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Nuclear operators

@ The notation of nuclearity was first introduced by Ruston and Grothendieck.
The term nuclear has the origin in Schwartz’s kernel theorem.

e For X being a compact Hausdorff space, nuclear operators T : C(X) — F
were studied by L. Schwartz [S] and Tong [T]. In particular, the Bochner-type
representation of nuclear operators was derived.

Theorem [T, Proposition 1.2]

A bounded operator T : C(X) — F is nuclear if and only if it has a Bochner
kernel, i.e., there exist a finite real valued measure p on X and a Bochner
integrable function f : X — F such that

T(u):/xu(t)f(t)d,u for e C(X).

@ [S] Schwartz, L., Séminaire Schwartz, Exposé 13, Université de Paris, (1953/54).

@ [T] Tong, A.E., Nuclear mappings on C(X), Math. Ann., 194 (1971), 213-224.



Nuclear operators

@ The study of nuclear operators T : C(X, E) — F was initiated by Alexander
[A], where the result of Schwartz was extended in case E’ has the
Radon—Nikodym Property.

ﬁ [A] Alexander, G., Linear operators on the space of vector-valued continuous functions,
Ph.D. thesis, New Mexico State university, Las Cruces, New Mexico, 1976.

@ [Po] Popa, D., Nuclear operators on C(T,X), Stud. Cerc. Mat., 42 no. 1 (1990), 47-50.

ﬁ [SS] Saab, P., B. Smith, Nuclear operators on spaces of continuous vector-valued functions,
Glasgow Math. J., 33 no. 2 (1994), 223-230.



Nuclear operators

@ The study of nuclear operators T : C(X, E) — F was initiated by Alexander
[A], where the result of Schwartz was extended in case E’ has the
Radon—Nikodym Property.

@ In [Po] and [SS] the study of nuclear operators T : C(X,E) — F was
continued in context of properties of representing measure m, associated
continuous operator T# : C(X) — L(E, F) and Radon—Nikodym Property of
E'.

ﬁ [A] Alexander, G., Linear operators on the space of vector-valued continuous functions,
Ph.D. thesis, New Mexico State university, Las Cruces, New Mexico, 1976.

ﬁ [Po] Popa, D., Nuclear operators on C(T,X), Stud. Cerc. Mat., 42 no. 1 (1990), 47-50.
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Glasgow Math. J., 33 no. 2 (1994), 223-230.
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Nuclear operators

Let (E,| - |lg) and (F,| - ||r) be Banach spaces. Let E’ and F’ denote the
Banach duals of E and F, respectively. By L(E, F) we denote the space of all
bounded linear operators from E to F, equipped with the norm || - || of the
uniform operator topology.

An operator U € L(E, F) is nuclear if there exist sequences (x/) in E’ and
(¥n) in F such that

U(x) = Zx,’,(X)Yn for x € E,

n=1

where 3772, [1x;[ e llyallF < oo.




Nuclear operators

The nuclear norm of a nuclear operator U : E — F is defined by
o0
[Ullnse == inf Y Ixaller - llyallFs
n=1

where the infimum is taken over all sequences (x/) in E’ and (y,) in F such that
U(x) = 2021 Xp(xX)yn for x € E and 372, [|x; [ [lyallF < oo
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Nuclear operators

The nuclear norm of a nuclear operator U : E — F is defined by
o0
[Ullnse == inf Y Ixaller - llyallFs
n=1

where the infimum is taken over all sequences (x/) in E’ and (y,) in F such that
U(x) = 2021 Xp(xX)yn for x € E and 372, [|x; [ [lyallF < oo

The space N(E, F) of all nuclear operators U : E — F, equipped with the nuclear
norm || - |[nuc is @ Banach space (see [P, Proposition, p. 51]).

V.

\ [P] Pietsch, A., Nuclear Locally Convex Spaces, Springer-Verlag, 1972.
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Strict topology (8

Let (X, T) be a completely regular Hausdorff space. Let Cp(X, E) denote the
space of all E-valued bounded continuous functions defined on X.

Definition 1.1. [B], [F]

The strict topology 3 on Cy(X, E) is generated by the family of the seminorms:

pu(f) == su)[z v(t)|If(t)|le for f e Cp(X,E),
te

where v : X — [0,00) is a bounded function such that the set {t € X : v(t) > ¢}
is compact for every € > 0.

ﬁ [B] Buck, R.C., Bounded continuous functions on a locally compact space, Michigan Math.
J., 5(1958), 95-104.

ﬁ [F] Fontenot, D., Strict topologies for vector-valued functions, Canad. J. Math., 26 no. 4
(1974), 841-853.



Strict topology (8

Theorem 1.1. [K]

@ 7. C B C 7, andif X is a compact Hausdorff space, then 5 = 7,.

@ 3 and 7, have the same bounded subsets.

@ [ is the finest locally convex Hausdorff topology agreeing with topology 7. on
T,-bounded subsets of Cy(X, E).

ﬁ [K] Khan, L.A., The strict topology on a space of vector-valued functions, Proc. Edinburgh
Math. Soc., 22 no. 1 (1979), 35-41.
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Basic concepts of measure theory

By Bo we denote the o-algebra of Borel sets in X.
Let M(X) denote the space of all countably additive regular scalar Borel measures.

The variation |u| of the measure 1 : Bo — E on A € Bo is defined by:

|1l(A) = sup > [lu(A)le,

where the supremum is taken over all finite Bo-partitions (A;) of A (see [DU,
Definition 4, p. 2]).

Let M(X, E") denote the space of all countably additive measures
p: Bo — E’ of bounded variation (|u|(X) < oo) and such that for each x € E,
tx € M(X), where py(A) := pu(A)(x) for A € Bo.

‘ [DU] Diestel, J. and J.J. Uhl, Vector Measures, Amer. Math. Soc., Math. Surveys 15,
Providence, RI, 1977.
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Basic concepts of measure theory

The semivariation m of m: Bo — L(E, F) on A € Bo is defined by

(A) = sup | m(A)(x)

.
F

where the supremum is taken over all finite Bo-partitions (A;) of A and x; is from
the unit ball Be in E for each i (see [DU, Definition 4, p.2]).
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Basic concepts of measure theory

The semivariation m of m: Bo — L(E, F) on A € Bo is defined by

(A) = sup | m(A)(x)

.
F

where the supremum is taken over all finite Bo-partitions (A;) of A and x; is from
the unit ball Be in E for each i (see [DU, Definition 4, p.2]).

By M(X, L(E, F)) we denote the space of all measures m: Bo — L(E, F)
such that m(X) < oo and for each y’ € F', m,, € M(X, E"), where

my(A)(x) ==y’ (m(A)(x)) for A€ Bo,x € E.
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Riemann-Stieltjes integral

Definition 1.2. [F], [Go], [N, Definition 2.2])

Let m € M(X, L(E, F)). We say that f € Cp(X, E) is m-integrable in the
Riemann-Stieltjes sense over A € Bo provided there exists y4 € F such that
given € > 0 there exists a finite Bo-partition P, of A such that

n

ya— Y m(A)(f(t:))

i=1

<e

F
if {A1,...,A,} is any Bo-partition of A refining P. and {t1,...,t,} is any choice
of points of A such that t; € A; for i =1,...,n.

Then [, f(t) dm := ya will be called a Riemann—Stieltjes integral of f with
respect to m over A € Bo.

@ [Go] Goodrich, R.K., A Riesz representation theorem, Proc. Amer. Math. Soc., 24 (1970),
629-636.

@ [N] Nowak, M., A Riesz representation theory for completely regular Hausdorff spaces and

its applications, Open Math., 14 (2016), 474-496.



Riesz representation theorem for functionals
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Riesz representation theorem for functionals

Theorem 1.2. [Gi], [N, Theorem 2.4]

For a linear functional ® : Cp(X, E) — R the following statements are equivalent:
(i) @ is S-continuous.

(ii) There exists a unique p € M(X, E’) such that

¢(f):<bu(f):/xf(t)du for all £ € Gy(X, E).

Moreover, [|®,|| = |u|(X).

By Cb(X, E)j; we will denote the topological dual of (Cy(X, E), 3). Hence
Cp(X, E)j can be identified with M(X, E’).

ﬁ [Gi] Giles, R., A generalization of the strict topology, Trans. Amer. Math. Soc., 161 (1971),

467-474.
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Let ir : F — F” denote the canonical embedding, i.e., ir(y)(y’) = y'(y) for
y € F, y' € F'. Moreover, let jr : ig(F) — F stand for the left inverse of ir.
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(iii) Every f € Cp(X, E) is m-integrable in the Riemann-Stieltjes sense over X .

)
(iv) For f € Cp(X, E), fodmeiF( ) and T(f) = jr ([ f dm).
(v) Foreach y' € F', y'(T(f)) = [, f(t) dm,. for f € Cp(X, E).
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o
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T : Cp(X, E) — F such that (iii), (iv) and (v) hold.

o
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(iv) For f € Cp(X, E), fodme ir(F) and T(f) = jr ([, f dm).
(v) Foreach y' € F', y'(T(f)) = [, f(t) dm,. for f € Cp(X, E).
Conversely assume that a measure m: Bo — L(E, F"") satisfies the conditions
(i) and (ii). Then there exists a unique (3, || - ||)-continuous linear operator
T : Cp(X, E) — F such that (iii), (iv) and (v) hold. Moreover: || T| = m(X).
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Strongly bounded operators

A (B,] - ||r)-continuous linear operator T : Cp(X, E) — F is said to be strongly
bounded if its representing measure m has the strongly bounded semivariation m,
i.e., m(A,) — 0 whenever (A,) is a pairwise disjoint sequence in Bo.
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A (B,] - ||r)-continuous linear operator T : Cp(X, E) — F is said to be strongly
bounded if its representing measure m has the strongly bounded semivariation m,
i.e., m(A,) — 0 whenever (A,) is a pairwise disjoint sequence in Bo.

Note that if a linear operator T : Cp(X, E) — F is (5, || - || r)-weakly compact,
then T is (5, ]| - ||)-continuous and strongly bounded (see [N, Theorem 6.2]).

It is known that if a (8, || - ||)-continuous linear operator T : Cp(X,E) — F
is strongly bounded and m is its representing measure, then m(A)(x) € ir(F) for
A € Bo, x € E (see [N, §4]). Then one can define a measure mg : Bo — L(E, F)
by

me(A)(x) := je(m(A)(x)) for A€ Bo,x € E.

14 / 29
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meets every compact subset in a closed set must be closed.
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A completely regular Hausdorff space X is said to be a k-space if each set which
meets every compact subset in a closed set must be closed.

From now on we will assume that (X, 7) is a k-space.

Theorem 1.4. [N, Theorem 4.3 and Corollary 4.4]

Let T : Cp(X,E) — F be a (B, ]| - ||r)-continuous strongly bounded linear
operator and m be its representing measure. Then the following statements hold:

(i) me is regular, i.e., for all A € Bo and £ > 0 there exist a compact set K and
an open set O such that K C AC O and me(O N\ K) <e.

(i) Every f € Cp(X, E) is me-integrable in the Riemann-Stieltjes sense over all
A € Bo.
(i) T(f)= [ f(t)dmE for f € Cp(X, E).

Conversely, assume that a measure mr : Bo — L(E, F) satisfies the condition (i).
Then there exists a unique strongly bounded operator T : C,(X, E) — F such
that (ii) and (iii) hold.

v
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Nuclear operators on Cy(X, E)

Definition 2.1. [Sch, Chap. 3, §7, 7.1]

A linear operator T : Cp(X, E) — F is said to be nuclear between the locally
convex space (Cp(X, E), ) and Banach space (F, || - ||) if there exist an
fB-equicontinuous sequence (®,) in Cp(X, E)j, a bounded sequence (y,) in F and
(An) € £* such that

(2.1) T(f) = iknd)n(f)y,, for f e Cy(X, E).

n=1
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A linear operator T : Cp(X, E) — F is said to be nuclear between the locally
convex space (Cp(X, E), ) and Banach space (F, || - ||) if there exist an
fB-equicontinuous sequence (®,) in Cp(X, E)j, a bounded sequence (y,) in F and
(An) € £* such that

(2.1) T(f) = iknd)n(f)y,, for f e Cy(X, E).

n=1

Then T is (8, || - ||F)-compact (see [Sch, Chap. 3, §7, Corollary 1]).
Moreover, let us put

[T 5-nuc := inf {Z I/\nllld’nIIIIanF} ;

n=1
where the infimum is taken over all sequences (®,) in Cp(X, E)j, (vn) in F and
(An) € £* such that T admits a representation (2.1).

\ [Sch] Schaeffer, H.H., Topological Vector Spaces, Springer-Verlag, 1971.



Nuclear operators on Cp(X, E)

Theorem 2.1. [KhC, Lemma 2]

For a subset M of M(X, E’) the following statements are equivalent:

(i) {®, : pu € Mjisa B-equicontinuous subset of Cy(X, E)j.
(ii) sup e [1[(X) < oo and M is uniformly tight, that is, for every ¢ > 0, there
exists a compact subset K of X such that sup,,c x [u[(X \ K) <e.
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For a subset M of M(X, E’) the following statements are equivalent:

(i) {®, : pu € Mjisa B-equicontinuous subset of Cy(X, E)j.
(ii) sup e [1[(X) < oo and M is uniformly tight, that is, for every ¢ > 0, there
exists a compact subset K of X such that sup,,c x [u[(X \ K) <e.

Proposition 2.2.

A linear operator T : Cp(X, E) — F is nuclear if and only if there exist a bounded
and uniformly tight sequence (i) in M(X, E’), a bounded sequence (y,) in F and

(An) € £* such that

o0

T(f) = z;% </x f(t) du,,) yn for f e Gp(X,E).

W

@ [KC] Khurana, S.S., S.A. Choo, Strict topology and P-spaces, Proc. Amer. Math. Soc., 61

(1976), 280-284.



Nuclear operators on Cy(X, E)

Theorem 2.3. [NS, Theorem 3.1]

Assume that T : Cp(X, E) — F is a nuclear operator and m is its representing
measure. Then the following statements hold:
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Nuclear operators on Cy(X, E)

Theorem 2.3. [NS, Theorem 3.1]

Assume that T : Cp(X, E) — F is a nuclear operator and m is its representing
measure. Then the following statements hold:

(i) For each A € Bo, me(A) € N(E,F).
(it) mg:Bo — N(E,F) is | - ||nuc-countably additive.

(ili) |me|nue € MT(X), where |mg|quc stands for the variation of mg with respect
to the norm || - || yuc in N(E, F).

(iv) If E’ has the Radon—Nikodym Property, then there exists a function
H € LY*(|mg|puc, N(E, F)) such that

mF(A):/H(t)d|mF|nuc for A € Bo.
A
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Nuclear operators on Cy(X, E)

Theorem 2.4. [St]

Let T : Cp(X,E) — F be a (B, ]| - ||£)-continuous strongly bounded linear
operator. If
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Nuclear operators on Cy(X, E)

Theorem 2.4. [St]

Let T : Cp(X,E) — F be a (B, ]| - ||£)-continuous strongly bounded linear
operator. If

o me(A) € N(E,F) for A € Bo,
o |mF|nuc S M+(X).
o there exists H € L*(|mEg|nuc, N'(E, F)) such that

mF(A):/H(t)d|mF|,,uc for A€ Bo,
A

then T is a nuclear operator between the locally convex space (Cp(X, E), 5) and
the Banach space F and || T||g-nuc = |me|nuc(X)-
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Nuclear operators on Cp(X, E)

Sketch of proof.

Step 1. Using the Lebesgue dominated convergence theorem, Theorem 1.4 and
[N, Theorem 5.2], we get that

T(f):/XH(t)(f(t))d|m,:|,,uc for fe Co(X,E).
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Step 1. Using the Lebesgue dominated convergence theorem, Theorem 1.4 and
[N, Theorem 5.2], we get that

T(f) :/ H(E)(F(£)) d|mr e for f € Co(X, E).
X
Step 2. Let LY(|mE|nuc)®= N(E, F) denote the projective tensor product of the

Banach spaces L'(|mg|nuc) and N(E, F), equipped with the completed norm m
(see [DU, p. 227)).
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Nuclear operators on Cp(X, E)

Sketch of proof.
Step 1. Using the Lebesgue dominated convergence theorem, Theorem 1.4 and
[N, Theorem 5.2], we get that

T(f):/XH(t)(f(t))d|m,:|,,uc for fe Co(X,E).

Step 2. Let LY(|mE|nuc)®= N(E, F) denote the projective tensor product of the
Banach spaces L'(|mg|nuc) and N(E, F), equipped with the completed norm m
(see [DU, p. 227)).

Note that for W € LY(|mE|puc)®x N (E, F) we have

m(W) = inf {Z |)‘n||Vn||1||Un|nUC} )
n=1

where the infimum is taken over all sequences (v,) in LY(|mg|nuc) and (U,) in
N(E, F) with lim, ||va|l1 = 0 = lim, ||Us||lnue and (X,) € £* such that
W =372, Aa(va @ Uy) is in the m-norm (see [R, Proposition 2.8, pp.21-22]).

\ [R] Ryan, R., Introduction to Tensor Products of Banach Spaces, Springer Monographs in
Math., 2002.



Nuclear operators on Cp(X, E)

It is known that L*(|m£|nuc )@ N(E, F) is isometrically isomorphic to the Banach
space (LY(|mF|puc, N(E, F)), || - ||l1) throughout the isometry J, where

Jva U) = v()U for ve L (|mE|ne), U€e N(E,F)
(see [DU, Example 10, p.228], [R, Example 2.19, p.29]).
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It is known that L*(|m£|nuc )@ N(E, F) is isometrically isomorphic to the Banach
space (LY(|mF|puc, N(E, F)), || - ||l1) throughout the isometry J, where
Jva U) = v()U for ve L (|mE|ne), U€e N(E,F)

(see [DU, Example 10, p.228], [R, Example 2.19, p.29]).
Then there exist (v,) in LY(|mg|nuc) and (U,) in N(E, F) with
lim, |[Vall1 = 0 = lim, ||Us |l nue and () € €1 so that

JHH) =D apvn® Uy in L(|mE| )@ N(E, F).

n=1

Hence we have

H=J (Z UV @ U,,) = apva(YUn in L*(ImE|pue, N(E, F)).

n=1 n=1

Therefore

T(f)= Za,,/x Va(B)Un(F(t)) d|mg|pue for € Cp(X, E).

n=1
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Nuclear operators on Cy(X, E)

!/

For n € N, we can choose sequences (x! ,) in E’ and (y, ) in F so that

Un(x) = Zx,’,yk(x)y,,vk for x € E.
k=1
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Nuclear operators on Cy(X, E)

For n € N, we can choose sequences (x! ,) in E’ and (y, ) in F so that

Un(x) = Zx,’,yk(x)y,,vk for x € E.
k=1

Then for every f € Cp(X, E), we have

- ZO[n/x < ZXNk t) Yn k) d|mF|nuc

n=1

ianil rillelmalle | [ () L) N VIl
I,

~ = okl E [ynkllF
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Nuclear operators on Cy(X, E)

Step 3. For n, k € N, denote

&4 (F) ;:/ va(t) ITk(kl(l ) d|melpe for £ € Co(X,E).
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Nuclear operators on Cy(X, E)

Step 3. For n, k € N, denote
k(1))
@,k (F) ;:/ va(t) Hk o d|mg|pe for e Co(X, E).
k

Now, we should show that (®, ) is S-equicontinuous sequence in Cp(X, E)j.
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Nuclear operators on Cy(X, E)

Step 3. For n, k € N, denote

X i (F(2))

137kl

&4 (F) ;:/ va(t) d|m| e for f e Co(X, E).
X

Now, we should show that (®, ) is S-equicontinuous sequence in Cy(X, E)j3. In
view of [F, Theorem 3.2] it is enough to prove that (®, «|g,) is Tc-equicontinuous
sequence at 0, where By = {f € Co(X, E) : ||f]| < 1}.
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Nuclear operators on Cy(X, E)

Step 3. For n, k € N, denote

X i (F(2))

b, (F) ::/ vn(t) = d|mg|pue for e Cp(X, E).
X Hxn,kHE’

Now, we should show that (®, ) is S-equicontinuous sequence in Cy(X, E)j3. In
view of [F, Theorem 3.2] it is enough to prove that (®, «|g,) is Tc-equicontinuous
sequence at 0, where By = {f € Co(X, E) : ||f]| < 1}.

Step 4. To complete the proof we need to show || T||g-nuc = |MF|nuc(X).
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Nuclear operators on Cy(X, E)

Corollary 2.5. [St]

Assume that T : Cp(X,E) — F is a (5, || - ||F)-continuous strongly bounded linear
operator and E’ has the Radon—Nikodym property. Then the following statements
are equivalent:

(i) T is a nuclear operator between the locally convex space (Cp(X, E), 8) and
the Banach space F.

(ii) me(A) € N(E,F) for A€ Bo and [mf|sue € M*(X) and there exists
H e L1(|mF|nUC7N(E, F)) such that

mF(A):/H(t)d|mF|nuc for A € Bo.
A

In this case: || T||g-nuc = |MF|nuc(X).
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Nuclearity of conjugate operator

Let T : Cp(X,E) — F be a (8, - ||¢)-continuous linear operator and m be its
representing measure. Then its conjugate operator T’ : F/ — M(X, E’) is given by

T'(y") :=my for y' € F'.
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(i) T is a nuclear operator between the locally convex space (Cp(X, E), 8) and
the Banach space F.

(ii) T’ is nuclear.

In this case: || T’ ||nuc = || Tl g-nuc-
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