is asymptotically translatable by Dini's theorem (an improvement of Zhou's theorem in 1998).
- A is locally compact and *I*: C₀₀(X) → ℝ is asymptotically translatable C.M.
 ⇒ μ is τ-inner continuous on the open sets and τ-outer continuous on the compact sets (an improvement of K. in 2013).
- S X is locally compact and *I*: C₀(X) → ℝ is asymptotically translatable, bounded C.M. ⇒ µ is τ-inner continuous on the open sets and τ-outer continuous on the compact sets (an improvement of K. in 2013).

Thank you so much for your kind attention!