
Nuclear operators and operator-valued Borel measures

Juliusz Stochmal

Kazimierz Wielki University in Bydgoszcz, POLAND

j.stochmal@ukw.edu.pl

POSI+IVITY XI, Ljubljana, Slovenia
July 10-14, 2023

1 / 29



Table of contents

1 Introduction

2 The results
Nuclear operators on Cb(X ,E )
Nuclearity of conjugate operator

3 References

2 / 29



Nuclear operators

The notation of nuclearity was �rst introduced by Ruston and Grothendieck.
The term nuclear has the origin in Schwartz's kernel theorem.

For X being a compact Hausdor� space, nuclear operators T : C (X )→ F
were studied by L. Schwartz [S] and Tong [T]. In particular, the Bochner-type

representation of nuclear operators was derived.

Theorem [T, Proposition 1.2]

A bounded operator T : C (X )→ F is nuclear if and only if it has a Bochner

kernel, i.e., there exist a �nite real valued measure µ on X and a Bochner
integrable function f : X → F such that

T (u) =

∫
X

u(t)f (t) dµ for u ∈ C (X ).

[S] Schwartz, L., Séminaire Schwartz, Exposé 13, Université de Paris, (1953/54).

[T] Tong, A.E., Nuclear mappings on C(X ), Math. Ann., 194 (1971), 213�224.
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Nuclear operators

The study of nuclear operators T : C (X ,E )→ F was initiated by Alexander
[A], where the result of Schwartz was extended in case E ′ has the
Radon�Nikodym Property.

In [Po] and [SS] the study of nuclear operators T : C (X ,E )→ F was
continued in context of properties of representing measure m, associated
continuous operator T# : C (X )→ L(E ,F ) and Radon�Nikodym Property of
E ′.

[A] Alexander, G., Linear operators on the space of vector-valued continuous functions,

Ph.D. thesis, New Mexico State university, Las Cruces, New Mexico, 1976.

[Po] Popa, D., Nuclear operators on C(T ,X ), Stud. Cerc. Mat., 42 no. 1 (1990), 47�50.

[SS] Saab, P., B. Smith, Nuclear operators on spaces of continuous vector-valued functions,

Glasgow Math. J., 33 no. 2 (1994), 223�230.
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Nuclear operators

Let (E , ‖ · ‖E ) and (F , ‖ · ‖F ) be Banach spaces. Let E ′ and F ′ denote the
Banach duals of E and F , respectively. By L(E ,F ) we denote the space of all
bounded linear operators from E to F , equipped with the norm ‖ · ‖ of the
uniform operator topology.

An operator U ∈ L(E ,F ) is nuclear if there exist sequences (x ′n) in E ′ and
(yn) in F such that

U(x) =
∞∑
n=1

x ′n(x)yn for x ∈ E ,

where
∑∞

n=1
‖x ′n‖E ′‖yn‖F <∞.
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Nuclear operators

The nuclear norm of a nuclear operator U : E → F is de�ned by

‖U‖nuc := inf
∞∑
n=1

‖x ′n‖E ′ · ‖yn‖F ,

where the in�mum is taken over all sequences (x ′n) in E ′ and (yn) in F such that
U(x) =

∑∞
n=1

x ′n(x)yn for x ∈ E and
∑∞

n=1
‖x ′n‖E ′‖yn‖F <∞.

The space N (E ,F ) of all nuclear operators U : E → F , equipped with the nuclear
norm ‖ · ‖nuc is a Banach space (see [P, Proposition, p. 51]).

[P] Pietsch, A., Nuclear Locally Convex Spaces, Springer-Verlag, 1972.
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Strict topology β

Let (X , T ) be a completely regular Hausdor� space. Let Cb(X ,E ) denote the
space of all E -valued bounded continuous functions de�ned on X .

De�nition 1.1. [B], [F]

The strict topology β on Cb(X ,E ) is generated by the family of the seminorms:

pv (f ) := sup
t∈X

v(t)‖f (t)‖E for f ∈ Cb(X ,E ),

where v : X → [0,∞) is a bounded function such that the set {t ∈ X : v(t) ≥ ε}
is compact for every ε > 0.

[B] Buck, R.C., Bounded continuous functions on a locally compact space, Michigan Math.

J., 5 (1958), 95�104.

[F] Fontenot, D., Strict topologies for vector-valued functions, Canad. J. Math., 26 no. 4

(1974), 841�853.
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Strict topology β

Theorem 1.1. [K]

τc ⊂ β ⊂ τu and if X is a compact Hausdor� space, then β = τu.

β and τu have the same bounded subsets.

β is the �nest locally convex Hausdor� topology agreeing with topology τc on
τu-bounded subsets of Cb(X ,E ).

[K] Khan, L.A., The strict topology on a space of vector-valued functions, Proc. Edinburgh

Math. Soc., 22 no. 1 (1979), 35�41.
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Basic concepts of measure theory

By Bo we denote the σ-algebra of Borel sets in X .
Let M(X ) denote the space of all countably additive regular scalar Borel measures.

The variation |µ| of the measure µ : Bo → E on A ∈ Bo is de�ned by:

|µ|(A) := sup
∑
‖µ(Ai )‖E ,

where the supremum is taken over all �nite Bo-partitions (Ai ) of A (see [DU,
De�nition 4, p. 2]).

Let M(X ,E ′) denote the space of all countably additive measures
µ : Bo → E ′ of bounded variation (|µ|(X ) <∞) and such that for each x ∈ E ,
µx ∈ M(X ), where µx(A) := µ(A)(x) for A ∈ Bo.

[DU] Diestel, J. and J.J. Uhl, Vector Measures, Amer. Math. Soc., Math. Surveys 15,

Providence, RI, 1977.
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Basic concepts of measure theory

The semivariation m̃ of m : Bo → L(E ,F ) on A ∈ Bo is de�ned by

m̃(A) := sup
∥∥∥∑m(Ai )(xi )

∥∥∥
F
,

where the supremum is taken over all �nite Bo-partitions (Ai ) of A and xi is from
the unit ball BE in E for each i (see [DU, De�nition 4, p. 2]).

By M(X ,L(E ,F )) we denote the space of all measures m : Bo → L(E ,F )
such that m̃(X ) <∞ and for each y ′ ∈ F ′, my ′ ∈ M(X ,E ′), where

my ′(A)(x) := y ′(m(A)(x)) for A ∈ Bo, x ∈ E .
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Riemann�Stieltjes integral

De�nition 1.2. [F], [Go], [N, De�nition 2.2])

Let m ∈ M(X ,L(E ,F )). We say that f ∈ Cb(X ,E ) is m-integrable in the

Riemann�Stieltjes sense over A ∈ Bo provided there exists yA ∈ F such that
given ε > 0 there exists a �nite Bo-partition Pε of A such that∥∥∥∥∥yA −

n∑
i=1

m(Ai )(f (ti ))

∥∥∥∥∥
F

≤ ε

if {A1, . . . ,An} is any Bo-partition of A re�ning Pε and {t1, . . . , tn} is any choice
of points of A such that ti ∈ Ai for i = 1, . . . , n.

Then
∫
A
f (t) dm := yA will be called a Riemann�Stieltjes integral of f with

respect to m over A ∈ Bo.

[Go] Goodrich, R.K., A Riesz representation theorem, Proc. Amer. Math. Soc., 24 (1970),

629�636.

[N] Nowak, M., A Riesz representation theory for completely regular Hausdor� spaces and

its applications, Open Math., 14 (2016), 474�496.
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Riesz representation theorem for functionals

Theorem 1.2. [Gi], [N, Theorem 2.4]

For a linear functional Φ : Cb(X ,E )→ R the following statements are equivalent:

(i) Φ is β-continuous.

(ii) There exists a unique µ ∈ M(X ,E ′) such that

Φ(f ) = Φµ(f ) =

∫
X

f (t) dµ for all f ∈ Cb(X ,E ).

Moreover, ‖Φµ‖ = |µ|(X ).

By Cb(X ,E )′β we will denote the topological dual of (Cb(X ,E ), β). Hence
Cb(X ,E )′β can be identi�ed with M(X ,E ′).

[Gi] Giles, R., A generalization of the strict topology, Trans. Amer. Math. Soc., 161 (1971),

467�474.
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Riesz representation theorem for operators

Let iF : F → F ′′ denote the canonical embedding, i.e., iF (y)(y ′) = y ′(y) for
y ∈ F , y ′ ∈ F ′. Moreover, let jF : iF (F )→ F stand for the left inverse of iF .

Theorem 1.3. [N, Theorem 3.2]

Assume that T : Cb(X ,E )→ F is a (β, ‖ · ‖F )-continuous linear operator. Then
there exists a unique measure m : Bo → L(E ,F ′′) (called the representing

measure of T ) such that the following statements hold:

(i) m is tight, i.e., for all ε > 0 there exists a compact set K such that
m̃(X r K ) ≤ ε.

(ii) The mapping F ′ 3 y ′ 7→ my ′ ∈ M(X ,E ′) is (σ(F ′,F ), σ(M(X ,E ′),
Cb(X ,E )))-continuous.

(iii) Every f ∈ Cb(X ,E ) is m-integrable in the Riemann�Stieltjes sense over X .

(iv) For f ∈ Cb(X ,E ),
∫
X
f dm ∈ iF (F ) and T (f ) = jF

(∫
X
f dm

)
.

(v) For each y ′ ∈ F ′, y ′(T (f )) =
∫
X
f (t) dmy ′ for f ∈ Cb(X ,E ).

Conversely, assume that a measure m : Bo → L(E ,F ′′) satis�es the conditions
(i) and (ii). Then there exists a unique (β, ‖ · ‖F )-continuous linear operator
T : Cb(X ,E )→ F such that (iii), (iv) and (v) hold. Moreover: ‖T‖ = m̃(X ).
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Strongly bounded operators

A (β, ‖ · ‖F )-continuous linear operator T : Cb(X ,E )→ F is said to be strongly

bounded if its representing measure m has the strongly bounded semivariation m̃,
i.e., m̃(An)→ 0 whenever (An) is a pairwise disjoint sequence in Bo.

Note that if a linear operator T : Cb(X ,E )→ F is (β, ‖ · ‖F )-weakly compact,
then T is (β, ‖ · ‖F )-continuous and strongly bounded (see [N, Theorem 6.2]).

It is known that if a (β, ‖ · ‖F )-continuous linear operator T : Cb(X ,E )→ F
is strongly bounded and m is its representing measure, then m(A)(x) ∈ iF (F ) for
A ∈ Bo, x ∈ E (see [N, �4]). Then one can de�ne a measure mF : Bo → L(E ,F )
by

mF (A)(x) := jF (m(A)(x)) for A ∈ Bo, x ∈ E .
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Strongly bounded operators

A completely regular Hausdor� space X is said to be a k-space if each set which
meets every compact subset in a closed set must be closed.

From now on we will assume that (X , T ) is a k-space.

Theorem 1.4. [N, Theorem 4.3 and Corollary 4.4]

Let T : Cb(X ,E )→ F be a (β, ‖ · ‖F )-continuous strongly bounded linear
operator and m be its representing measure. Then the following statements hold:

(i) mF is regular, i.e., for all A ∈ Bo and ε > 0 there exist a compact set K and
an open set O such that K ⊂ A ⊂ O and m̃F (O r K ) ≤ ε.

(i) Every f ∈ Cb(X ,E ) is mF -integrable in the Riemann�Stieltjes sense over all
A ∈ Bo.

(ii) T (f ) =
∫
X
f (t) dmF for f ∈ Cb(X ,E ).

Conversely, assume that a measure mF : Bo → L(E ,F ) satis�es the condition (i).
Then there exists a unique strongly bounded operator T : Cb(X ,E )→ F such
that (ii) and (iii) hold.
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Nuclear operators on Cb(X ,E )

De�nition 2.1. [Sch, Chap. 3, �7, 7.1]

A linear operator T : Cb(X ,E )→ F is said to be nuclear between the locally
convex space (Cb(X ,E ), β) and Banach space (F , ‖ · ‖F ) if there exist an
β-equicontinuous sequence (Φn) in Cb(X ,E )′β , a bounded sequence (yn) in F and

(λn) ∈ `1 such that

(2.1) T (f ) =
∞∑
n=1

λnΦn(f )yn for f ∈ Cb(X ,E ).

Then T is (β, ‖ · ‖F )-compact (see [Sch, Chap. 3, �7, Corollary 1]).
Moreover, let us put

‖T‖β-nuc := inf

{ ∞∑
n=1

|λn|‖Φn‖‖yn‖F

}
,

where the in�mum is taken over all sequences (Φn) in Cb(X ,E )′β , (yn) in F and

(λn) ∈ `1 such that T admits a representation (2.1).

[Sch] Schae�er, H.H., Topological Vector Spaces, Springer-Verlag, 1971.
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Nuclear operators on Cb(X ,E )

Theorem 2.1. [KhC, Lemma 2]

For a subsetM of M(X ,E ′) the following statements are equivalent:

(i) {Φµ : µ ∈M} is a β-equicontinuous subset of Cb(X ,E )′β .

(ii) supµ∈M |µ|(X ) <∞ andM is uniformly tight, that is, for every ε > 0, there
exists a compact subset K of X such that supµ∈M |µ|(X r K ) ≤ ε.

Proposition 2.2.

A linear operator T : Cb(X ,E )→ F is nuclear if and only if there exist a bounded
and uniformly tight sequence (µn) in M(X ,E ′), a bounded sequence (yn) in F and
(λn) ∈ `1 such that

T (f ) =
∞∑
n=1

λn

(∫
X

f (t) dµn

)
yn for f ∈ Cb(X ,E ).

[KC] Khurana, S.S., S.A. Choo, Strict topology and P-spaces, Proc. Amer. Math. Soc., 61

(1976), 280�284.

18 / 29



Nuclear operators on Cb(X ,E )

Theorem 2.1. [KhC, Lemma 2]

For a subsetM of M(X ,E ′) the following statements are equivalent:

(i) {Φµ : µ ∈M} is a β-equicontinuous subset of Cb(X ,E )′β .

(ii) supµ∈M |µ|(X ) <∞ andM is uniformly tight, that is, for every ε > 0, there
exists a compact subset K of X such that supµ∈M |µ|(X r K ) ≤ ε.

Proposition 2.2.

A linear operator T : Cb(X ,E )→ F is nuclear if and only if there exist a bounded
and uniformly tight sequence (µn) in M(X ,E ′), a bounded sequence (yn) in F and
(λn) ∈ `1 such that

T (f ) =
∞∑
n=1

λn

(∫
X

f (t) dµn

)
yn for f ∈ Cb(X ,E ).

[KC] Khurana, S.S., S.A. Choo, Strict topology and P-spaces, Proc. Amer. Math. Soc., 61

(1976), 280�284.

18 / 29



Nuclear operators on Cb(X ,E )

Theorem 2.3. [NS, Theorem 3.1]

Assume that T : Cb(X ,E )→ F is a nuclear operator and m is its representing
measure. Then the following statements hold:

(i) For each A ∈ Bo, mF (A) ∈ N (E ,F ).

(ii) mF : Bo → N (E ,F ) is ‖ · ‖nuc -countably additive.

(iii) |mF |nuc ∈ M+(X ), where |mF |nuc stands for the variation of mF with respect
to the norm ‖ · ‖nuc in N (E ,F ).

(iv) If E ′ has the Radon�Nikodym Property, then there exists a function
H ∈ L1(|mF |nuc ,N (E ,F )) such that

mF (A) =

∫
A

H(t) d |mF |nuc for A ∈ Bo.
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Nuclear operators on Cb(X ,E )

Theorem 2.4. [St]

Let T : Cb(X ,E )→ F be a (β, ‖ · ‖F )-continuous strongly bounded linear
operator. If

mF (A) ∈ N (E ,F ) for A ∈ Bo,
|mF |nuc ∈ M+(X ),

there exists H ∈ L1(|mF |nuc ,N (E ,F )) such that

mF (A) =

∫
A

H(t) d |mF |nuc for A ∈ Bo,

then T is a nuclear operator between the locally convex space (Cb(X ,E ), β) and
the Banach space F and ‖T‖β-nuc = |mF |nuc(X ).
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Nuclear operators on Cb(X ,E )

Sketch of proof.

Step 1. Using the Lebesgue dominated convergence theorem, Theorem 1.4 and
[N, Theorem 5.2], we get that

T (f ) =

∫
X

H(t)(f (t)) d |mF |nuc for f ∈ Cb(X ,E ).

Step 2. Let L1(|mF |nuc)⊗̂πN (E ,F ) denote the projective tensor product of the

Banach spaces L1(|mF |nuc) and N (E ,F ), equipped with the completed norm π
(see [DU, p. 227]).
Note that for W ∈ L1(|mF |nuc)⊗̂πN (E ,F ) we have

π(W ) := inf

{ ∞∑
n=1

|λn|‖vn‖1‖Un‖nuc

}
,

where the in�mum is taken over all sequences (vn) in L1(|mF |nuc) and (Un) in
N (E ,F ) with limn ‖vn‖1 = 0 = limn ‖Un‖nuc and (λn) ∈ `1 such that
W =

∑∞
n=1

λn(vn ⊗ Un) is in the π-norm (see [R, Proposition 2.8, pp. 21�22]).

[R] Ryan, R., Introduction to Tensor Products of Banach Spaces, Springer Monographs in

Math., 2002.
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Nuclear operators on Cb(X ,E )

It is known that L1(|mF |nuc)⊗̂πN (E ,F ) is isometrically isomorphic to the Banach
space (L1(|mF |nuc ,N (E ,F )), ‖ · ‖1) throughout the isometry J, where

J(v ⊗ U) := v(·)U for v ∈ L1(|mF |nuc), U ∈ N (E ,F )

(see [DU, Example 10, p. 228], [R, Example 2.19, p. 29]).
Then there exist (vn) in L1(|mF |nuc) and (Un) in N (E ,F ) with
limn ‖vn‖1 = 0 = limn ‖Un‖nuc and (αn) ∈ `1 so that

J−1(H) =
∞∑
n=1

αnvn ⊗ Un in L1(|mF |nuc)⊗̂πN (E ,F ).

Hence we have

H = J

( ∞∑
n=1

αnvn ⊗ Un

)
=
∞∑
n=1

αnvn(·)Un in L1(|mF |nuc ,N (E ,F )).

Therefore

T (f ) =
∞∑
n=1

αn

∫
X

vn(t)Un(f (t)) d |mF |nuc for f ∈ Cb(X ,E ).
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Nuclear operators on Cb(X ,E )

For n ∈ N, we can choose sequences (x ′n,k) in E ′ and (yn,k) in F so that

Un(x) =
∞∑
k=1

x ′n,k(x)yn,k for x ∈ E .

Then for every f ∈ Cb(X ,E ), we have

T (f ) =
∞∑
n=1

αn

∫
X

(
vn(t)

∞∑
k=1

x ′n,k(f (t))yn,k

)
d |mF |nuc

=
∞∑
n=1

αn

∞∑
k=1

‖x ′n,k‖E ′‖yn,k‖F

(∫
X

vn(t)
x ′n,k(f (t))

‖x ′n,k‖E ′
d |mF |nuc

)
yn,k
‖yn,k‖F

.
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Nuclear operators on Cb(X ,E )

Step 3. For n, k ∈ N, denote

Φn,k(f ) :=

∫
X

vn(t)
x ′n,k(f (t))

‖x ′n,k‖E ′
d |mF |nuc for f ∈ Cb(X ,E ).

Now, we should show that (Φn,k) is β-equicontinuous sequence in Cb(X ,E )′β . In
view of [F, Theorem 3.2] it is enough to prove that (Φn,k |B1

) is τc -equicontinuous
sequence at 0, where B1 = {f ∈ Cb(X ,E ) : ‖f ‖ ≤ 1}.

Step 4. To complete the proof we need to show ‖T‖β-nuc = |mF |nuc(X ).
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Nuclear operators on Cb(X ,E )

Corollary 2.5. [St]

Assume that T : Cb(X ,E )→ F is a (β, ‖ · ‖F )-continuous strongly bounded linear
operator and E ′ has the Radon�Nikodym property. Then the following statements
are equivalent:

(i) T is a nuclear operator between the locally convex space (Cb(X ,E ), β) and
the Banach space F .

(ii) mF (A) ∈ N (E ,F ) for A ∈ Bo and |mF |nuc ∈ M+(X ) and there exists
H ∈ L1(|mF |nuc ,N (E ,F )) such that

mF (A) =

∫
A

H(t) d |mF |nuc for A ∈ Bo.

In this case: ‖T‖β-nuc = |mF |nuc(X ).
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Nuclearity of conjugate operator

Let T : Cb(X ,E )→ F be a (β, ‖ · ‖F )-continuous linear operator and m be its
representing measure. Then its conjugate operator T ′ : F ′ → M(X ,E ′) is given by

T ′(y ′) := my ′ for y ′ ∈ F ′.

Corollary 2.6. [St]

Assume that T : Cb(X ,E )→ F is a (β, ‖ · ‖F )-continuous linear operator. If E ′

has the Radon�Nikodym property and F is re�exive, then the following statements
are equivalent:

(i) T is a nuclear operator between the locally convex space (Cb(X ,E ), β) and
the Banach space F .

(ii) T ′ is nuclear.

In this case: ‖T ′‖nuc = ‖T‖β-nuc .
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