Nuclear operators and operator-valued Borel measures

Juliusz Stochmal

Kazimierz Wielki University in Bydgoszcz, POLAND

j.stochmal@ukw.edu.pl

POSI+IVITY XI, Ljubljana, Slovenia July 10-14, 2023

Introduction

The results

- Nuclear operators on $C_b(X, E)$
- Nuclearity of conjugate operator

3 References

- The notation of nuclearity was first introduced by Ruston and Grothendieck. The term *nuclear* has the origin in Schwartz's kernel theorem.
- For X being a compact Hausdorff space, nuclear operators $T : C(X) \rightarrow F$ were studied by L. Schwartz [S] and Tong [T]. In particular, the Bochner-type representation of nuclear operators was derived.

A bounded operator $\mathcal{T} \subseteq C(X) \to \mathcal{L}$ is nuclear diand only did has a Bechner akernel, i.e., there exists a finite real valued measure μ on X and a Buchner integrable function $f \in X \to \mathcal{L}$ such that

$T(u) = \int_{X} u(t)f(t) \, d\mu \quad \text{for } u \in \mathcal{L}(X).$

S] Schwartz, L., *Séminaire Schwartz*, Exposé 13, Université de Paris, (1953/54)

[T] Tong, A.E., Nuclear mappings on C(X), Math. Ann., 194 (1971), 213-224.

- The notation of nuclearity was first introduced by Ruston and Grothendieck. The term *nuclear* has the origin in Schwartz's kernel theorem.
- For X being a compact Hausdorff space, nuclear operators $T : C(X) \to F$ were studied by L. Schwartz [S] and Tong [T]. In particular, the Bochner-type representation of nuclear operators was derived.

Theorem [T, Proposition 1.2

A bounded operator $T : C(X) \to F$ is nuclear if and only if it has a Bochner kernel, i.e., there exist a finite real valued measure μ on X and a Bochner integrable function $f : X \to F$ such that

$$\mathcal{T}(u) = \int_X u(t) f(t) \, d\mu \quad ext{for} \quad u \in \mathcal{C}(X).$$

S] Schwartz, L., *Séminaire Schwartz*, Exposé 13, Université de Paris, (1953/54)

[T] Tong, A.E., Nuclear mappings on C(X), Math. Ann., 194 (1971), 213-224.

- The notation of nuclearity was first introduced by Ruston and Grothendieck. The term *nuclear* has the origin in Schwartz's kernel theorem.
- For X being a compact Hausdorff space, nuclear operators $T : C(X) \to F$ were studied by L. Schwartz [S] and Tong [T]. In particular, the Bochner-type representation of nuclear operators was derived.

Theorem [T, Proposition 1.2

A bounded operator $T : C(X) \to F$ is nuclear if and only if it has a Bochner kernel, i.e., there exist a finite real valued measure μ on X and a Bochner integrable function $f : X \to F$ such that

$$\mathcal{T}(u) = \int_X u(t) f(t) \, d\mu \quad ext{for} \quad u \in \mathcal{C}(X).$$

S] Schwartz, L., *Séminaire Schwartz*, Exposé 13, Université de Paris, (1953/54)

[T] Tong, A.E., Nuclear mappings on C(X), Math. Ann., 194 (1971), 213-224.

- The notation of nuclearity was first introduced by Ruston and Grothendieck. The term *nuclear* has the origin in Schwartz's kernel theorem.
- For X being a compact Hausdorff space, nuclear operators $T : C(X) \to F$ were studied by L. Schwartz [S] and Tong [T]. In particular, the Bochner-type representation of nuclear operators was derived.

Theorem [T, Proposition 1.2]

A bounded operator $T : C(X) \to F$ is nuclear if and only if it has a Bochner kernel, i.e., there exist a finite real valued measure μ on X and a Bochner integrable function $f : X \to F$ such that

$$T(u) = \int_X u(t)f(t) d\mu$$
 for $u \in C(X)$.

[S] Schwartz, L., *Séminaire Schwartz*, Exposé 13, Université de Paris, (1953/54).

[T] Tong, A.E., Nuclear mappings on C(X), Math. Ann., 194 (1971), 213–224.

- The study of nuclear operators $T : C(X, E) \to F$ was initiated by Alexander [A], where the result of Schwartz was extended in case E' has the Radon–Nikodym Property.
- In [Po] and [SS] the study of nuclear operators T : C(X, E) → F was continued in context of properties of representing measure m, associated continuous operator T[#] : C(X) → L(E, F) and Radon–Nikodym Property of E'.

[A] Alexander, G., *Linear operators on the space of vector-valued continuous functions*, Ph.D. thesis, New Mexico State university, Las Cruces, New Mexico, 1976.

[SS] Saab, P., B. Smith, *Nuclear operators on spaces of continuous vector-valued functions*, Glasgow Math. J., 33 no. 2 (1994), 223–230.

- The study of nuclear operators T : C(X, E) → F was initiated by Alexander [A], where the result of Schwartz was extended in case E' has the Radon–Nikodym Property.
- In [Po] and [SS] the study of nuclear operators T : C(X, E) → F was continued in context of properties of representing measure m, associated continuous operator T[#] : C(X) → L(E, F) and Radon-Nikodym Property of E'.

[A] Alexander, G., *Linear operators on the space of vector-valued continuous functions*, Ph.D. thesis, New Mexico State university, Las Cruces, New Mexico, 1976.

[SS] Saab, P., B. Smith, *Nuclear operators on spaces of continuous vector-valued functions*, Glasgow Math. J., 33 no. 2 (1994), 223–230.

Let $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ be Banach spaces. Let E' and F' denote the Banach duals of E and F, respectively. By $\mathcal{L}(E, F)$ we denote the space of all bounded linear operators from E to F, equipped with the norm $\|\cdot\|$ of the uniform operator topology.

An operator $U \in \mathcal{L}(E, F)$ is **nuclear** if there exist sequences (x'_n) in E' and (y_n) in F such that

$$U(x) = \sum_{n=1}^{\infty} x'_n(x) y_n \text{ for } x \in E,$$

where $\sum_{n=1}^{\infty} \|x_n'\|_{E'} \|y_n\|_F < \infty$.

Let $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ be Banach spaces. Let E' and F' denote the Banach duals of E and F, respectively. By $\mathcal{L}(E, F)$ we denote the space of all bounded linear operators from E to F, equipped with the norm $\|\cdot\|$ of the uniform operator topology.

An operator $U \in \mathcal{L}(E, F)$ is **nuclear** if there exist sequences (x'_n) in E' and (y_n) in F such that

$$U(x) = \sum_{n=1}^{\infty} x'_n(x) y_n \text{ for } x \in E,$$

where $\sum_{n=1}^{\infty} \|x_n'\|_{E'} \|y_n\|_F < \infty$.

Let $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ be Banach spaces. Let E' and F' denote the Banach duals of E and F, respectively. By $\mathcal{L}(E, F)$ we denote the space of all bounded linear operators from E to F, equipped with the norm $\|\cdot\|$ of the uniform operator topology.

An operator $U \in \mathcal{L}(E, F)$ is **nuclear** if there exist sequences (x'_n) in E' and (y_n) in F such that

$$U(x) = \sum_{n=1}^{\infty} x'_n(x) y_n$$
 for $x \in E$,

where $\sum_{n=1}^{\infty} \|x'_n\|_{E'} \|y_n\|_F < \infty$.

The **nuclear norm** of a nuclear operator $U: E \rightarrow F$ is defined by

$$||U||_{nuc} := \inf \sum_{n=1}^{\infty} ||x'_n||_{E'} \cdot ||y_n||_F,$$

where the infimum is taken over all sequences (x'_n) in E' and (y_n) in F such that $U(x) = \sum_{n=1}^{\infty} x'_n(x)y_n$ for $x \in E$ and $\sum_{n=1}^{\infty} \|x'_n\|_{E'} \|y_n\|_F < \infty$.

The space $\mathcal{N}(E, F)$ of all nuclear operators $U : E \to F$, equipped with the nuclear norm $\|\cdot\|_{nuc}$ is a Banach space (see [P, Proposition, p. 51]).

The **nuclear norm** of a nuclear operator $U: E \rightarrow F$ is defined by

$$||U||_{nuc} := \inf \sum_{n=1}^{\infty} ||x'_n||_{E'} \cdot ||y_n||_F,$$

where the infimum is taken over all sequences (x'_n) in E' and (y_n) in F such that $U(x) = \sum_{n=1}^{\infty} x'_n(x)y_n$ for $x \in E$ and $\sum_{n=1}^{\infty} \|x'_n\|_{E'} \|y_n\|_F < \infty$.

The space $\mathcal{N}(E, F)$ of all nuclear operators $U : E \to F$, equipped with the nuclear norm $\|\cdot\|_{nuc}$ is a Banach space (see [P, Proposition, p. 51]).

Strict topology β

Let (X, \mathcal{T}) be a completely regular Hausdorff space. Let $C_b(X, E)$ denote the space of all *E*-valued bounded continuous functions defined on *X*.

Definition 1.1. [B], [F]

The strict topology β on $C_b(X, E)$ is generated by the family of the seminorms:

$$p_v(f) := \sup_{t \in X} v(t) \|f(t)\|_E \text{ for } f \in C_b(X, E),$$

where $v: X \to [0,\infty)$ is a bounded function such that the set $\{t \in X : v(t) \ge \varepsilon\}$ is compact for every $\varepsilon > 0$.

[B] Buck, R.C., Bounded continuous functions on a locally compact space, Michigan Math.
J., 5 (1958), 95–104.

[F] Fontenot, D., Strict topologies for vector-valued functions, Canad. J. Math., 26 no. 4 (1974), 841–853.

Strict topology β

Let (X, \mathcal{T}) be a completely regular Hausdorff space. Let $C_b(X, E)$ denote the space of all *E*-valued bounded continuous functions defined on *X*.

Definition 1.1. [B], [F]

The strict topology β on $C_b(X, E)$ is generated by the family of the seminorms:

$$p_v(f) := \sup_{t \in X} v(t) \| f(t) \|_E \quad \text{for} \quad f \in C_b(X, E),$$

where $v: X \to [0, \infty)$ is a bounded function such that the set $\{t \in X : v(t) \ge \varepsilon\}$ is compact for every $\varepsilon > 0$.

[B] Buck, R.C., Bounded continuous functions on a locally compact space, Michigan Math. J., 5 (1958), 95–104.

[F] Fontenot, D., Strict topologies for vector-valued functions, Canad. J. Math., 26 no. 4 (1974), 841–853.

Strict topology β

Theorem 1.1. [K]

- $\tau_c \subset \beta \subset \tau_u$ and if X is a compact Hausdorff space, then $\beta = \tau_u$.
- β and τ_u have the same bounded subsets.
- β is the finest locally convex Hausdorff topology agreeing with topology τ_c on τ_u -bounded subsets of $C_b(X, E)$.

[K] Khan, L.A., The strict topology on a space of vector-valued functions, Proc. Edinburgh Math. Soc., 22 no. 1 (1979), 35–41.

Basic concepts of measure theory

By $\mathcal{B}o$ we denote the σ -algebra of Borel sets in X.

Let M(X) denote the space of all countably additive regular scalar Borel measures.

$$|\mu|(A) := \sup \sum \|\mu(A_i)\|_E,$$

📎 [DU] Diestel, J. and J.J. Uhl, Vector Measures, Amer. Math. Soc., Math. Surveys 15,

Basic concepts of measure theory

By $\mathcal{B}o$ we denote the σ -algebra of Borel sets in X.

Let M(X) denote the space of all countably additive regular scalar Borel measures.

The variation $|\mu|$ of the measure $\mu : \mathcal{B}o \to E$ on $A \in \mathcal{B}o$ is defined by:

$$|\mu|(A) := \sup \sum \|\mu(A_i)\|_E,$$

where the supremum is taken over all finite $\mathcal{B}o$ -partitions (A_i) of A (see [DU, Definition 4, p. 2]).

📎 [DU] Diestel, J. and J.J. Uhl, Vector Measures, Amer. Math. Soc., Math. Surveys 15,

Basic concepts of measure theory

By $\mathcal{B}o$ we denote the σ -algebra of Borel sets in X.

Let M(X) denote the space of all countably additive regular scalar Borel measures.

The variation $|\mu|$ of the measure $\mu : \mathcal{B}o \to E$ on $A \in \mathcal{B}o$ is defined by:

$$|\mu|(A) := \sup \sum \|\mu(A_i)\|_E,$$

where the supremum is taken over all finite Bo-partitions (A_i) of A (see [DU, Definition 4, p.2]).

Let M(X, E') denote the space of all countably additive measures $\mu : \mathcal{B}o \to E'$ of bounded variation $(|\mu|(X) < \infty)$ and such that for each $x \in E$, $\mu_x \in M(X)$, where $\mu_x(A) := \mu(A)(x)$ for $A \in \mathcal{B}o$.

[DU] Diestel, J. and J.J. Uhl, Vector Measures, Amer. Math. Soc., Math. Surveys 15, Providence, RI, 1977. **The semivariation** \widetilde{m} of $m : \mathcal{B}o \to \mathcal{L}(E, F)$ on $A \in \mathcal{B}o$ is defined by

$$\widetilde{m}(A) := \sup \left\| \sum m(A_i)(x_i) \right\|_F,$$

where the supremum is taken over all finite $\mathcal{B}o$ -partitions (A_i) of A and x_i is from the unit ball B_E in E for each i (see [DU, Definition 4, p.2]).

By $M(X, \mathcal{L}(E, F))$ we denote the space of all measures $m : \mathcal{B}o \to \mathcal{L}(E, F)$ such that $\widetilde{m}(X) < \infty$ and for each $y' \in F'$, $m_{y'} \in M(X, E')$, where

 $m_{y'}(A)(x) := y'(m(A)(x))$ for $A \in \mathcal{B}o, x \in E$.

The semivariation \widetilde{m} of $m : \mathcal{B}o \to \mathcal{L}(E, F)$ on $A \in \mathcal{B}o$ is defined by

$$\widetilde{m}(A) := \sup \left\| \sum m(A_i)(x_i) \right\|_F,$$

where the supremum is taken over all finite $\mathcal{B}o$ -partitions (A_i) of A and x_i is from the unit ball B_E in E for each i (see [DU, Definition 4, p.2]).

By $M(X, \mathcal{L}(E, F))$ we denote the space of all measures $m : \mathcal{B}o \to \mathcal{L}(E, F)$ such that $\widetilde{m}(X) < \infty$ and for each $y' \in F'$, $m_{y'} \in M(X, E')$, where

$$m_{y'}(A)(x) := y'(m(A)(x))$$
 for $A \in \mathcal{B}o, x \in E$.

Definition 1.2. [F], [Go], [N, Definition 2.2])

Let $m \in M(X, \mathcal{L}(E, F))$. We say that $f \in C_b(X, E)$ is *m*-integrable in the **Riemann–Stieltjes sense** over $A \in \mathcal{B}o$ provided there exists $y_A \in F$ such that given $\varepsilon > 0$ there exists a finite $\mathcal{B}o$ -partition $\mathcal{P}_{\varepsilon}$ of A such that

$$\left\|y_A-\sum_{i=1}^n m(A_i)(f(t_i))\right\|_F\leq \varepsilon$$

if $\{A_1, \ldots, A_n\}$ is any *Bo*-partition of *A* refining $\mathcal{P}_{\varepsilon}$ and $\{t_1, \ldots, t_n\}$ is any choice of points of *A* such that $t_i \in A_i$ for $i = 1, \ldots, n$.

Then $\int_A f(t) dm := y_A$ will be called a **Riemann-Stieltjes integral** of f with respect to m over $A \in Bo$.

[Go] Goodrich, R.K., A Riesz representation theorem, Proc. Amer. Math. Soc., 24 (1970), 629–636.

[N] Nowak, M., A Riesz representation theory for completely regular Hausdorff spaces and its applications, Open Math., 14 (2016), 474–496.

Riesz representation theorem for functionals

Theorem 1.2. [Gi], [N, Theorem 2.4]

For a linear functional $\Phi: C_b(X, E) \to \mathbb{R}$ the following statements are equivalent:

(i) Φ is β -continuous.

(ii) There exists a unique $\mu \in M(X, E')$ such that

$$\Phi(f) = \Phi_{\mu}(f) = \int_X f(t) d\mu$$
 for all $f \in C_b(X, E)$

Moreover, $\|\Phi_{\mu}\| = |\mu|(X)$.

By $C_b(X, E)'_{\beta}$ we will denote the topological dual of $(C_b(X, E), \beta)$. Hence $C_b(X, E)'_{\beta}$ can be identified with M(X, E').

[Gi] Giles, R., A generalization of the strict topology, Trans. Amer. Math. Soc., 161 (1971), 467–474.

Riesz representation theorem for functionals

Theorem 1.2. [Gi], [N, Theorem 2.4]

For a linear functional $\Phi: C_b(X, E) \to \mathbb{R}$ the following statements are equivalent:

- (i) Φ is β -continuous.
- (ii) There exists a unique $\mu \in M(X,E')$ such that

$$\Phi(f) = \Phi_{\mu}(f) = \int_X f(t) d\mu$$
 for all $f \in C_b(X, E)$.

Moreover, $\|\Phi_{\mu}\| = |\mu|(X)$.

By $C_b(X, E)'_{\beta}$ we will denote the topological dual of $(C_b(X, E), \beta)$. Hence $C_b(X, E)'_{\beta}$ can be identified with M(X, E').

[Gi] Giles, R., A generalization of the strict topology, Trans. Amer. Math. Soc., 161 (1971), 467–474.

Riesz representation theorem for functionals

Theorem 1.2. [Gi], [N, Theorem 2.4]

For a linear functional $\Phi: C_b(X, E) \to \mathbb{R}$ the following statements are equivalent:

- (i) Φ is β -continuous.
- (ii) There exists a unique $\mu \in M(X,E')$ such that

$$\Phi(f) = \Phi_{\mu}(f) = \int_X f(t) d\mu$$
 for all $f \in C_b(X, E)$.

Moreover, $\|\Phi_{\mu}\| = |\mu|(X)$.

By $C_b(X, E)'_{\beta}$ we will denote the topological dual of $(C_b(X, E), \beta)$. Hence $C_b(X, E)'_{\beta}$ can be identified with M(X, E').

Gi] Giles, R., A generalization of the strict topology, Trans. Amer. Math. Soc., 161 (1971), 467–474.

Let $i_F : F \to F''$ denote the canonical embedding, i.e., $i_F(y)(y') = y'(y)$ for $y \in F$, $y' \in F'$. Moreover, let $j_F : i_F(F) \to F$ stand for the left inverse of i_F .

Theorem 1.3. [N, Theorem 3.2]

Assume that $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous linear operator. Then there exists a unique measure $m : \mathcal{B}o \to \mathcal{L}(E, F'')$ (called the *representing measure of* T) such that the following statements hold:

- (i) *m* is tight, i.e., for all $\varepsilon > 0$ there exists a compact set *K* such that $\widetilde{m}(X \smallsetminus K) \le \varepsilon$.
- (ii) The mapping $F' \ni y' \mapsto m_{y'} \in M(X, E')$ is $(\sigma(F', F), \sigma(M(X, E'), C_b(X, E)))$ -continuous.
- (iii) Every $f \in C_b(X, E)$ is *m*-integrable in the Riemann–Stieltjes sense over X .
- (iv) For $f \in C_b(X, E)$, $\int_X f \, dm \in i_F(F)$ and $T(f) = j_F(\int_X f \, dm)$.
- (v) For each $y' \in F'$, $y'(T(f)) = \int_X f(t) dm_{y'}$ for $f \in C_b(X, E)$.

Let $i_F : F \to F''$ denote the canonical embedding, i.e., $i_F(y)(y') = y'(y)$ for $y \in F$, $y' \in F'$. Moreover, let $j_F : i_F(F) \to F$ stand for the left inverse of i_F .

Theorem 1.3. [N, Theorem 3.2]

Assume that $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous linear operator. Then there exists a unique measure $m : Bo \to \mathcal{L}(E, F'')$ (called the *representing measure of* T) such that the following statements hold:

 m is tight, i.e., for all ε > 0 there exists a compact set K such that *m*(X < K) ≤ ε.

i) The mapping $F' \ni y' \mapsto m_{y'} \in M(X, E')$ is $(\sigma(F', F), \sigma(M(X, E'), C_b(X, E)))$ -continuous.

iii) Every $f \in C_b(X, E)$ is *m*-integrable in the Riemann–Stieltjes sense over X . iv) For $f \in C_b(X, E)$, $\int_X f \, dm \in i_F(F)$ and $T(f) = j_F (\int_X f \, dm)$. (v) For each $y' \in F'$, $y'(T(f)) = \int_X f(t) \, dm_{y'}$ for $f \in C_b(X, E)$.

Let $i_F : F \to F''$ denote the canonical embedding, i.e., $i_F(y)(y') = y'(y)$ for $y \in F$, $y' \in F'$. Moreover, let $j_F : i_F(F) \to F$ stand for the left inverse of i_F .

Theorem 1.3. [N, Theorem 3.2]

Assume that $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous linear operator. Then there exists a unique measure $m : Bo \to \mathcal{L}(E, F'')$ (called the *representing measure of* T) such that the following statements hold:

- (i) *m* is tight, i.e., for all $\varepsilon > 0$ there exists a compact set *K* such that $\widetilde{m}(X \smallsetminus K) \le \varepsilon$.
- (ii) The mapping $F' \ni y' \mapsto m_{y'} \in M(X, E')$ is $(\sigma(F', F), \sigma(M(X, E'), C_b(X, E)))$ -continuous.
- (iii) Every $f\in \mathcal{C}_b(X,E)$ is *m*-integrable in the Riemann–Stieltjes sense over X .
- (iv) For $f \in C_b(X, E)$, $\int_X f \, dm \in i_F(F)$ and $T(f) = j_F(\int_X f \, dm)$.
- (v) For each $y' \in F'$, $y'(T(f)) = \int_X f(t) dm_{y'}$ for $f \in C_b(X, E)$.

Let $i_F : F \to F''$ denote the canonical embedding, i.e., $i_F(y)(y') = y'(y)$ for $y \in F$, $y' \in F'$. Moreover, let $j_F : i_F(F) \to F$ stand for the left inverse of i_F .

Theorem 1.3. [N, Theorem 3.2]

Assume that $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous linear operator. Then there exists a unique measure $m : Bo \to \mathcal{L}(E, F'')$ (called the *representing measure of* T) such that the following statements hold:

- (i) *m* is tight, i.e., for all $\varepsilon > 0$ there exists a compact set *K* such that $\widetilde{m}(X \smallsetminus K) \le \varepsilon$.
- (ii) The mapping $F' \ni y' \mapsto m_{y'} \in M(X, E')$ is $(\sigma(F', F), \sigma(M(X, E'), C_b(X, E)))$ -continuous.

(iii) Every $f\in \mathcal{C}_b(X,E)$ is *m*-integrable in the Riemann–Stieltjes sense over X .

- (iv) For $f \in C_b(X, E)$, $\int_X f \, dm \in i_F(F)$ and $T(f) = j_F(\int_X f \, dm)$.
- (v) For each $y' \in F'$, $y'(T(f)) = \int_X f(t) dm_{y'}$ for $f \in C_b(X, E)$.

Let $i_F : F \to F''$ denote the canonical embedding, i.e., $i_F(y)(y') = y'(y)$ for $y \in F$, $y' \in F'$. Moreover, let $j_F : i_F(F) \to F$ stand for the left inverse of i_F .

Theorem 1.3. [N, Theorem 3.2]

Assume that $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous linear operator. Then there exists a unique measure $m : \mathcal{B}o \to \mathcal{L}(E, F'')$ (called the *representing measure of* T) such that the following statements hold:

- (i) *m* is tight, i.e., for all $\varepsilon > 0$ there exists a compact set *K* such that $\widetilde{m}(X \smallsetminus K) \le \varepsilon$.
- (ii) The mapping $F' \ni y' \mapsto m_{y'} \in M(X, E')$ is $(\sigma(F', F), \sigma(M(X, E'), C_b(X, E)))$ -continuous.

(iii) Every $f \in C_b(X, E)$ is *m*-integrable in the Riemann–Stieltjes sense over X. (iv) For $f \in C_b(X, E)$, $\int_X f \, dm \in i_F(F)$ and $T(f) = j_F(\int_X f \, dm)$.

(v) For each $y' \in F'$, $y'(T(f)) = \int_X f(t) dm_{y'}$ for $f \in C_b(X, E)$.

Let $i_F : F \to F''$ denote the canonical embedding, i.e., $i_F(y)(y') = y'(y)$ for $y \in F$, $y' \in F'$. Moreover, let $j_F : i_F(F) \to F$ stand for the left inverse of i_F .

Theorem 1.3. [N, Theorem 3.2]

Assume that $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous linear operator. Then there exists a unique measure $m : \mathcal{B}o \to \mathcal{L}(E, F'')$ (called the *representing measure of* T) such that the following statements hold:

- (i) *m* is tight, i.e., for all $\varepsilon > 0$ there exists a compact set *K* such that $\widetilde{m}(X \smallsetminus K) \le \varepsilon$.
- (ii) The mapping $F' \ni y' \mapsto m_{y'} \in M(X, E')$ is $(\sigma(F', F), \sigma(M(X, E'), C_b(X, E)))$ -continuous.
- (iii) Every $f \in C_b(X, E)$ is *m*-integrable in the Riemann–Stieltjes sense over X.
- (iv) For $f \in C_b(X, E)$, $\int_X f \, dm \in i_F(F)$ and $T(f) = j_F(\int_X f \, dm)$.

(v) For each $y' \in F'$, $y'(T(f)) = \int_X f(t) dm_{y'}$ for $f \in C_b(X, E)$.

Let $i_F : F \to F''$ denote the canonical embedding, i.e., $i_F(y)(y') = y'(y)$ for $y \in F$, $y' \in F'$. Moreover, let $j_F : i_F(F) \to F$ stand for the left inverse of i_F .

Theorem 1.3. [N, Theorem 3.2]

Assume that $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous linear operator. Then there exists a unique measure $m : \mathcal{B}o \to \mathcal{L}(E, F'')$ (called the *representing measure of* T) such that the following statements hold:

- (i) *m* is tight, i.e., for all $\varepsilon > 0$ there exists a compact set *K* such that $\widetilde{m}(X \smallsetminus K) \le \varepsilon$.
- (ii) The mapping $F' \ni y' \mapsto m_{y'} \in M(X, E')$ is $(\sigma(F', F), \sigma(M(X, E'), C_b(X, E)))$ -continuous.
- (iii) Every $f \in C_b(X, E)$ is *m*-integrable in the Riemann–Stieltjes sense over X .
- (iv) For $f \in C_b(X, E)$, $\int_X f \, dm \in i_F(F)$ and $T(f) = j_F(\int_X f \, dm)$.
- (v) For each $y' \in F'$, $y'(T(f)) = \int_X f(t) dm_{y'}$ for $f \in C_b(X, E)$.

Let $i_F : F \to F''$ denote the canonical embedding, i.e., $i_F(y)(y') = y'(y)$ for $y \in F$, $y' \in F'$. Moreover, let $j_F : i_F(F) \to F$ stand for the left inverse of i_F .

Theorem 1.3. [N, Theorem 3.2]

Assume that $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous linear operator. Then there exists a unique measure $m : \mathcal{B}o \to \mathcal{L}(E, F'')$ (called the *representing measure of* T) such that the following statements hold:

- (i) *m* is tight, i.e., for all $\varepsilon > 0$ there exists a compact set *K* such that $\widetilde{m}(X \smallsetminus K) \le \varepsilon$.
- (ii) The mapping $F' \ni y' \mapsto m_{y'} \in M(X, E')$ is $(\sigma(F', F), \sigma(M(X, E'), C_b(X, E)))$ -continuous.
- (iii) Every $f \in C_b(X, E)$ is *m*-integrable in the Riemann–Stieltjes sense over X .
- (iv) For $f \in C_b(X, E)$, $\int_X f \, dm \in i_F(F)$ and $T(f) = j_F(\int_X f \, dm)$.
- (v) For each $y' \in F'$, $y'(T(f)) = \int_X f(t) dm_{y'}$ for $f \in C_b(X, E)$.

Let $i_F : F \to F''$ denote the canonical embedding, i.e., $i_F(y)(y') = y'(y)$ for $y \in F$, $y' \in F'$. Moreover, let $j_F : i_F(F) \to F$ stand for the left inverse of i_F .

Theorem 1.3. [N, Theorem 3.2]

Assume that $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous linear operator. Then there exists a unique measure $m : \mathcal{B}o \to \mathcal{L}(E, F'')$ (called the *representing measure of* T) such that the following statements hold:

- (i) *m* is tight, i.e., for all $\varepsilon > 0$ there exists a compact set *K* such that $\widetilde{m}(X \smallsetminus K) \le \varepsilon$.
- (ii) The mapping $F' \ni y' \mapsto m_{y'} \in M(X, E')$ is $(\sigma(F', F), \sigma(M(X, E'), C_b(X, E)))$ -continuous.
- (iii) Every $f \in C_b(X, E)$ is *m*-integrable in the Riemann–Stieltjes sense over X .
- (iv) For $f \in C_b(X, E)$, $\int_X f \, dm \in i_F(F)$ and $T(f) = j_F(\int_X f \, dm)$.
- (v) For each $y' \in F'$, $y'(T(f)) = \int_X f(t) dm_{y'}$ for $f \in C_b(X, E)$.

Let $i_F : F \to F''$ denote the canonical embedding, i.e., $i_F(y)(y') = y'(y)$ for $y \in F$, $y' \in F'$. Moreover, let $j_F : i_F(F) \to F$ stand for the left inverse of i_F .

Theorem 1.3. [N, Theorem 3.2]

Assume that $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous linear operator. Then there exists a unique measure $m : \mathcal{B}o \to \mathcal{L}(E, F'')$ (called the *representing measure of* T) such that the following statements hold:

- (i) *m* is tight, i.e., for all $\varepsilon > 0$ there exists a compact set *K* such that $\widetilde{m}(X \smallsetminus K) \le \varepsilon$.
- (ii) The mapping $F' \ni y' \mapsto m_{y'} \in M(X, E')$ is $(\sigma(F', F), \sigma(M(X, E'), C_b(X, E)))$ -continuous.
- (iii) Every $f \in C_b(X, E)$ is *m*-integrable in the Riemann–Stieltjes sense over X .
- (iv) For $f \in C_b(X, E)$, $\int_X f \, dm \in i_F(F)$ and $T(f) = j_F(\int_X f \, dm)$.
- (v) For each $y' \in F'$, $y'(T(f)) = \int_X f(t) dm_{y'}$ for $f \in C_b(X, E)$.

A $(\beta, \|\cdot\|_F)$ -continuous linear operator $T : C_b(X, E) \to F$ is said to be **strongly bounded** if its representing measure *m* has the strongly bounded semivariation \widetilde{m} , i.e., $\widetilde{m}(A_n) \to 0$ whenever (A_n) is a pairwise disjoint sequence in $\mathcal{B}o$.

Note that if a linear operator $T : C_b(X, E) \to F$ is $(\beta, \|\cdot\|_F)$ -weakly compact, then T is $(\beta, \|\cdot\|_F)$ -continuous and strongly bounded (see [N, Theorem 6.2]).

It is known that if a $(\beta, \|\cdot\|_F)$ -continuous linear operator $T : C_b(X, E) \to F$ is strongly bounded and m is its representing measure, then $m(A)(x) \in i_F(F)$ for $A \in \mathcal{B}o, x \in E$ (see [N, §4]). Then one can define a measure $m_F : \mathcal{B}o \to \mathcal{L}(E, F)$ by

 $m_F(A)(x) := j_F(m(A)(x))$ for $A \in \mathcal{B}o, x \in E$.
A $(\beta, \|\cdot\|_F)$ -continuous linear operator $T : C_b(X, E) \to F$ is said to be **strongly bounded** if its representing measure *m* has the strongly bounded semivariation \widetilde{m} , i.e., $\widetilde{m}(A_n) \to 0$ whenever (A_n) is a pairwise disjoint sequence in $\mathcal{B}o$.

Note that if a linear operator $T : C_b(X, E) \to F$ is $(\beta, \|\cdot\|_F)$ -weakly compact, then T is $(\beta, \|\cdot\|_F)$ -continuous and strongly bounded (see [N, Theorem 6.2]).

It is known that if a $(\beta, \|\cdot\|_F)$ -continuous linear operator $T : C_b(X, E) \to F$ is strongly bounded and m is its representing measure, then $m(A)(x) \in i_F(F)$ for $A \in \mathcal{B}o, x \in E$ (see [N, §4]). Then one can define a measure $m_F : \mathcal{B}o \to \mathcal{L}(E, F)$ by

 $m_F(A)(x) := j_F(m(A)(x))$ for $A \in \mathcal{B}o, x \in E$.

A $(\beta, \|\cdot\|_F)$ -continuous linear operator $T : C_b(X, E) \to F$ is said to be **strongly bounded** if its representing measure *m* has the strongly bounded semivariation \widetilde{m} , i.e., $\widetilde{m}(A_n) \to 0$ whenever (A_n) is a pairwise disjoint sequence in $\mathcal{B}o$.

Note that if a linear operator $T : C_b(X, E) \to F$ is $(\beta, \|\cdot\|_F)$ -weakly compact, then T is $(\beta, \|\cdot\|_F)$ -continuous and strongly bounded (see [N, Theorem 6.2]).

It is known that if a $(\beta, \|\cdot\|_F)$ -continuous linear operator $T : C_b(X, E) \to F$ is strongly bounded and m is its representing measure, then $m(A)(x) \in i_F(F)$ for $A \in \mathcal{B}o, x \in E$ (see [N, §4]). Then one can define a measure $m_F : \mathcal{B}o \to \mathcal{L}(E, F)$ by

$$m_F(A)(x) := j_F(m(A)(x))$$
 for $A \in \mathcal{B}o, x \in E$.

A completely regular Hausdorff space X is said to be a k-space if each set which meets every compact subset in a closed set must be closed.

From now on we will assume that (X,\mathcal{T}) is a k-space.

Theorem 1.4. [N, Theorem 4.3 and Corollary 4.4]

Let $T : C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous strongly bounded linear operator and *m* be its representing measure. Then the following statements hold:

- (i) m_F is regular, i.e., for all $A \in Bo$ and $\varepsilon > 0$ there exist a compact set K and an open set O such that $K \subset A \subset O$ and $\widetilde{m}_F(O \smallsetminus K) \le \varepsilon$.
- (i) Every $f \in C_b(X, E)$ is m_F -integrable in the Riemann–Stieltjes sense over all $A \in Bo$.
- (ii) $T(f) = \int_X f(t) dm_F$ for $f \in C_b(X, E)$.

Conversely, assume that a measure $m_F : \mathcal{B}o \to \mathcal{L}(E, F)$ satisfies the condition (i). Then there exists a unique strongly bounded operator $T : C_b(X, E) \to F$ such that (ii) and (iii) hold.

A completely regular Hausdorff space X is said to be a k-space if each set which meets every compact subset in a closed set must be closed.

From now on we will assume that (X, \mathcal{T}) is a k-space.

Theorem 1.4. [N, Theorem 4.3 and Corollary 4.4]

Let $T : C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous strongly bounded linear operator and *m* be its representing measure. Then the following statements hold:

- (i) m_F is regular, i.e., for all $A \in Bo$ and $\varepsilon > 0$ there exist a compact set K and an open set O such that $K \subset A \subset O$ and $\widetilde{m}_F(O \smallsetminus K) \le \varepsilon$.
- (i) Every $f \in C_b(X, E)$ is m_F -integrable in the Riemann–Stieltjes sense over all $A \in Bo$.
- (ii) $T(f) = \int_X f(t) dm_F$ for $f \in C_b(X, E)$.

Conversely, assume that a measure $m_F : \mathcal{B}o \to \mathcal{L}(E, F)$ satisfies the condition (i). Then there exists a unique strongly bounded operator $T : C_b(X, E) \to F$ such that (ii) and (iii) hold.

A completely regular Hausdorff space X is said to be a k-space if each set which meets every compact subset in a closed set must be closed.

From now on we will assume that (X, \mathcal{T}) is a k-space.

Theorem 1.4. [N, Theorem 4.3 and Corollary 4.4]

Let $T : C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous strongly bounded linear operator and *m* be its representing measure. Then the following statements hold:

 m_F is regular, i.e., for all $A \in Bo$ and $\varepsilon > 0$ there exist a compact set K and an open set O such that $K \subset A \subset O$ and $\widetilde{m}_F(O \smallsetminus K) \le \varepsilon$.

 Every f ∈ C_b(X, E) is m_F-integrable in the Riemann–Stieltjes sense over all A ∈ Bo.

(ii) $T(f) = \int_X f(t) dm_F$ for $f \in C_b(X, E)$.

Conversely, assume that a measure $m_F : Bo \to \mathcal{L}(E, F)$ satisfies the condition (i). Then there exists a unique strongly bounded operator $T : C_b(X, E) \to F$ such that (ii) and (iii) hold.

A completely regular Hausdorff space X is said to be a k-space if each set which meets every compact subset in a closed set must be closed.

From now on we will assume that (X, \mathcal{T}) is a k-space.

Theorem 1.4. [N, Theorem 4.3 and Corollary 4.4]

Let $T : C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous strongly bounded linear operator and *m* be its representing measure. Then the following statements hold:

- (i) m_F is regular, i.e., for all $A \in Bo$ and $\varepsilon > 0$ there exist a compact set K and an open set O such that $K \subset A \subset O$ and $\widetilde{m}_F(O \smallsetminus K) \le \varepsilon$.
- (i) Every $f \in C_b(X, E)$ is m_F -integrable in the Riemann-Stieltjes sense over all $A \in Bo$.
- (ii) $T(f) = \int_X f(t) dm_F$ for $f \in C_b(X, E)$.

Conversely, assume that a measure $m_F : \mathcal{B}o \to \mathcal{L}(E, F)$ satisfies the condition (i). Then there exists a unique strongly bounded operator $T : C_b(X, E) \to F$ such that (ii) and (iii) hold.

A completely regular Hausdorff space X is said to be a k-space if each set which meets every compact subset in a closed set must be closed.

From now on we will assume that (X, \mathcal{T}) is a k-space.

Theorem 1.4. [N, Theorem 4.3 and Corollary 4.4]

Let $T : C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous strongly bounded linear operator and *m* be its representing measure. Then the following statements hold:

- (i) m_F is regular, i.e., for all $A \in Bo$ and $\varepsilon > 0$ there exist a compact set K and an open set O such that $K \subset A \subset O$ and $\widetilde{m}_F(O \setminus K) \leq \varepsilon$.
- (i) Every $f \in C_b(X, E)$ is m_F -integrable in the Riemann–Stieltjes sense over all $A \in Bo$.
- (ii) $T(f) = \int_X f(t) dm_F$ for $f \in C_b(X, E)$.

Conversely, assume that a measure $m_F : Bo \to \mathcal{L}(E, F)$ satisfies the condition (i). Then there exists a unique strongly bounded operator $T : C_b(X, E) \to F$ such that (ii) and (iii) hold.

A completely regular Hausdorff space X is said to be a k-space if each set which meets every compact subset in a closed set must be closed.

From now on we will assume that (X, \mathcal{T}) is a k-space.

Theorem 1.4. [N, Theorem 4.3 and Corollary 4.4]

Let $T : C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous strongly bounded linear operator and *m* be its representing measure. Then the following statements hold:

- (i) m_F is regular, i.e., for all $A \in Bo$ and $\varepsilon > 0$ there exist a compact set K and an open set O such that $K \subset A \subset O$ and $\widetilde{m}_F(O \setminus K) \leq \varepsilon$.
- (i) Every $f \in C_b(X, E)$ is m_F -integrable in the Riemann–Stieltjes sense over all $A \in Bo$.

(ii)
$$T(f) = \int_X f(t) dm_F$$
 for $f \in C_b(X, E)$.

Conversely, assume that a measure $m_F : Bo \to \mathcal{L}(E, F)$ satisfies the condition (i). Then there exists a unique strongly bounded operator $T : C_b(X, E) \to F$ such that (ii) and (iii) hold.

A completely regular Hausdorff space X is said to be a k-space if each set which meets every compact subset in a closed set must be closed.

From now on we will assume that (X, \mathcal{T}) is a k-space.

Theorem 1.4. [N, Theorem 4.3 and Corollary 4.4]

Let $T : C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous strongly bounded linear operator and *m* be its representing measure. Then the following statements hold:

- (i) m_F is regular, i.e., for all $A \in Bo$ and $\varepsilon > 0$ there exist a compact set K and an open set O such that $K \subset A \subset O$ and $\widetilde{m}_F(O \setminus K) \leq \varepsilon$.
- (i) Every $f \in C_b(X, E)$ is m_F -integrable in the Riemann–Stieltjes sense over all $A \in Bo$.

(ii)
$$T(f) = \int_X f(t) dm_F$$
 for $f \in C_b(X, E)$.

Conversely, assume that a measure $m_F : Bo \to \mathcal{L}(E, F)$ satisfies the condition (i). Then there exists a unique strongly bounded operator $T : C_b(X, E) \to F$ such that (ii) and (iii) hold.

A completely regular Hausdorff space X is said to be a k-space if each set which meets every compact subset in a closed set must be closed.

From now on we will assume that (X, \mathcal{T}) is a k-space.

Theorem 1.4. [N, Theorem 4.3 and Corollary 4.4]

Let $T : C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous strongly bounded linear operator and *m* be its representing measure. Then the following statements hold:

- (i) m_F is regular, i.e., for all $A \in Bo$ and $\varepsilon > 0$ there exist a compact set K and an open set O such that $K \subset A \subset O$ and $\widetilde{m}_F(O \setminus K) \leq \varepsilon$.
- (i) Every $f \in C_b(X, E)$ is m_F -integrable in the Riemann–Stieltjes sense over all $A \in \mathcal{B}o$.

(ii)
$$T(f) = \int_X f(t) dm_F$$
 for $f \in C_b(X, E)$.

Conversely, assume that a measure $m_F : \mathcal{B}o \to \mathcal{L}(E, F)$ satisfies the condition (i). Then there exists a unique strongly bounded operator $T : C_b(X, E) \to F$ such that (ii) and (iii) hold.

Introduction

• Nuclear operators on $C_b(X, E)$

Nuclearity of conjugate operator

B References

Based on the paper:

[NS] Nowak, M., J. Stochmal, Nuclear operators on $C_b(X, E)$ and the strict topology, Math. Slovaca, 68 no. 1 (2018), 135–146.

[St] Stochmal, J., A characterization of nuclear operators on spaces of vector-valued continuous functions with the strict topology, submitted.

Definition 2.1. [Sch, Chap. 3, §7, 7.1]

A linear operator $T : C_b(X, E) \to F$ is said to be **nuclear** between the locally convex space $(C_b(X, E), \beta)$ and Banach space $(F, \|\cdot\|_F)$ if there exist an β -equicontinuous sequence (Φ_n) in $C_b(X, E)'_{\beta}$, a bounded sequence (y_n) in F and $(\lambda_n) \in \ell^1$ such that

(2.1)
$$T(f) = \sum_{n=1}^{\infty} \lambda_n \Phi_n(f) y_n \text{ for } f \in C_b(X, E).$$

Then T is $(\beta, \|\cdot\|_F)$ -compact (see [Sch, Chap. 3, §7, Corollary 1]). Moreover, let us put

$$\|T\|_{\beta-nuc} := \inf\left\{\sum_{n=1}^{\infty} |\lambda_n| \|\Phi_n\| \|y_n\|_F\right\},\$$

where the infimum is taken over all sequences (Φ_n) in $C_b(X, E)'_{\beta}$, (y_n) in F and $(\lambda_n) \in \ell^1$ such that T admits a representation (2.1).

Definition 2.1. [Sch, Chap. 3, §7, 7.1]

A linear operator $T : C_b(X, E) \to F$ is said to be **nuclear** between the locally convex space $(C_b(X, E), \beta)$ and Banach space $(F, \|\cdot\|_F)$ if there exist an β -equicontinuous sequence (Φ_n) in $C_b(X, E)'_{\beta}$, a bounded sequence (y_n) in F and $(\lambda_n) \in \ell^1$ such that

(2.1)
$$T(f) = \sum_{n=1}^{\infty} \lambda_n \Phi_n(f) y_n \text{ for } f \in C_b(X, E).$$

Then T is $(\beta, \|\cdot\|_F)$ -compact (see [Sch, Chap. 3, §7, Corollary 1]). Moreover, let us put

$$\|T\|_{\beta\text{-nuc}} := \inf \left\{ \sum_{n=1}^{\infty} |\lambda_n| \|\Phi_n\| \|y_n\|_F \right\},\$$

where the infimum is taken over all sequences (Φ_n) in $C_b(X, E)'_{\beta}$, (y_n) in F and $(\lambda_n) \in \ell^1$ such that T admits a representation (2.1).

🌭 [Sch] Schaeffer, H.H., Topological Vector Spaces, Springer-Verlag, 1971.

Theorem 2.1. [KhC, Lemma 2]

For a subset \mathcal{M} of M(X, E') the following statements are equivalent:

- (i) $\{\Phi_{\mu} : \mu \in \mathcal{M}\}\$ is a β -equicontinuous subset of $C_b(X, E)'_{\beta}$.
- (ii) $\sup_{\mu \in \mathcal{M}} |\mu|(X) < \infty$ and \mathcal{M} is uniformly tight, that is, for every $\varepsilon > 0$, there exists a compact subset K of X such that $\sup_{\mu \in \mathcal{M}} |\mu|(X \setminus K) \le \varepsilon$.

Proposition 2.2.

A linear operator $T : C_b(X, E) \to F$ is nuclear if and only if there exist a bounded and uniformly tight sequence (μ_n) in M(X, E'), a bounded sequence (y_n) in F and $(\lambda_n) \in \ell^1$ such that

$$T(f) = \sum_{n=1}^{\infty} \lambda_n \left(\int_X f(t) \, d\mu_n \right) y_n \text{ for } f \in C_b(X, E).$$

[KC] Khurana, S.S., S.A. Choo, *Strict topology and P-spaces*, Proc. Amer. Math. Soc., 61 (1976), 280–284.

Theorem 2.1. [KhC, Lemma 2]

For a subset \mathcal{M} of M(X, E') the following statements are equivalent:

- (i) $\{\Phi_{\mu} : \mu \in \mathcal{M}\}\$ is a β -equicontinuous subset of $C_b(X, E)'_{\beta}$.
- (ii) $\sup_{\mu \in \mathcal{M}} |\mu|(X) < \infty$ and \mathcal{M} is uniformly tight, that is, for every $\varepsilon > 0$, there exists a compact subset K of X such that $\sup_{\mu \in \mathcal{M}} |\mu|(X \setminus K) \le \varepsilon$.

Proposition 2.2.

A linear operator $T : C_b(X, E) \to F$ is nuclear if and only if there exist a bounded and uniformly tight sequence (μ_n) in M(X, E'), a bounded sequence (y_n) in F and $(\lambda_n) \in \ell^1$ such that

$$T(f) = \sum_{n=1}^{\infty} \lambda_n \left(\int_X f(t) \, d\mu_n \right) y_n \text{ for } f \in C_b(X, E).$$

[KC] Khurana, S.S., S.A. Choo, *Strict topology and P-spaces*, Proc. Amer. Math. Soc., 61 (1976), 280–284.

Assume that $T : C_b(X, E) \to F$ is a nuclear operator and m is its representing measure. Then the following statements hold:

(ii) $m_F: \mathcal{B}o \to \mathcal{N}(E, F)$ is $\|\cdot\|_{nuc}$ -countably additive.

|*m_F*|_{nuc} ∈ *M*⁺(*X*), where |*m_F*|_{nuc} stands for the variation of *m_F* with respect to the norm || · ||_{nuc} in *N*(*E*, *F*).

v) If E' has the Radon–Nikodym Property, then there exists a function $H \in L^1(|m_F|_{nuc}, \mathcal{N}(E, F))$ such that

 $m_F(A) = \int_A H(t) \, d|m_F|_{nuc}$ for $A \in \mathcal{B}o$.

Assume that $T : C_b(X, E) \to F$ is a nuclear operator and m is its representing measure. Then the following statements hold:

- (i) For each $A \in \mathcal{B}o$, $m_F(A) \in \mathcal{N}(E, F)$.
- (ii) $m_F: \mathcal{B}o \to \mathcal{N}(E, F)$ is $\|\cdot\|_{nuc}$ -countably additive
- (iii) $|m_F|_{nuc} \in M^+(X)$, where $|m_F|_{nuc}$ stands for the variation of m_F with respect to the norm $\|\cdot\|_{nuc}$ in $\mathcal{N}(E, F)$.
- (iv) If E' has the Radon–Nikodym Property, then there exists a function $H \in L^1(|m_F|_{nuc}, \mathcal{N}(E, F))$ such that

$$m_F(A) = \int_A H(t) d|m_F|_{nuc}$$
 for $A \in \mathcal{B}o$.

Assume that $T : C_b(X, E) \to F$ is a nuclear operator and m is its representing measure. Then the following statements hold:

- (i) For each $A \in \mathcal{B}o$, $m_F(A) \in \mathcal{N}(E, F)$.
- (ii) $m_F : \mathcal{B}o \to \mathcal{N}(E, F)$ is $\|\cdot\|_{nuc}$ -countably additive.
- (iii) $|m_F|_{nuc} \in M^+(X)$, where $|m_F|_{nuc}$ stands for the variation of m_F with respect to the norm $\|\cdot\|_{nuc}$ in $\mathcal{N}(E, F)$.
- (iv) If E' has the Radon–Nikodym Property, then there exists a function $H \in L^1(|m_F|_{nuc}, \mathcal{N}(E, F))$ such that

$$m_F(A) = \int_A H(t) d|m_F|_{nuc}$$
 for $A \in \mathcal{B}o$.

Assume that $T : C_b(X, E) \to F$ is a nuclear operator and m is its representing measure. Then the following statements hold:

- (i) For each $A \in \mathcal{B}o$, $m_F(A) \in \mathcal{N}(E, F)$.
- (ii) $m_F : \mathcal{B}o \to \mathcal{N}(E, F)$ is $\|\cdot\|_{nuc}$ -countably additive.
- (iii) $|m_F|_{nuc} \in M^+(X)$, where $|m_F|_{nuc}$ stands for the variation of m_F with respect to the norm $\|\cdot\|_{nuc}$ in $\mathcal{N}(E, F)$.

(iv) If E' has the Radon–Nikodym Property, then there exists a function $H \in L^1(|m_F|_{nuc}, \mathcal{N}(E, F))$ such that

$$m_F(A) = \int_A H(t) d|m_F|_{nuc}$$
 for $A \in \mathcal{B}o$.

Assume that $T : C_b(X, E) \to F$ is a nuclear operator and m is its representing measure. Then the following statements hold:

- (i) For each $A \in \mathcal{B}o$, $m_F(A) \in \mathcal{N}(E, F)$.
- (ii) $m_F : \mathcal{B}o \to \mathcal{N}(E, F)$ is $\|\cdot\|_{nuc}$ -countably additive.
- (iii) $|m_F|_{nuc} \in M^+(X)$, where $|m_F|_{nuc}$ stands for the variation of m_F with respect to the norm $\|\cdot\|_{nuc}$ in $\mathcal{N}(E, F)$.
- (iv) If E' has the Radon-Nikodym Property, then there exists a function $H \in L^1(|m_F|_{nuc}, \mathcal{N}(E, F))$ such that

$$m_F(A) = \int_A H(t) d|m_F|_{nuc}$$
 for $A \in \mathcal{B}o$.

Theorem 2.4. [St]

Let $T: C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous strongly bounded linear operator. If

- $m_F(A) \in \mathcal{N}(E, F)$ for $A \in \mathcal{B}o$,
- $|m_F|_{nuc} \in M^+(X)$,
- there exists $H \in L^1(|m_F|_{nuc}, \mathcal{N}(E, F))$ such that

$$m_F(A) = \int_A H(t) \, d|m_F|_{nuc}$$
 for $A \in \mathcal{B}o_F$

then T is a nuclear operator between the locally convex space $(C_b(X, E), \beta)$ and the Banach space F and $||T||_{\beta-nuc} = |m_F|_{nuc}(X)$.

Theorem 2.4. [St]

Let $T: C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous strongly bounded linear operator. If

- $m_F(A) \in \mathcal{N}(E,F)$ for $A \in \mathcal{B}o$,
- $|m_F|_{nuc} \in M^+(X)$,
- there exists $H \in L^1(|m_F|_{\textit{nuc}},\mathcal{N}(E,F))$ such that

$$m_F(A) = \int_A H(t) \, d|m_F|_{nuc}$$
 for $A \in \mathcal{B}o$,

then T is a nuclear operator between the locally convex space $(C_b(X, E), \beta)$ and the Banach space F and $||T||_{\beta-nuc} = |m_F|_{nuc}(X)$.

Theorem 2.4. [St]

Let $T: C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous strongly bounded linear operator. If

- $m_F(A) \in \mathcal{N}(E,F)$ for $A \in \mathcal{B}o$,
- $|m_F|_{nuc} \in M^+(X)$,
- there exists $H \in L^1(|m_F|_{\textit{nuc}},\mathcal{N}(E,F))$ such that

$$m_F(A) = \int_A H(t) \, d|m_F|_{nuc}$$
 for $A \in \mathcal{B}o$,

then T is a nuclear operator between the locally convex space $(C_b(X, E), \beta)$ and the Banach space F and $||T||_{\beta-nuc} = |m_F|_{nuc}(X)$.

Sketch of proof.

Step 1. Using the Lebesgue dominated convergence theorem, Theorem 1.4 and [N, Theorem 5.2], we get that

$$T(f) = \int_X H(t)(f(t)) d|m_F|_{nuc}$$
 for $f \in C_b(X, E)$.

$$\pi(W) := \inf \left\{ \sum_{n=1}^{\infty} |\lambda_n| \|v_n\|_1 \|U_n\|_{nuc} \right\},\,$$

🛸 [R] Ryan, R., Introduction to Tensor Products of Banach Spaces, Springer Monographs in

Sketch of proof.

Step 1. Using the Lebesgue dominated convergence theorem, Theorem 1.4 and [N, Theorem 5.2], we get that

$$T(f) = \int_X H(t)(f(t)) d|m_F|_{nuc} \text{ for } f \in C_b(X, E).$$

Step 2. Let $L^1(|m_F|_{nuc}) \hat{\otimes}_{\pi} \mathcal{N}(E, F)$ denote the projective tensor product of the Banach spaces $L^1(|m_F|_{nuc})$ and $\mathcal{N}(E,F)$, equipped with the completed norm π (see [DU, p. 227]).

$$\pi(W) := \inf \left\{ \sum_{n=1}^{\infty} |\lambda_n| \|v_n\|_1 \|U_n\|_{nuc} \right\},\,$$

🛸 [R] Ryan, R., Introduction to Tensor Products of Banach Spaces, Springer Monographs in

Sketch of proof.

Step 1. Using the Lebesgue dominated convergence theorem, Theorem 1.4 and [N, Theorem 5.2], we get that

$$T(f) = \int_X H(t)(f(t)) d|m_F|_{nuc} \text{ for } f \in C_b(X, E).$$

<u>Step 2.</u> Let $L^1(|m_F|_{nuc}) \hat{\otimes}_{\pi} \mathcal{N}(E, F)$ denote the projective tensor product of the Banach spaces $L^1(|m_F|_{nuc})$ and $\mathcal{N}(E, F)$, equipped with the completed norm π (see [DU, p. 227]).

Note that for $W\in L^1(|m_F|_{nuc})\hat{\otimes}_\pi\,\mathcal{N}(E,F)$ we have

$$\pi(W) := \inf \left\{ \sum_{n=1}^{\infty} |\lambda_n| \| v_n \|_1 \| U_n \|_{nuc} \right\},$$

where the infimum is taken over all sequences (v_n) in $L^1(|m_F|_{nuc})$ and (U_n) in $\mathcal{N}(E, F)$ with $\lim_n \|v_n\|_1 = 0 = \lim_n \|U_n\|_{nuc}$ and $(\lambda_n) \in \ell^1$ such that $W = \sum_{n=1}^{\infty} \lambda_n (v_n \otimes U_n)$ is in the π -norm (see [R, Proposition 2.8, pp.21-22]).

[R] Ryan, R., Introduction to Tensor Products of Banach Spaces, Springer Monographs in Math., 2002.

It is known that $L^1(|m_F|_{nuc})\hat{\otimes}_{\pi} \mathcal{N}(E,F)$ is isometrically isomorphic to the Banach space $(L^1(|m_F|_{nuc}, \mathcal{N}(E,F)), \|\cdot\|_1)$ throughout the isometry J, where

$$J(v \otimes U) := v(\cdot)U$$
 for $v \in L^1(|m_F|_{nuc}), U \in \mathcal{N}(E, F)$

(see [DU, Example 10, p. 228], [R, Example 2.19, p. 29]). Then there exist (v_n) in $L^1(|m_F|_{nuc})$ and (U_n) in $\mathcal{N}(E, F)$ with $\lim_n ||v_n||_1 = 0 = \lim_n ||U_n||_{nuc}$ and $(\alpha_n) \in \ell^1$ so that

$$J^{-1}(H) = \sum_{n=1}^{\infty} \alpha_n v_n \otimes U_n \text{ in } L^1(|m_F|_{nuc}) \hat{\otimes}_{\pi} \mathcal{N}(E,F).$$

Hence we have

$$H = J\left(\sum_{n=1}^{\infty} \alpha_n v_n \otimes U_n\right) = \sum_{n=1}^{\infty} \alpha_n v_n(\cdot) U_n \text{ in } L^1(|m_F|_{nuc}, \mathcal{N}(E, F)).$$

$$\mathcal{T}(f) = \sum_{n=1}^{\infty} \alpha_n \int_X v_n(t) U_n(f(t)) d|m_F|_{nuc} \text{ for } f \in C_b(X, E).$$

It is known that $L^1(|m_F|_{nuc}) \hat{\otimes}_{\pi} \mathcal{N}(E, F)$ is isometrically isomorphic to the Banach space $(L^1(|m_F|_{nuc}, \mathcal{N}(E, F)), \|\cdot\|_1)$ throughout the isometry J, where

$$J(v \otimes U) := v(\cdot)U$$
 for $v \in L^1(|m_F|_{nuc}), U \in \mathcal{N}(E,F)$

(see [DU, Example 10, p. 228], [R, Example 2.19, p. 29]). Then there exist (v_n) in $L^1(|m_F|_{nuc})$ and (U_n) in $\mathcal{N}(E, F)$ with $\lim_n ||v_n||_1 = 0 = \lim_n ||U_n||_{nuc}$ and $(\alpha_n) \in \ell^1$ so that

$$J^{-1}(H) = \sum_{n=1}^{\infty} \alpha_n v_n \otimes U_n \text{ in } L^1(|m_F|_{nuc}) \hat{\otimes}_{\pi} \mathcal{N}(E,F).$$

Hence we have

$$H = J\left(\sum_{n=1}^{\infty} \alpha_n v_n \otimes U_n\right) = \sum_{n=1}^{\infty} \alpha_n v_n(\cdot) U_n \text{ in } L^1(|m_F|_{nuc}, \mathcal{N}(E, F)).$$

$$T(f) = \sum_{n=1}^{\infty} \alpha_n \int_X v_n(t) U_n(f(t)) d|m_F|_{nuc} \text{ for } f \in C_b(X, E).$$

It is known that $L^1(|m_F|_{nuc}) \hat{\otimes}_{\pi} \mathcal{N}(E, F)$ is isometrically isomorphic to the Banach space $(L^1(|m_F|_{nuc}, \mathcal{N}(E, F)), \|\cdot\|_1)$ throughout the isometry J, where

$$J(v \otimes U) := v(\cdot)U$$
 for $v \in L^1(|m_F|_{nuc}), U \in \mathcal{N}(E,F)$

(see [DU, Example 10, p. 228], [R, Example 2.19, p. 29]). Then there exist (v_n) in $L^1(|m_F|_{nuc})$ and (U_n) in $\mathcal{N}(E, F)$ with $\lim_n ||v_n||_1 = 0 = \lim_n ||U_n||_{nuc}$ and $(\alpha_n) \in \ell^1$ so that

$$J^{-1}(H) = \sum_{n=1}^{\infty} \alpha_n v_n \otimes U_n \text{ in } L^1(|m_F|_{nuc}) \hat{\otimes}_{\pi} \mathcal{N}(E,F).$$

Hence we have

$$H = J\left(\sum_{n=1}^{\infty} \alpha_n v_n \otimes U_n\right) = \sum_{n=1}^{\infty} \alpha_n v_n(\cdot) U_n \text{ in } L^1(|m_F|_{nuc}, \mathcal{N}(E, F)).$$

$$T(f) = \sum_{n=1}^{\infty} \alpha_n \int_X v_n(t) U_n(f(t)) d|m_F|_{nuc} \text{ for } f \in C_b(X, E).$$

It is known that $L^1(|m_F|_{nuc}) \hat{\otimes}_{\pi} \mathcal{N}(E, F)$ is isometrically isomorphic to the Banach space $(L^1(|m_F|_{nuc}, \mathcal{N}(E, F)), \|\cdot\|_1)$ throughout the isometry J, where

$$J(v \otimes U) := v(\cdot)U$$
 for $v \in L^1(|m_F|_{nuc}), U \in \mathcal{N}(E,F)$

(see [DU, Example 10, p. 228], [R, Example 2.19, p. 29]). Then there exist (v_n) in $L^1(|m_F|_{nuc})$ and (U_n) in $\mathcal{N}(E, F)$ with $\lim_n ||v_n||_1 = 0 = \lim_n ||U_n||_{nuc}$ and $(\alpha_n) \in \ell^1$ so that

$$J^{-1}(H) = \sum_{n=1}^{\infty} \alpha_n v_n \otimes U_n \text{ in } L^1(|m_F|_{nuc}) \hat{\otimes}_{\pi} \mathcal{N}(E,F).$$

Hence we have

$$H = J\left(\sum_{n=1}^{\infty} \alpha_n v_n \otimes U_n\right) = \sum_{n=1}^{\infty} \alpha_n v_n(\cdot) U_n \text{ in } L^1(|m_F|_{nuc}, \mathcal{N}(E, F)).$$

$$T(f) = \sum_{n=1}^{\infty} \alpha_n \int_X v_n(t) U_n(f(t)) d|m_F|_{nuc} \text{ for } f \in C_b(X, E).$$

For $n \in \mathbb{N}$, we can choose sequences $(x'_{n,k})$ in E' and $(y_{n,k})$ in F so that

$$U_n(x) = \sum_{k=1}^{\infty} x'_{n,k}(x) y_{n,k}$$
 for $x \in E$.

Then for every $f \in C_b(X, E)$, we have

$$T(f) = \sum_{n=1}^{\infty} \alpha_n \int_X \left(v_n(t) \sum_{k=1}^{\infty} x'_{n,k}(f(t)) y_{n,k} \right) d|m_F|_{nuc}$$

= $\sum_{n=1}^{\infty} \alpha_n \sum_{k=1}^{\infty} ||x'_{n,k}||_{E'} ||y_{n,k}||_F \left(\int_X v_n(t) \frac{x'_{n,k}(f(t))}{||x'_{n,k}||_{E'}} d|m_F|_{nuc} \right) \frac{y_{n,k}}{||y_{n,k}||_F}.$

For $n \in \mathbb{N}$, we can choose sequences $(x'_{n,k})$ in E' and $(y_{n,k})$ in F so that

$$U_n(x) = \sum_{k=1}^{\infty} x'_{n,k}(x) y_{n,k}$$
 for $x \in E$.

Then for every $f \in C_b(X, E)$, we have

$$T(f) = \sum_{n=1}^{\infty} \alpha_n \int_X \left(v_n(t) \sum_{k=1}^{\infty} x'_{n,k}(f(t)) y_{n,k} \right) d|m_F|_{nuc}$$

= $\sum_{n=1}^{\infty} \alpha_n \sum_{k=1}^{\infty} ||x'_{n,k}||_{E'} ||y_{n,k}||_F \left(\int_X v_n(t) \frac{x'_{n,k}(f(t))}{||x'_{n,k}||_{E'}} d|m_F|_{nuc} \right) \frac{y_{n,k}}{||y_{n,k}||_F}.$

$$\Phi_{n,k}(f) := \int_X v_n(t) \frac{x'_{n,k}(f(t))}{\|x'_{n,k}\|_{E'}} d|m_F|_{nuc} \text{ for } f \in C_b(X, E).$$

Now, we should show that $(\Phi_{n,k})$ is β -equicontinuous sequence in $C_b(X, E)'_{\beta}$. In view of [F, Theorem 3.2] it is enough to prove that $(\Phi_{n,k}|_{B_1})$ is τ_c -equicontinuous sequence at 0, where $B_1 = \{f \in C_b(X, E) : ||f|| \le 1\}$.

Step 4. To complete the proof we need to show $||T||_{\beta-nuc} = |m_F|_{nuc}(X)$.

$$\Phi_{n,k}(f) := \int_X v_n(t) \frac{x'_{n,k}(f(t))}{\|x'_{n,k}\|_{E'}} d|m_F|_{nuc} \text{ for } f \in C_b(X, E).$$

Now, we should show that $(\Phi_{n,k})$ is β -equicontinuous sequence in $C_b(X, E)'_{\beta}$. In view of [F, Theorem 3.2] it is enough to prove that $(\Phi_{n,k}|_{B_1})$ is τ_c -equicontinuous sequence at 0, where $B_1 = \{f \in C_b(X, E) : ||f|| \le 1\}$.

Step 4. To complete the proof we need to show $||T||_{\beta-nuc} = |m_F|_{nuc}(X)$.

$$\Phi_{n,k}(f) := \int_X v_n(t) \frac{x'_{n,k}(f(t))}{\|x'_{n,k}\|_{E'}} d|m_F|_{nuc} \text{ for } f \in C_b(X, E).$$

Now, we should show that $(\Phi_{n,k})$ is β -equicontinuous sequence in $C_b(X, E)'_{\beta}$. In view of [F, Theorem 3.2] it is enough to prove that $(\Phi_{n,k}|_{B_1})$ is τ_c -equicontinuous sequence at 0, where $B_1 = \{f \in C_b(X, E) : ||f|| \le 1\}$.

Step 4. To complete the proof we need to show $||T||_{\beta-nuc} = |m_F|_{nuc}(X)$.

$$\Phi_{n,k}(f) := \int_X v_n(t) \frac{x'_{n,k}(f(t))}{\|x'_{n,k}\|_{E'}} d|m_F|_{nuc} \text{ for } f \in C_b(X, E).$$

Now, we should show that $(\Phi_{n,k})$ is β -equicontinuous sequence in $C_b(X, E)'_{\beta}$. In view of [F, Theorem 3.2] it is enough to prove that $(\Phi_{n,k}|_{B_1})$ is τ_c -equicontinuous sequence at 0, where $B_1 = \{f \in C_b(X, E) : ||f|| \le 1\}$.

<u>Step 4.</u> To complete the proof we need to show $||T||_{\beta-nuc} = |m_F|_{nuc}(X)$.
Corollary 2.5. [St]

Assume that $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous strongly bounded linear operator and E' has the Radon–Nikodym property. Then the following statements are equivalent:

- (i) T is a nuclear operator between the locally convex space $(C_b(X, E), \beta)$ and the Banach space F.
- (ii) $m_F(A) \in \mathcal{N}(E, F)$ for $A \in \mathcal{B}o$ and $|m_F|_{nuc} \in M^+(X)$ and there exists $H \in L^1(|m_F|_{nuc}, \mathcal{N}(E, F))$ such that

$$m_F(A) = \int_A H(t) d|m_F|_{nuc}$$
 for $A \in \mathcal{B}o$.

In this case: $||T||_{\beta-nuc} = |m_F|_{nuc}(X)$.

Let $T : C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous linear operator and m be its representing measure. Then its conjugate operator $T' : F' \to M(X, E')$ is given by

$$T'(y') := m_{y'}$$
 for $y' \in F'$.

Corollary 2.6. [St]

Assume that $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous linear operator. If E' has the Radon–Nikodym property and F is reflexive, then the following statements are equivalent:

- (i) T is a nuclear operator between the locally convex space $(C_b(X, E), \beta)$ and the Banach space F.
- (ii) *T'* is nuclear.

In this case: $||T'||_{nuc} = ||T||_{\beta-nuc}$.

Let $T : C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous linear operator and m be its representing measure. Then its conjugate operator $T' : F' \to M(X, E')$ is given by

$$T'(y') := m_{y'}$$
 for $y' \in F'$.

Corollary 2.6. [St]

Assume that $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous linear operator. If E' has the Radon–Nikodym property and F is reflexive, then the following statements are equivalent:

(i) T is a nuclear operator between the locally convex space (C_b(X, E), β) and the Banach space F.
(ii) T' is nuclear.
(iii) τ' is nuclear.

Let $T : C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous linear operator and m be its representing measure. Then its conjugate operator $T' : F' \to M(X, E')$ is given by

$$T'(y') := m_{y'}$$
 for $y' \in F'$.

Corollary 2.6. [St]

Assume that $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous linear operator. If E' has the Radon–Nikodym property and F is reflexive, then the following statements are equivalent:

(i) T is a nuclear operator between the locally convex space $(C_b(X, E), \beta)$ and the Banach space F.

```
(ii) T' is nuclear.
In this case: \|T'\|_{nuc} = \|T\|_{\beta-nuc}.
```

Let $T : C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous linear operator and m be its representing measure. Then its conjugate operator $T' : F' \to M(X, E')$ is given by

$$T'(y') := m_{y'}$$
 for $y' \in F'$.

Corollary 2.6. [St]

Assume that $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous linear operator. If E' has the Radon–Nikodym property and F is reflexive, then the following statements are equivalent:

- (i) T is a nuclear operator between the locally convex space $(C_b(X, E), \beta)$ and the Banach space F.
- (ii) T' is nuclear.

In this case: $\|T'\|_{nuc} = \|T\|_{eta-nuc}.$

Let $T : C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous linear operator and m be its representing measure. Then its conjugate operator $T' : F' \to M(X, E')$ is given by

$$T'(y') := m_{y'}$$
 for $y' \in F'$.

Corollary 2.6. [St]

Assume that $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous linear operator. If E' has the Radon–Nikodym property and F is reflexive, then the following statements are equivalent:

- (i) T is a nuclear operator between the locally convex space $(C_b(X, E), \beta)$ and the Banach space F.
- (ii) T' is nuclear.

In this case: $\|T'\|_{nuc} = \|T\|_{eta-nuc}.$

Let $T : C_b(X, E) \to F$ be a $(\beta, \|\cdot\|_F)$ -continuous linear operator and m be its representing measure. Then its conjugate operator $T' : F' \to M(X, E')$ is given by

$$T'(y') := m_{y'}$$
 for $y' \in F'$.

Corollary 2.6. [St]

Assume that $T : C_b(X, E) \to F$ is a $(\beta, \|\cdot\|_F)$ -continuous linear operator. If E' has the Radon–Nikodym property and F is reflexive, then the following statements are equivalent:

- (i) T is a nuclear operator between the locally convex space $(C_b(X, E), \beta)$ and the Banach space F.
- (ii) T' is nuclear.

In this case: $||T'||_{nuc} = ||T||_{\beta-nuc}$.

References

- [A] Alexander, G., Linear operators on the space of vector-valued continuous functions, Ph.D. thesis, New Mexico State university, Las Cruces, New Mexico, 1976.
- [B] Buck, R.C., Bounded continuous functions on a locally compact space, Michigan Math. J., 5 (1958), 95–104.
- [DU] Diestel, J. and J.J. Uhl, Vector Measures, Amer. Math. Soc., Math. Surveys 15, Providence, RI, 1977.
- [F] Fontenot, D., Strict topologies for vector-valued functions, Canad. J. Math., 26 no. 4 (1974), 841–853.
- [Gi] Giles, R., A generalization of the strict topology, Trans. Amer. Math. Soc., 161 (1971), 467–474.
- [Go] Goodrich, R.K., A Riesz representation theorem, Proc. Amer. Math. Soc., 24 (1970), 629-636.
- [K] Khan, L.A., The strict topology on a space of vector-valued functions, Proc. Edinburgh Math. Soc., 22 no. 1 (1979), 35–41.
- [KC] Khurana, S.S., S.A. Choo, Strict topology and P-spaces, Proc. Amer. Math. Soc., 61 (1976), 280-284.

References

- [N] Nowak, M., A Riesz representation theory for completely regular Hausdorff spaces and its applications, Open Math., 14 (2016), 474–496.
- [NS] Nowak, M., J. Stochmal, Nuclear operators on $C_b(X, E)$ and the strict topology, Math. Slovaca, 68 no. 1 (2018), 135–146.
- [P] Pietsch, A., Nuclear Locally Convex Spaces, Springer-Verlag, 1972.
- [Po] Popa, D., Nuclear operators on C(T, X), Stud. Cerc. Mat., 42 no. 1 (1990), 47-50.
- [R] Ryan, R., Introduction to Tensor Products of Banach Spaces, Springer Monographs in Math., 2002.
- [SS] Saab, P., B. Smith, Nuclear operators on spaces of continuous vector-valued functions, Glasgow Math. J., 33 no. 2 (1994), 223–230.
- [Sch] Schaefer, H.H., Topological Vector Spaces, Springer-Verlag, New York, Heidelberg, Berlin, 1971.
- [S] Schwartz, L., Séminaire Schwartz, Exposé 13, Université de Paris, (1953/54).
- [St] Stochmal, J., A characterization of nuclear operators on spaces of vector-valued continuous functions with the strict topology, submitted.
- [To] Tong, A.E., Nuclear mappings on C(X), Math. Ann. 194 (1971), 213-224.

Thank you for your attention!