Nuclear operators and operator-valued Borel measures

Juliusz Stochmal

Kazimierz Wielki University in Bydgoszcz, POLAND
j.stochmal@ukw.edu.pl

POSI+IVITY XI, Ljubljana, Slovenia
July 10-14, 2023

Table of contents

(1) Introduction
(2) The results

- Nuclear operators on $C_{b}(X, E)$
- Nuclearity of conjugate operator
(3) References

Nuclear operators

- The notation of nuclearity was first introduced by Ruston and Grothendieck. The term nuclear has the origin in Schwartz's kernel theorem.
- For X being a compact Hausdorff space, nuclear operators $T: C(X) \rightarrow F$ were studied by L. Schwartz [S] and Tong [T]. In particular, the Bochner-type representation of nuclear operators was derived.

Nuclear operators

- The notation of nuclearity was first introduced by Ruston and Grothendieck. The term nuclear has the origin in Schwartz's kernel theorem.
- For X being a compact Hausdorff space, nuclear operators $T: C(X) \rightarrow F$ were studied by L. Schwartz [S] and Tong [T]. In particular, the Bochner-type representation of nuclear operators was derived.
[S] Schwartz, Séminaire Schwartz, Exposé 13, Université de Paris, (1953/54)
[T] Tone Nuclear mappings on $C(X)$; Math. Ann.

Nuclear operators

- The notation of nuclearity was first introduced by Ruston and Grothendieck. The term nuclear has the origin in Schwartz's kernel theorem.
- For X being a compact Hausdorff space, nuclear operators $T: C(X) \rightarrow F$ were studied by L. Schwartz [S] and Tong [T]. In particular, the Bochner-type representation of nuclear operators was derived.
[S] Schwartz, Séminaire Schwartz, Exposé 13, Université de Paris, (1953/54)
[T] Tone Nuclear mappings on $C(X)$; Math. Ann.

Nuclear operators

- The notation of nuclearity was first introduced by Ruston and Grothendieck. The term nuclear has the origin in Schwartz's kernel theorem.
- For X being a compact Hausdorff space, nuclear operators $T: C(X) \rightarrow F$ were studied by L. Schwartz [S] and Tong [T]. In particular, the Bochner-type representation of nuclear operators was derived.

Theorem [\bar{T}, Proposition 1.2]

A bounded operator $T: C(X) \rightarrow F$ is nuclear if and only if it has a Bochner kernel, i.e., there exist a finite real valued measure μ on X and a Bochner integrable function $f: X \rightarrow F$ such that

$$
T(u)=\int_{X} u(t) f(t) d \mu \quad \text { for } \quad u \in C(X)
$$

R [S] Schwartz, L., Séminaire Schwartz, Exposé 13, Université de Paris, (1953/54).
國 [T] Tong, A.E., Nuclear mappings on C(X), Math. Ann., 194 (1971), 213-224.

Nuclear operators

- The study of nuclear operators $T: C(X, E) \rightarrow F$ was initiated by Alexander [A], where the result of Schwartz was extended in case E^{\prime} has the Radon-Nikodym Property.
- In [Po] and [SS] the study of nuclear operators $T: C(X, E) \rightarrow F$ was continued in context of properties of representing measure m, associated continuous operator $T^{\#}: C(X) \rightarrow \mathcal{L}(E, F)$ and Radon-Nikodym Property of E^{\prime}
[A] Alexander, G., Linear operators on the space of vector-valued continuous functions, Ph.D. thesis, New Mexico State university, Las Cruces, New Mexico, 1976.
[Po] Popa, D., Nuclear operators on $C(T, X)$, Stud. Cerc. Mat., 42 no. 1 (1990), 47-50.
[SS] Saab, P., B. Smith, Nuclear operators on spaces of continuous vector-valued functions, Glasgow Math. J., 33 no. 2 (1994), 223-230.

Nuclear operators

- The study of nuclear operators $T: C(X, E) \rightarrow F$ was initiated by Alexander [A], where the result of Schwartz was extended in case E^{\prime} has the Radon-Nikodym Property.
- In [Po] and [SS] the study of nuclear operators $T: C(X, E) \rightarrow F$ was continued in context of properties of representing measure m, associated continuous operator $T^{\#}: C(X) \rightarrow \mathcal{L}(E, F)$ and Radon-Nikodym Property of E^{\prime}.
[A] Alexander, G., Linear operators on the space of vector-valued continuous functions, Ph.D. thesis, New Mexico State university, Las Cruces, New Mexico, 1976.
[Po] Popa, D., Nuclear operators on $C(T, X)$, Stud. Cerc. Mat., 42 no. 1 (1990), 47-50.
[SS] Saab, P., B. Smith, Nuclear operators on spaces of continuous vector-valued functions, Glasgow Math. J., 33 no. 2 (1994), 223-230.

Nuclear operators

Let $\left(E,\|\cdot\|_{E}\right)$ and $\left(F,\|\cdot\|_{F}\right)$ be Banach spaces. Let E^{\prime} and F^{\prime} denote the Banach duals of E and F, respectively. By $\mathcal{L}(E, F)$ we denote the space of all bounded linear operators from E to F, equipped with the norm $\|\cdot\|$ of the uniform operator topology.

An operator $U \in \mathcal{L}(E, F)$ is nuclear if there exist sequences $\left(x_{n}^{\prime}\right)$ in E^{\prime} and

 $\left(y_{n}\right)$ in F such that
where

Nuclear operators

Let $\left(E,\|\cdot\|_{E}\right)$ and $\left(F,\|\cdot\|_{F}\right)$ be Banach spaces. Let E^{\prime} and F^{\prime} denote the Banach duals of E and F, respectively. By $\mathcal{L}(E, F)$ we denote the space of all bounded linear operators from E to F, equipped with the norm $\|\cdot\|$ of the uniform operator topology.

An operator $U \in \mathcal{L}(E, F)$ is nuclear if there exist sequences $\left(x_{n}^{\prime}\right)$ in E^{\prime} and $\left(y_{n}\right)$ in F such that

Nuclear operators

Let $\left(E,\|\cdot\|_{E}\right)$ and $\left(F,\|\cdot\|_{F}\right)$ be Banach spaces. Let E^{\prime} and F^{\prime} denote the Banach duals of E and F, respectively. By $\mathcal{L}(E, F)$ we denote the space of all bounded linear operators from E to F, equipped with the norm $\|\cdot\|$ of the uniform operator topology.

An operator $U \in \mathcal{L}(E, F)$ is nuclear if there exist sequences $\left(x_{n}^{\prime}\right)$ in E^{\prime} and $\left(y_{n}\right)$ in F such that

$$
U(x)=\sum_{n=1}^{\infty} x_{n}^{\prime}(x) y_{n} \text { for } x \in E
$$

where $\sum_{n=1}^{\infty}\left\|x_{n}^{\prime}\right\|_{E^{\prime}}\left\|y_{n}\right\|_{F}<\infty$.

Nuclear operators

The nuclear norm of a nuclear operator $U: E \rightarrow F$ is defined by

$$
\|U\|_{n u c}:=\inf \sum_{n=1}^{\infty}\left\|x_{n}^{\prime}\right\|_{E^{\prime}} \cdot\left\|y_{n}\right\|_{F},
$$

where the infimum is taken over all sequences $\left(x_{n}^{\prime}\right)$ in E^{\prime} and $\left(y_{n}\right)$ in F such that $U(x)=\sum_{n=1}^{\infty} x_{n}^{\prime}(x) y_{n}$ for $x \in E$ and $\sum_{n=1}^{\infty}\left\|x_{n}^{\prime}\right\|_{E^{\prime}}\left\|y_{n}\right\|_{F}<\infty$.

The space $\mathcal{N}(E, F)$ of all nuclear operators $U: E \rightarrow F$, equipped with the nuclear norm $\|\cdot\|_{\text {nuc }}$ is a Banach space (see [P, Proposition, p. 51]).

Nuclear operators

The nuclear norm of a nuclear operator $U: E \rightarrow F$ is defined by

$$
\|U\|_{n u c}:=\inf \sum_{n=1}^{\infty}\left\|x_{n}^{\prime}\right\|_{E^{\prime}} \cdot\left\|y_{n}\right\|_{F},
$$

where the infimum is taken over all sequences $\left(x_{n}^{\prime}\right)$ in E^{\prime} and $\left(y_{n}\right)$ in F such that $U(x)=\sum_{n=1}^{\infty} x_{n}^{\prime}(x) y_{n}$ for $x \in E$ and $\sum_{n=1}^{\infty}\left\|x_{n}^{\prime}\right\|_{E^{\prime}}\left\|y_{n}\right\|_{F}<\infty$.

The space $\mathcal{N}(E, F)$ of all nuclear operators $U: E \rightarrow F$, equipped with the nuclear norm $\|\cdot\|_{\text {nuc }}$ is a Banach space (see [P, Proposition, p. 51]).

Strict topology β

Let (X, \mathcal{T}) be a completely regular Hausdorff space. Let $C_{b}(X, E)$ denote the space of all E-valued bounded continuous functions defined on X.

Definition 1.1. [B], [F]
 The strict topology β on $C_{b}(X, E)$ is generated by the family of the seminorms:

 where $v: X \rightarrow[0, \infty)$ is a bounded function such that the set $\{t \in X: v(t) \geq \varepsilon\}$ is compact for every $\varepsilon>0$.

[B] Buck, R.C., Bounded continuous functions on a locally compact space, Michigan MathStrict topologies for vector-valued functions, Canad

Strict topology β

Let (X, \mathcal{T}) be a completely regular Hausdorff space. Let $C_{b}(X, E)$ denote the space of all E-valued bounded continuous functions defined on X.

Definition 1.1. [B], [F]

The strict topology β on $C_{b}(X, E)$ is generated by the family of the seminorms:

$$
p_{v}(f):=\sup _{t \in X} v(t)\|f(t)\|_{E} \text { for } f \in C_{b}(X, E),
$$

where $v: X \rightarrow[0, \infty)$ is a bounded function such that the set $\{t \in X: v(t) \geq \varepsilon\}$ is compact for every $\varepsilon>0$.

R [B] Buck, R.C., Bounded continuous functions on a locally compact space, Michigan Math. J., 5 (1958), 95-104.
[F] Fontenot, D., Strict topologies for vector-valued functions, Canad. J. Math., 26 no. 4 (1974), 841-853.

Strict topology β

Theorem 1.1. [K]

- $\tau_{c} \subset \beta \subset \tau_{u}$ and if X is a compact Hausdorff space, then $\beta=\tau_{u}$.
- β and τ_{u} have the same bounded subsets.
- β is the finest locally convex Hausdorff topology agreeing with topology τ_{c} on τ_{u}-bounded subsets of $C_{b}(X, E)$.
[K] Khan, L.A., The strict topology on a space of vector-valued functions, Proc. Edinburgh Math. Soc., 22 no. 1 (1979), 35-41.

Basic concepts of measure theory

By $\mathcal{B} o$ we denote the σ-algebra of Borel sets in X. Let $M(X)$ denote the space of all countably additive regular scalar Borel measures.

$$
|\mu|(A):=\sup \sum\left\|\mu\left(A_{i}\right)\right\|_{E}
$$

where the supremum is taken over all finite $\mathcal{B o}$ o-partitions $\left(A_{i}\right)$ of A (see [DU, Definition 4, p.2]).

Basic concepts of measure theory

By \mathcal{B} o we denote the σ-algebra of Borel sets in X. Let $M(X)$ denote the space of all countably additive regular scalar Borel measures.

The variation $|\mu|$ of the measure $\mu: \mathcal{B} \circ \rightarrow E$ on $A \in \mathcal{B}$ o is defined by:

$$
|\mu|(A):=\sup \sum\left\|\mu\left(A_{i}\right)\right\|_{E},
$$

where the supremum is taken over all finite \mathcal{B} o-partitions $\left(A_{i}\right)$ of A (see [DU, Definition 4, p. 2]).

Basic concepts of measure theory

By \mathcal{B} o we denote the σ-algebra of Borel sets in X.
Let $M(X)$ denote the space of all countably additive regular scalar Borel measures.

The variation $|\mu|$ of the measure $\mu: \mathcal{B} \circ \rightarrow E$ on $A \in \mathcal{B}$ o is defined by:

$$
|\mu|(A):=\sup \sum\left\|\mu\left(A_{i}\right)\right\|_{E},
$$

where the supremum is taken over all finite \mathcal{B} o-partitions $\left(A_{i}\right)$ of A (see [DU, Definition 4, p. 2]).

Let $M\left(X, E^{\prime}\right)$ denote the space of all countably additive measures $\mu: \mathcal{B} o \rightarrow E^{\prime}$ of bounded variation $(|\mu|(X)<\infty)$ and such that for each $x \in E$, $\mu_{x} \in M(X)$, where $\mu_{x}(A):=\mu(A)(x)$ for $A \in \mathcal{B}$ o.

Q [DU] Diestel, J. and J.J. Uhl, Vector Measures, Amer. Math. Soc., Math. Surveys 15, Providence, RI, 1977.

Basic concepts of measure theory

The semivariation \widetilde{m} of $m: \mathcal{B} o \rightarrow \mathcal{L}(E, F)$ on $A \in \mathcal{B} o$ is defined by

$$
\widetilde{m}(A):=\sup \left\|\sum m\left(A_{i}\right)\left(x_{i}\right)\right\|_{F},
$$

where the supremum is taken over all finite \mathcal{B} o-partitions $\left(A_{i}\right)$ of A and x_{i} is from the unit ball B_{E} in E for each i (see [DU, Definition 4, p. 2]).

By $M(X, \mathcal{L}(E, F))$ we denote the space of all measures $m: \mathcal{B o} \rightarrow \mathcal{L}(E, F)$ such that $\widetilde{m}(X)<\infty$ and for each $y^{\prime} \in F^{\prime}, m_{y^{\prime}} \in M\left(X, E^{\prime}\right)$, where

$$
m_{y^{\prime}}(A)(x):=y^{\prime}(m(A)(x)) \text { for } A \in \mathcal{B} o, x \in E .
$$

Basic concepts of measure theory

The semivariation \tilde{m} of $m: \mathcal{B} o \rightarrow \mathcal{L}(E, F)$ on $A \in \mathcal{B} \circ$ is defined by

$$
\widetilde{m}(A):=\sup \left\|\sum m\left(A_{i}\right)\left(x_{i}\right)\right\|_{F},
$$

where the supremum is taken over all finite $\mathcal{B o}$ o-partitions $\left(A_{i}\right)$ of A and x_{i} is from the unit ball B_{E} in E for each i (see [DU, Definition 4, p. 2]).

By $M(X, \mathcal{L}(E, F))$ we denote the space of all measures $m: \mathcal{B} o \rightarrow \mathcal{L}(E, F)$ such that $\widetilde{m}(X)<\infty$ and for each $y^{\prime} \in F^{\prime}, m_{y^{\prime}} \in M\left(X, E^{\prime}\right)$, where

$$
m_{y^{\prime}}(A)(x):=y^{\prime}(m(A)(x)) \text { for } A \in \mathcal{B} o, x \in E
$$

Riemann-Stieltjes integral

Definition 1.2. [F], [Go], [N, Definition 2.2])

Let $m \in M(X, \mathcal{L}(E, F))$. We say that $f \in C_{b}(X, E)$ is m-integrable in the Riemann-Stieltjes sense over $A \in \mathcal{B} o$ provided there exists $y_{A} \in F$ such that given $\varepsilon>0$ there exists a finite $\mathcal{B} o$-partition $\mathcal{P}_{\varepsilon}$ of A such that

$$
\left\|y_{A}-\sum_{i=1}^{n} m\left(A_{i}\right)\left(f\left(t_{i}\right)\right)\right\|_{F} \leq \varepsilon
$$

if $\left\{A_{1}, \ldots, A_{n}\right\}$ is any \mathcal{B} o-partition of A refining $\mathcal{P}_{\varepsilon}$ and $\left\{t_{1}, \ldots, t_{n}\right\}$ is any choice of points of A such that $t_{i} \in A_{i}$ for $i=1, \ldots, n$.

Then $\int_{A} f(t) d m:=y_{A}$ will be called a Riemann-Stieltjes integral of f with respect to m over $A \in \mathcal{B}$.

R [Go] Goodrich, R.K., A Riesz representation theorem, Proc. Amer. Math. Soc., 24 (1970), 629-636.
[N] Nowak, M., A Riesz representation theory for completely regular Hausdorff spaces and its applications, Open Math., 14 (2016), 474-496.

Riesz representation theorem for functionals

Theorem 1.2. [Gi], [N, Theorem 2.4]

For a linear functional $\Phi: C_{b}(X, E) \rightarrow \mathbb{R}$ the following statements are equivalent:
(i) Φ is β-continuous.
(ii) There exists a unique $\mu \in M\left(X, E^{\prime}\right)$ such that

$$
\Phi(f)=\Phi_{\mu}(f)=\int_{X} f(t) d \mu \text { for all } f \in C_{b}(X, E) \text {. }
$$

Moreover,

By $C_{b}(X, E)_{\beta}^{\prime}$ we will denote the topological dual of $\left(C_{b}(X, E), \beta\right)$. Hence $C_{b}(X, E)_{\beta}^{\prime}$ can be identified with $M\left(X, E^{\prime}\right)$

Riesz representation theorem for functionals

Theorem 1.2. [Gi], [N, Theorem 2.4]

For a linear functional $\Phi: C_{b}(X, E) \rightarrow \mathbb{R}$ the following statements are equivalent:
(i) Φ is β-continuous.
(ii) There exists a unique $\mu \in M\left(X, E^{\prime}\right)$ such that

$$
\Phi(f)=\Phi_{\mu}(f)=\int_{X} f(t) d \mu \text { for all } f \in C_{b}(X, E)
$$

Moreover, $\left\|\Phi_{\mu}\right\|=|\mu|(X)$.

\square

Riesz representation theorem for functionals

Theorem 1.2. [Gi], [N, Theorem 2.4]

For a linear functional $\Phi: C_{b}(X, E) \rightarrow \mathbb{R}$ the following statements are equivalent:
(i) Φ is β-continuous.
(ii) There exists a unique $\mu \in M\left(X, E^{\prime}\right)$ such that

$$
\Phi(f)=\Phi_{\mu}(f)=\int_{X} f(t) d \mu \text { for all } f \in C_{b}(X, E)
$$

Moreover, $\left\|\Phi_{\mu}\right\|=|\mu|(X)$.
By $C_{b}(X, E)_{\beta}^{\prime}$ we will denote the topological dual of $\left(C_{b}(X, E), \beta\right)$. Hence $C_{b}(X, E)_{\beta}^{\prime}$ can be identified with $M\left(X, E^{\prime}\right)$.
․․ [Gi] Giles, R., A generalization of the strict topology, Trans. Amer. Math. Soc., 161 (1971), 467-474.

Riesz representation theorem for operators

Let $i_{F}: F \rightarrow F^{\prime \prime}$ denote the canonical embedding, i.e., $i_{F}(y)\left(y^{\prime}\right)=y^{\prime}(y)$ for $y \in F, y^{\prime} \in F^{\prime}$. Moreover, let $j_{F}: i_{F}(F) \rightarrow F$ stand for the left inverse of i_{F}.

```
Theorem 1.3. [N,Theorem 3.2]
Assume that T: C C (X,E) ->F is a (\beta,|\cdot|F)-continuous linear operator. Then
there exists a unique measure }m:\mathcal{Bo}->\mathcal{L}(E,\mp@subsup{F}{}{\prime\prime})\mathrm{ (called the representing
measure of T) such that the following statements hold:
```

Conversely, assume that a measure $m: \mathcal{B} o \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ satisfies the conditions
(i) and (ii). Then there exists a unique $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator
$T: C_{b}(X, E) \rightarrow F$ such that (iii), (iv) and (v) hold. Moreover: $\|T\|=\widetilde{m}(X)$.

Riesz representation theorem for operators

Let $i_{F}: F \rightarrow F^{\prime \prime}$ denote the canonical embedding, i.e., $i_{F}(y)\left(y^{\prime}\right)=y^{\prime}(y)$ for $y \in F, y^{\prime} \in F^{\prime}$. Moreover, let $j_{F}: i_{F}(F) \rightarrow F$ stand for the left inverse of i_{F}.

Theorem 1.3. [N , Theorem 3.2]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator. Then there exists a unique measure $m: \mathcal{B} o \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ (called the representing measure of T) such that the following statements hold:

Riesz representation theorem for operators

Let $i_{F}: F \rightarrow F^{\prime \prime}$ denote the canonical embedding, i.e., $i_{F}(y)\left(y^{\prime}\right)=y^{\prime}(y)$ for $y \in F, y^{\prime} \in F^{\prime}$. Moreover, let $j_{F}: i_{F}(F) \rightarrow F$ stand for the left inverse of i_{F}.

Theorem 1.3. [N , Theorem 3.2]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator. Then there exists a unique measure $m: \mathcal{B} o \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ (called the representing measure of T) such that the following statements hold:
(i) m is tight, i.e., for all $\varepsilon>0$ there exists a compact set K such that $\widetilde{m}(X \backslash K) \leq \varepsilon$.

Riesz representation theorem for operators

Let $i_{F}: F \rightarrow F^{\prime \prime}$ denote the canonical embedding, i.e., $i_{F}(y)\left(y^{\prime}\right)=y^{\prime}(y)$ for $y \in F, y^{\prime} \in F^{\prime}$. Moreover, let $j_{F}: i_{F}(F) \rightarrow F$ stand for the left inverse of i_{F}.

Theorem 1.3. [N, Theorem 3.2]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator. Then there exists a unique measure $m: \mathcal{B} o \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ (called the representing measure of T) such that the following statements hold:
(i) m is tight, i.e., for all $\varepsilon>0$ there exists a compact set K such that $\widetilde{m}(X \backslash K) \leq \varepsilon$.
(ii) The mapping $F^{\prime} \ni y^{\prime} \mapsto m_{y^{\prime}} \in M\left(X, E^{\prime}\right)$ is $\left(\sigma\left(F^{\prime}, F\right), \sigma\left(M\left(X, E^{\prime}\right)\right.\right.$, $C_{b}(X, E)$))-continuous.

Riesz representation theorem for operators

Let $i_{F}: F \rightarrow F^{\prime \prime}$ denote the canonical embedding, i.e., $i_{F}(y)\left(y^{\prime}\right)=y^{\prime}(y)$ for $y \in F, y^{\prime} \in F^{\prime}$. Moreover, let $j_{F}: i_{F}(F) \rightarrow F$ stand for the left inverse of i_{F}.

Theorem 1.3. [N , Theorem 3.2]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator. Then there exists a unique measure $m: \mathcal{B} o \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ (called the representing measure of T) such that the following statements hold:
(i) m is tight, i.e., for all $\varepsilon>0$ there exists a compact set K such that $\widetilde{m}(X \backslash K) \leq \varepsilon$.
(ii) The mapping $F^{\prime} \ni y^{\prime} \mapsto m_{y^{\prime}} \in M\left(X, E^{\prime}\right)$ is $\left(\sigma\left(F^{\prime}, F\right), \sigma\left(M\left(X, E^{\prime}\right)\right.\right.$, $C_{b}(X, E)$))-continuous.
(iii) Every $f \in C_{b}(X, E)$ is m-integrable in the Riemann-Stieltjes sense over X.

Riesz representation theorem for operators

Let $i_{F}: F \rightarrow F^{\prime \prime}$ denote the canonical embedding, i.e., $i_{F}(y)\left(y^{\prime}\right)=y^{\prime}(y)$ for $y \in F, y^{\prime} \in F^{\prime}$. Moreover, let $j_{F}: i_{F}(F) \rightarrow F$ stand for the left inverse of i_{F}.

Theorem 1.3. [N, Theorem 3.2]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator. Then there exists a unique measure $m: \mathcal{B} o \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ (called the representing measure of T) such that the following statements hold:
(i) m is tight, i.e., for all $\varepsilon>0$ there exists a compact set K such that $\widetilde{m}(X \backslash K) \leq \varepsilon$.
(ii) The mapping $F^{\prime} \ni y^{\prime} \mapsto m_{y^{\prime}} \in M\left(X, E^{\prime}\right)$ is $\left(\sigma\left(F^{\prime}, F\right), \sigma\left(M\left(X, E^{\prime}\right)\right.\right.$, $\left.C_{b}(X, E)\right)$)-continuous.
(iii) Every $f \in C_{b}(X, E)$ is m-integrable in the Riemann-Stieltjes sense over X.
(iv) For $f \in C_{b}(X, E), \int_{X} f d m \in i_{F}(F)$ and $T(f)=j_{F}\left(\int_{X} f d m\right)$.

Conversely, assume that a measure $m: \mathcal{B o} \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ satisfies the conditions (i) and (ii). Then there exists a unique $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator $T: C_{b}(X, E) \rightarrow F$ such that (iii), (iv) and (v) hold. Moreover: $\|T\|=m(X)$.

Riesz representation theorem for operators

Let $i_{F}: F \rightarrow F^{\prime \prime}$ denote the canonical embedding, i.e., $i_{F}(y)\left(y^{\prime}\right)=y^{\prime}(y)$ for $y \in F, y^{\prime} \in F^{\prime}$. Moreover, let $j_{F}: i_{F}(F) \rightarrow F$ stand for the left inverse of i_{F}.

Theorem 1.3. [N, Theorem 3.2]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator. Then there exists a unique measure $m: \mathcal{B} o \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ (called the representing measure of T) such that the following statements hold:
(i) m is tight, i.e., for all $\varepsilon>0$ there exists a compact set K such that $\widetilde{m}(X \backslash K) \leq \varepsilon$.
(ii) The mapping $F^{\prime} \ni y^{\prime} \mapsto m_{y^{\prime}} \in M\left(X, E^{\prime}\right)$ is $\left(\sigma\left(F^{\prime}, F\right), \sigma\left(M\left(X, E^{\prime}\right)\right.\right.$, $\left.C_{b}(X, E)\right)$)-continuous.
(iii) Every $f \in C_{b}(X, E)$ is m-integrable in the Riemann-Stieltjes sense over X.
(iv) For $f \in C_{b}(X, E), \int_{X} f d m \in i_{F}(F)$ and $T(f)=j_{F}\left(\int_{X} f d m\right)$.
(v) For each $y^{\prime} \in F^{\prime}, y^{\prime}(T(f))=\int_{X} f(t) d m_{y^{\prime}}$ for $f \in C_{b}(X, E)$.

Riesz representation theorem for operators

Let $i_{F}: F \rightarrow F^{\prime \prime}$ denote the canonical embedding, i.e., $i_{F}(y)\left(y^{\prime}\right)=y^{\prime}(y)$ for $y \in F, y^{\prime} \in F^{\prime}$. Moreover, let $j_{F}: i_{F}(F) \rightarrow F$ stand for the left inverse of i_{F}.

Theorem 1.3. [N, Theorem 3.2]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator. Then there exists a unique measure $m: \mathcal{B} o \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ (called the representing measure of T) such that the following statements hold:
(i) m is tight, i.e., for all $\varepsilon>0$ there exists a compact set K such that $\widetilde{m}(X \backslash K) \leq \varepsilon$.
(ii) The mapping $F^{\prime} \ni y^{\prime} \mapsto m_{y^{\prime}} \in M\left(X, E^{\prime}\right)$ is $\left(\sigma\left(F^{\prime}, F\right), \sigma\left(M\left(X, E^{\prime}\right)\right.\right.$, $\left.C_{b}(X, E)\right)$)-continuous.
(iii) Every $f \in C_{b}(X, E)$ is m-integrable in the Riemann-Stieltjes sense over X.
(iv) For $f \in C_{b}(X, E), \int_{X} f d m \in i_{F}(F)$ and $T(f)=j_{F}\left(\int_{X} f d m\right)$.
(v) For each $y^{\prime} \in F^{\prime}, y^{\prime}(T(f))=\int_{X} f(t) d m_{y^{\prime}}$ for $f \in C_{b}(X, E)$.

Riesz representation theorem for operators

Let $i_{F}: F \rightarrow F^{\prime \prime}$ denote the canonical embedding, i.e., $i_{F}(y)\left(y^{\prime}\right)=y^{\prime}(y)$ for $y \in F, y^{\prime} \in F^{\prime}$. Moreover, let $j_{F}: i_{F}(F) \rightarrow F$ stand for the left inverse of i_{F}.

Theorem 1.3. [N, Theorem 3.2]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator. Then there exists a unique measure $m: \mathcal{B} o \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ (called the representing measure of T) such that the following statements hold:
(i) m is tight, i.e., for all $\varepsilon>0$ there exists a compact set K such that $\widetilde{m}(X \backslash K) \leq \varepsilon$.
(ii) The mapping $F^{\prime} \ni y^{\prime} \mapsto m_{y^{\prime}} \in M\left(X, E^{\prime}\right)$ is $\left(\sigma\left(F^{\prime}, F\right), \sigma\left(M\left(X, E^{\prime}\right)\right.\right.$, $C_{b}(X, E)$))-continuous.
(iii) Every $f \in C_{b}(X, E)$ is m-integrable in the Riemann-Stieltjes sense over X.
(iv) For $f \in C_{b}(X, E), \int_{X} f d m \in i_{F}(F)$ and $T(f)=j_{F}\left(\int_{X} f d m\right)$.
(v) For each $y^{\prime} \in F^{\prime}, y^{\prime}(T(f))=\int_{X} f(t) d m_{y^{\prime}}$ for $f \in C_{b}(X, E)$.

Conversely, assume that a measure $m: \mathcal{B} o \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ satisfies the conditions (i) and (ii). Then there exists a unique $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator $T: C_{b}(X, E) \rightarrow F$ such that (iii), (iv) and (v) hold.

Riesz representation theorem for operators

Let $i_{F}: F \rightarrow F^{\prime \prime}$ denote the canonical embedding, i.e., $i_{F}(y)\left(y^{\prime}\right)=y^{\prime}(y)$ for $y \in F, y^{\prime} \in F^{\prime}$. Moreover, let $j_{F}: i_{F}(F) \rightarrow F$ stand for the left inverse of i_{F}.

Theorem 1.3. [N, Theorem 3.2]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator. Then there exists a unique measure $m: \mathcal{B} o \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ (called the representing measure of T) such that the following statements hold:
(i) m is tight, i.e., for all $\varepsilon>0$ there exists a compact set K such that $\widetilde{m}(X \backslash K) \leq \varepsilon$.
(ii) The mapping $F^{\prime} \ni y^{\prime} \mapsto m_{y^{\prime}} \in M\left(X, E^{\prime}\right)$ is $\left(\sigma\left(F^{\prime}, F\right), \sigma\left(M\left(X, E^{\prime}\right)\right.\right.$, $C_{b}(X, E)$))-continuous.
(iii) Every $f \in C_{b}(X, E)$ is m-integrable in the Riemann-Stieltjes sense over X.
(iv) For $f \in C_{b}(X, E), \int_{X} f d m \in i_{F}(F)$ and $T(f)=j_{F}\left(\int_{X} f d m\right)$.
(v) For each $y^{\prime} \in F^{\prime}, y^{\prime}(T(f))=\int_{X} f(t) d m_{y^{\prime}}$ for $f \in C_{b}(X, E)$.

Conversely, assume that a measure $m: \mathcal{B} o \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ satisfies the conditions (i) and (ii). Then there exists a unique $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator $T: C_{b}(X, E) \rightarrow F$ such that (iii), (iv) and (v) hold. Moreover: $\|T\|=\widetilde{m}(X)$.

Strongly bounded operators

$$
\text { A }\left(\beta,\|\cdot\|_{F}\right) \text {-continuous linear operator } T: C_{b}(X, E) \rightarrow F \text { is said to be strongly }
$$ bounded if its representing measure m has the strongly bounded semivariation \widetilde{m}, i.e., $\widetilde{m}\left(A_{n}\right) \rightarrow 0$ whenever $\left(A_{n}\right)$ is a pairwise disjoint sequence in \mathcal{B} o.

$$
m_{F}(A)(x):=j_{F}(m(A)(x)) \text { for } A \in \mathcal{B} o, x \in E .
$$

Strongly bounded operators

> A $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator $T: C_{b}(X, E) \rightarrow F$ is said to be strongly bounded if its representing measure m has the strongly bounded semivariation \widetilde{m}, i.e., $\widetilde{m}\left(A_{n}\right) \rightarrow 0$ whenever $\left(A_{n}\right)$ is a pairwise disjoint sequence in \mathcal{B} o.

Note that if a linear operator $T: C_{b}(X, E) \rightarrow F$ is $\left(\beta,\|\cdot\|_{F}\right)$-weakly compact, then T is $\left(\beta,\|\cdot\|_{F}\right)$-continuous and strongly bounded (see [N , Theorem 6.2]).

$m_{F}(A)(x):=j_{F}(m(A)(x))$ for $A \in \mathcal{B} o, x \in E$.

Strongly bounded operators

A $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator $T: C_{b}(X, E) \rightarrow F$ is said to be strongly bounded if its representing measure m has the strongly bounded semivariation \widetilde{m}, i.e., $\widetilde{m}\left(A_{n}\right) \rightarrow 0$ whenever $\left(A_{n}\right)$ is a pairwise disjoint sequence in \mathcal{B} o.

Note that if a linear operator $T: C_{b}(X, E) \rightarrow F$ is $\left(\beta,\|\cdot\|_{F}\right)$-weakly compact, then T is $\left(\beta,\|\cdot\|_{F}\right)$-continuous and strongly bounded (see $[\mathrm{N}$, Theorem 6.2]).

It is known that if a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator $T: C_{b}(X, E) \rightarrow F$ is strongly bounded and m is its representing measure, then $m(A)(x) \in i_{F}(F)$ for $A \in \mathcal{B} o, x \in E$ (see $[\mathrm{N}, \S 4])$. Then one can define a measure $m_{F}: \mathcal{B} o \rightarrow \mathcal{L}(E, F)$ by

$$
m_{F}(A)(x):=j_{F}(m(A)(x)) \text { for } A \in \mathcal{B} o, x \in E
$$

Strongly bounded operators

A completely regular Hausdorff space X is said to be a k-space if each set which meets every compact subset in a closed set must be closed.

From now on we will assume that (X, \mathcal{T}) is a k-space.

Strongly bounded operators

A completely regular Hausdorff space X is said to be a k-space if each set which meets every compact subset in a closed set must be closed.

From now on we will assume that (X, \mathcal{T}) is a k-space.

Strongly bounded operators

A completely regular Hausdorff space X is said to be a k-space if each set which meets every compact subset in a closed set must be closed.

From now on we will assume that (X, \mathcal{T}) is a k-space.

Theorem 1.4. [N , Theorem 4.3 and Corollary 4.4]

Let $T: C_{b}(X, E) \rightarrow F$ be a $\left(\beta,\|\cdot\|_{F}\right)$-continuous strongly bounded linear operator and m be its representing measure. Then the following statements hold:

Strongly bounded operators

A completely regular Hausdorff space X is said to be a k-space if each set which meets every compact subset in a closed set must be closed.

From now on we will assume that (X, \mathcal{T}) is a k-space.

Theorem 1.4. [N , Theorem 4.3 and Corollary 4.4]

Let $T: C_{b}(X, E) \rightarrow F$ be a $\left(\beta,\|\cdot\|_{F}\right)$-continuous strongly bounded linear operator and m be its representing measure. Then the following statements hold:
(i) m_{F} is regular, i.e., for all $A \in \mathcal{B} o$ and $\varepsilon>0$ there exist a compact set K and an open set O such that $K \subset A \subset O$ and $\widetilde{m_{F}}(O \backslash K) \leq \varepsilon$.
Every $f \in C_{b}(X, E)$ is m_{F}-integrable in the Riemann-Stieltjes sense over all $A \in \mathcal{B} o$
$T(f)=\int_{X} f(t) d m_{F}$ for $f \in C_{b}(X, E)$
Conversely, assume that a measure $m_{F}: \mathcal{B} o \rightarrow \mathcal{L}(E, F)$ satisfies the condition (i) Then there exists a unique strongly bounded operator $T: C_{b}(X, E) \rightarrow F$ such that (ii) and (iii) hold.

Strongly bounded operators

A completely regular Hausdorff space X is said to be a k-space if each set which meets every compact subset in a closed set must be closed.

From now on we will assume that (X, \mathcal{T}) is a k-space.

Theorem 1.4. [N, Theorem 4.3 and Corollary 4.4]

Let $T: C_{b}(X, E) \rightarrow F$ be a $\left(\beta,\|\cdot\|_{F}\right)$-continuous strongly bounded linear operator and m be its representing measure. Then the following statements hold:
(i) m_{F} is regular, i.e., for all $A \in \mathcal{B} o$ and $\varepsilon>0$ there exist a compact set K and an open set O such that $K \subset A \subset O$ and $\widetilde{m_{F}}(O \backslash K) \leq \varepsilon$.
(i) Every $f \in C_{b}(X, E)$ is m_{F}-integrable in the Riemann-Stieltjes sense over all $A \in \mathcal{B}$ o.

Strongly bounded operators

A completely regular Hausdorff space X is said to be a k-space if each set which meets every compact subset in a closed set must be closed.

From now on we will assume that (X, \mathcal{T}) is a k-space.

Theorem 1.4. [N , Theorem 4.3 and Corollary 4.4]

Let $T: C_{b}(X, E) \rightarrow F$ be a $\left(\beta,\|\cdot\|_{F}\right)$-continuous strongly bounded linear operator and m be its representing measure. Then the following statements hold:
(i) m_{F} is regular, i.e., for all $A \in \mathcal{B} o$ and $\varepsilon>0$ there exist a compact set K and an open set O such that $K \subset A \subset O$ and $\widetilde{m_{F}}(O \backslash K) \leq \varepsilon$.
(i) Every $f \in C_{b}(X, E)$ is m_{F}-integrable in the Riemann-Stieltjes sense over all $A \in \mathcal{B}$ o.
(ii) $T(f)=\int_{X} f(t) d m_{F}$ for $f \in C_{b}(X, E)$.

Strongly bounded operators

A completely regular Hausdorff space X is said to be a k-space if each set which meets every compact subset in a closed set must be closed.

From now on we will assume that (X, \mathcal{T}) is a k-space.

Theorem 1.4. [N , Theorem 4.3 and Corollary 4.4]

Let $T: C_{b}(X, E) \rightarrow F$ be a $\left(\beta,\|\cdot\|_{F}\right)$-continuous strongly bounded linear operator and m be its representing measure. Then the following statements hold:
(i) m_{F} is regular, i.e., for all $A \in \mathcal{B} o$ and $\varepsilon>0$ there exist a compact set K and an open set O such that $K \subset A \subset O$ and $\widetilde{m_{F}}(O \backslash K) \leq \varepsilon$.
(i) Every $f \in C_{b}(X, E)$ is m_{F}-integrable in the Riemann-Stieltjes sense over all $A \in \mathcal{B}$ o.
(ii) $T(f)=\int_{X} f(t) d m_{F}$ for $f \in C_{b}(X, E)$.

Strongly bounded operators

A completely regular Hausdorff space X is said to be a k-space if each set which meets every compact subset in a closed set must be closed.

From now on we will assume that (X, \mathcal{T}) is a k-space.

Theorem 1.4. [N , Theorem 4.3 and Corollary 4.4]

Let $T: C_{b}(X, E) \rightarrow F$ be a $\left(\beta,\|\cdot\|_{F}\right)$-continuous strongly bounded linear operator and m be its representing measure. Then the following statements hold:
(i) m_{F} is regular, i.e., for all $A \in \mathcal{B} o$ and $\varepsilon>0$ there exist a compact set K and an open set O such that $K \subset A \subset O$ and $\widetilde{m_{F}}(O \backslash K) \leq \varepsilon$.
(i) Every $f \in C_{b}(X, E)$ is m_{F}-integrable in the Riemann-Stieltjes sense over all $A \in \mathcal{B}$ o.
(ii) $T(f)=\int_{X} f(t) d m_{F}$ for $f \in C_{b}(X, E)$.

Conversely, assume that a measure $m_{F}: \mathcal{B} o \rightarrow \mathcal{L}(E, F)$ satisfies the condition (i). Then there exists a unique strongly bounded operator $T: C_{b}(X, E) \rightarrow F$ such that (ii) and (iii) hold.

Table of contents

(1) Introduction
(2) The results

- Nuclear operators on $C_{b}(X, E)$
- Nuclearity of conjugate operator
(3) References

Based on the paper:

[NS] Nowak, M., J. Stochmal, Nuclear operators on $C_{b}(X, E)$ and the strict topology, Math. Slovaca, 68 no. 1 (2018), 135-146.

䍰 [St] Stochmal, J., A characterization of nuclear operators on spaces of vector-valued continuous functions with the strict topology, submitted.

Nuclear operators on $C_{b}(X, E)$

Definition 2.1. [Sch, Chap. 3, §7, 7.1]

A linear operator $T: C_{b}(X, E) \rightarrow F$ is said to be nuclear between the locally convex space $\left(C_{b}(X, E), \beta\right)$ and Banach space $\left(F,\|\cdot\|_{F}\right)$ if there exist an β-equicontinuous sequence (Φ_{n}) in $C_{b}(X, E)_{\beta}^{\prime}$, a bounded sequence $\left(y_{n}\right)$ in F and $\left(\lambda_{n}\right) \in \ell^{1}$ such that

$$
\begin{equation*}
T(f)=\sum_{n=1}^{\infty} \lambda_{n} \Phi_{n}(f) y_{n} \text { for } f \in C_{b}(X, E) . \tag{2.1}
\end{equation*}
$$

Nuclear operators on $C_{b}(X, E)$

Definition 2.1. [Sch, Chap. 3, §7, 7.1]

A linear operator $T: C_{b}(X, E) \rightarrow F$ is said to be nuclear between the locally convex space $\left(C_{b}(X, E), \beta\right)$ and Banach space $\left(F,\|\cdot\|_{F}\right)$ if there exist an β-equicontinuous sequence $\left(\Phi_{n}\right)$ in $C_{b}(X, E)_{\beta}^{\prime}$, a bounded sequence $\left(y_{n}\right)$ in F and $\left(\lambda_{n}\right) \in \ell^{1}$ such that

$$
\begin{equation*}
T(f)=\sum_{n=1}^{\infty} \lambda_{n} \Phi_{n}(f) y_{n} \text { for } f \in C_{b}(X, E) \tag{2.1}
\end{equation*}
$$

Then T is $\left(\beta,\|\cdot\|_{F}\right)$-compact (see [Sch, Chap. 3, $\S 7$, Corollary 1]). Moreover, let us put

$$
\|T\|_{\beta-n u c}:=\inf \left\{\sum_{n=1}^{\infty}\left|\lambda_{n}\right|\left\|\Phi_{n}\right\|\left\|y_{n}\right\|_{F}\right\}
$$

where the infimum is taken over all sequences $\left(\Phi_{n}\right)$ in $C_{b}(X, E)_{\beta}^{\prime},\left(y_{n}\right)$ in F and $\left(\lambda_{n}\right) \in \ell^{1}$ such that T admits a representation (2.1).
[Sch] Schaeffer, H.H., Topological Vector Spaces, Springer-Verlag, 1971.

Nuclear operators on $C_{b}(X, E)$

Theorem 2.1. [KhC, Lemma 2]

For a subset \mathcal{M} of $M\left(X, E^{\prime}\right)$ the following statements are equivalent:
(i) $\left\{\Phi_{\mu}: \mu \in \mathcal{M}\right\}$ is a β-equicontinuous subset of $C_{b}(X, E)_{\beta}^{\prime}$.
(ii) $\sup _{\mu \in \mathcal{M}}|\mu|(X)<\infty$ and \mathcal{M} is uniformly tight, that is, for every $\varepsilon>0$, there exists a compact subset K of X such that $\sup _{\mu \in \mathcal{M}}|\mu|(X \backslash K) \leq \varepsilon$.

[KC] Khurana

Nuclear operators on $C_{b}(X, E)$

Theorem 2.1. [KhC, Lemma 2]

For a subset \mathcal{M} of $M\left(X, E^{\prime}\right)$ the following statements are equivalent:
(i) $\left\{\Phi_{\mu}: \mu \in \mathcal{M}\right\}$ is a β-equicontinuous subset of $C_{b}(X, E)_{\beta}^{\prime}$.
(ii) $\sup _{\mu \in \mathcal{M}}|\mu|(X)<\infty$ and \mathcal{M} is uniformly tight, that is, for every $\varepsilon>0$, there exists a compact subset K of X such that $\sup _{\mu \in \mathcal{M}}|\mu|(X \backslash K) \leq \varepsilon$.

Proposition 2.2.

A linear operator $T: C_{b}(X, E) \rightarrow F$ is nuclear if and only if there exist a bounded and uniformly tight sequence $\left(\mu_{n}\right)$ in $M\left(X, E^{\prime}\right)$, a bounded sequence $\left(y_{n}\right)$ in F and $\left(\lambda_{n}\right) \in \ell^{1}$ such that

$$
T(f)=\sum_{n=1}^{\infty} \lambda_{n}\left(\int_{X} f(t) d \mu_{n}\right) y_{n} \text { for } f \in C_{b}(X, E)
$$

[KC] Khurana, S.S., S.A. Choo, Strict topology and P-spaces, Proc. Amer. Math. Soc., 61 (1976), 280-284.

Nuclear operators on $C_{b}(X, E)$

Theorem 2.3. [NS, Theorem 3.1]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a nuclear operator and m is its representing measure. Then the following statements hold:

Nuclear operators on $C_{b}(X, E)$

Theorem 2.3. [NS, Theorem 3.1]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a nuclear operator and m is its representing measure. Then the following statements hold:
(i) For each $A \in \mathcal{B} o, m_{F}(A) \in \mathcal{N}(E, F)$.
(ii) $m_{F}: \mathcal{B o} \rightarrow \mathcal{N}(E, F)$ is $\|\cdot\|_{\text {nuc }}$-countably additive.
$\left|m_{F}\right|_{\text {nuc }} \in M^{+}(X)$, where $\left|m_{F}\right|_{\text {nuc }}$ stands for the variation of m_{F} with respect to the norm $\|\cdot\|_{\text {nuc }}$ in $\mathcal{N}(E, F)$.
If E^{\prime} has the Radon-Nikodym Property, then there exists a function $H \in L^{1}\left(\left|m_{F}\right|_{\text {nuc }}, \mathcal{N}(E, F)\right)$ such that

$$
m_{F}(A)=\int_{A} H(t) d\left|m_{F}\right|_{\text {nuc }} \text { for } A \in \mathcal{B} O \text {. }
$$

Nuclear operators on $C_{b}(X, E)$

Theorem 2.3. [NS, Theorem 3.1]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a nuclear operator and m is its representing measure. Then the following statements hold:
(i) For each $A \in \mathcal{B} 0, m_{F}(A) \in \mathcal{N}(E, F)$.
(ii) $m_{F}: \mathcal{B} o \rightarrow \mathcal{N}(E, F)$ is $\|\cdot\|_{n u c}$-countably additive.
$\left|m_{F}\right|_{\text {nuc }} \in M^{+}(X)$, where $\left|m_{F}\right|_{\text {nuc }}$ stands for the variation of m_{F} with respect
to the norm $\|\cdot\|_{\text {nuc }}$ in $\mathcal{N}(E, F)$.
If E^{\prime} has the Radon-Nikodym Property, then there exists a function $H \in L^{1}\left(\left|m_{F}\right|_{\text {nuc }}, \mathcal{N}(E, F)\right)$ such that

$$
m_{F}(A)=\int_{A} H(t) d\left|m_{F}\right|_{\text {nuc }} \text { for } A \in \mathcal{B} o .
$$

Nuclear operators on $C_{b}(X, E)$

Theorem 2.3. [NS, Theorem 3.1]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a nuclear operator and m is its representing measure. Then the following statements hold:
(i) For each $A \in \mathcal{B} 0, m_{F}(A) \in \mathcal{N}(E, F)$.
(ii) $m_{F}: \mathcal{B} o \rightarrow \mathcal{N}(E, F)$ is $\|\cdot\|_{n u c}$-countably additive.
(iii) $\left|m_{F}\right|_{\text {nuc }} \in M^{+}(X)$, where $\left|m_{F}\right|_{\text {nuc }}$ stands for the variation of m_{F} with respect to the norm $\|\cdot\|_{\text {nuc }}$ in $\mathcal{N}(E, F)$.
If E^{\prime} has the Radon-Nikodym Property, then there exists a function $H \in L^{1}\left(\left|m_{F}\right|_{\text {nuc }}, \mathcal{N}(E, F)\right)$ such that

Nuclear operators on $C_{b}(X, E)$

Theorem 2.3. [NS, Theorem 3.1]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a nuclear operator and m is its representing measure. Then the following statements hold:
(i) For each $A \in \mathcal{B} o, m_{F}(A) \in \mathcal{N}(E, F)$.
(ii) $m_{F}: \mathcal{B o} \rightarrow \mathcal{N}(E, F)$ is $\|\cdot\|_{n u c}$-countably additive.
(iii) $\left|m_{F}\right|_{\text {nuc }} \in M^{+}(X)$, where $\left|m_{F}\right|_{\text {nuc }}$ stands for the variation of m_{F} with respect to the norm $\|\cdot\|_{\text {nuc }}$ in $\mathcal{N}(E, F)$.
(iv) If E^{\prime} has the Radon-Nikodym Property, then there exists a function $H \in L^{1}\left(\left|m_{F}\right|_{\text {nuc }}, \mathcal{N}(E, F)\right)$ such that

$$
m_{F}(A)=\int_{A} H(t) d\left|m_{F}\right|_{\text {nuc }} \text { for } A \in \mathcal{B} o .
$$

Nuclear operators on $C_{b}(X, E)$

Theorem 2.4. [St]

Let $T: C_{b}(X, E) \rightarrow F$ be a $\left(\beta,\|\cdot\|_{F}\right)$-continuous strongly bounded linear operator. If

- $m_{F}(A) \in \mathcal{N}(E, F)$ for $A \in \mathcal{B o , ~}$
- $\left|m_{F}\right|_{\text {nuc }} \in M^{+}(X)$,
- there exists $H \in L^{1}\left(\mid m_{F \mid n u c, ~} N(E, F)\right)$ such that

$$
m_{F}(A)=\int_{A} H(t) d\left|m_{F}\right|_{\text {nuc }} \text { for } A \in \mathcal{B} O,
$$

then T is a nuclear operator between the locally convex space $\left(C_{b}(X, E), \beta\right)$ and the Banach space F and $\|T\|_{\beta-n u c}=\left|m_{F}\right|_{\text {nuc }}(X)$.

Nuclear operators on $C_{b}(X, E)$

Theorem 2.4. [St]

Let $T: C_{b}(X, E) \rightarrow F$ be a $\left(\beta,\|\cdot\|_{F}\right)$-continuous strongly bounded linear operator. If

- $m_{F}(A) \in \mathcal{N}(E, F)$ for $A \in \mathcal{B} o$,
- $\left|m_{F}\right|_{\text {nuc }} \in M^{+}(X)$,
- there exists $H \in L^{1}\left(\left|m_{F}\right|_{\text {nuc }}, \mathcal{N}(E, F)\right)$ such that

$$
m_{F}(A)=\int_{A} H(t) d\left|m_{F}\right|_{\text {nuc }} \text { for } A \in \mathcal{B} O
$$

then T is a nuclear operator between the locally convex space $\left(C_{b}(X, E), \beta\right)$ and the Banach space F and $\|T\|_{\beta \text {-nuc }}=\left|m_{F}\right|_{\text {nuc }}(X)$.

Nuclear operators on $C_{b}(X, E)$

Theorem 2.4. [St]

Let $T: C_{b}(X, E) \rightarrow F$ be a $\left(\beta,\|\cdot\|_{F}\right)$-continuous strongly bounded linear operator. If

- $m_{F}(A) \in \mathcal{N}(E, F)$ for $A \in \mathcal{B} o$,
- $\left|m_{F}\right|_{\text {nuc }} \in M^{+}(X)$,
- there exists $H \in L^{1}\left(\left|m_{F}\right|_{\text {nuc }}, \mathcal{N}(E, F)\right)$ such that

$$
m_{F}(A)=\int_{A} H(t) d\left|m_{F}\right|_{\text {nuc }} \text { for } A \in \mathcal{B} O
$$

then T is a nuclear operator between the locally convex space $\left(C_{b}(X, E), \beta\right)$ and the Banach space F and $\|T\|_{\beta-\text { nuc }}=\left|m_{F}\right|_{\text {nuc }}(X)$.

Nuclear operators on $C_{b}(X, E)$

Sketch of proof.

Step 1. Using the Lebesgue dominated convergence theorem, Theorem 1.4 and [N, Theorem 5.2], we get that

$$
T(f)=\int_{X} H(t)(f(t)) d\left|m_{F}\right|_{\text {nuc }} \text { for } f \in C_{b}(X, E) .
$$

Step 2. Let $L^{1}\left(\left|m_{F}\right|_{n u c}\right) \hat{\otimes}_{\pi} \mathcal{N}(E, F)$ denote the projective tensor product of the Banach spaces $L^{1}\left(\left|m_{F}\right|_{n u c}\right)$ and $\mathcal{N}(E, F)$, equipped with the completed norm π (see [DU, p. 227]).
Note that for $W \in L^{1}\left(\left|m_{F}\right|\right.$ nuc $) \hat{\theta}_{\pi} \mathcal{N}(E, F)$ we have

where the infimum is taken over all sequences $\left(v_{n}\right)$ in $L^{1}\left(\left|m_{F}\right|_{n u c}\right)$ and $\left(U_{n}\right)$ in $\mathcal{N}(E, F)$ with $\lim _{n}\left\|v_{n}\right\|_{1}=0=\lim _{n}\left\|U_{n}\right\|_{\text {nuc }}$ and $\left(\lambda_{n}\right) \in \ell^{1}$ such that $W=\sum_{n=1}^{\infty} \lambda_{n}\left(v_{n} \otimes U_{n}\right)$ is in the $\pi-$ norm (see [R, Proposition 2.8, pp. 21-22])

Nuclear operators on $C_{b}(X, E)$

Sketch of proof.

Step 1. Using the Lebesgue dominated convergence theorem, Theorem 1.4 and [N , Theorem 5.2], we get that

$$
T(f)=\int_{X} H(t)(f(t)) d\left|m_{F}\right|_{\text {nuc }} \text { for } f \in C_{b}(X, E)
$$

Step 2. Let $L^{1}\left(\left|m_{F}\right|_{n u c}\right) \hat{\otimes}_{\pi} \mathcal{N}(E, F)$ denote the projective tensor product of the $\overline{\text { Banach }}$ spaces $L^{1}\left(\left|m_{F}\right|_{\text {nuc }}\right)$ and $\mathcal{N}(E, F)$, equipped with the completed norm π (see [DU, p. 227]).
Note that for $W \in L^{1}\left(\left|m_{F}\right|_{\text {nuc }}\right) \hat{\otimes}_{\pi} \mathcal{N}(E, F)$ we have

Nuclear operators on $C_{b}(X, E)$

Sketch of proof.

Step 1. Using the Lebesgue dominated convergence theorem, Theorem 1.4 and [N, Theorem 5.2], we get that

$$
T(f)=\int_{X} H(t)(f(t)) d\left|m_{F}\right|_{\text {nuc }} \text { for } f \in C_{b}(X, E) .
$$

Step 2. Let $L^{1}\left(\left|m_{F}\right|_{n u c}\right) \hat{\otimes}_{\pi} \mathcal{N}(E, F)$ denote the projective tensor product of the Banach spaces $L^{1}\left(\left|m_{F}\right|_{\text {nuc }}\right)$ and $\mathcal{N}(E, F)$, equipped with the completed norm π (see [DU, p. 227]).
Note that for $W \in L^{1}\left(\left|m_{F}\right|_{\text {nuc }}\right) \hat{\otimes}_{\pi} \mathcal{N}(E, F)$ we have

$$
\pi(W):=\inf \left\{\sum_{n=1}^{\infty}\left|\lambda_{n}\right|\left\|v_{n}\right\|_{1}\left\|U_{n}\right\|_{n u c}\right\}
$$

where the infimum is taken over all sequences $\left(v_{n}\right)$ in $L^{1}\left(\left|m_{F}\right|_{n u c}\right)$ and $\left(U_{n}\right)$ in $\mathcal{N}(E, F)$ with $\lim _{n}\left\|v_{n}\right\|_{1}=0=\lim _{n}\left\|U_{n}\right\|_{\text {nuc }}$ and $\left(\lambda_{n}\right) \in \ell^{1}$ such that $W=\sum_{n=1}^{\infty} \lambda_{n}\left(v_{n} \otimes U_{n}\right)$ is in the π-norm (see [R, Proposition 2.8, pp. 21-22]).
[R] Ryan, R., Introduction to Tensor Products of Banach Spaces, Springer Monographs in Math., 2002.

Nuclear operators on $C_{b}(X, E)$

It is known that $L^{1}\left(\left|m_{F}\right|_{\text {nuc }}\right) \hat{\otimes}_{\pi} \mathcal{N}(E, F)$ is isometrically isomorphic to the Banach space $\left(L^{1}\left(\left|m_{F}\right|_{n u c}, \mathcal{N}(E, F)\right),\|\cdot\|_{1}\right)$ throughout the isometry J, where

$$
J(v \otimes U):=v(\cdot) U \text { for } v \in L^{1}\left(\left|m_{F}\right|_{n u c}\right), U \in \mathcal{N}(E, F)
$$

(see [DU, Example 10, p. 228], [R, Example 2.19, p. 29]).

Hence we have

Therefore
$T(f)=\sum_{n=1}^{\infty} \alpha_{n} \int_{X} v_{n}(t) U_{n}(f(t)) d\left|m_{F}\right|_{\text {nuc }}$ for $f \in C_{b}(X, E)$.

Nuclear operators on $C_{b}(X, E)$

It is known that $L^{1}\left(\left|m_{F}\right|_{\text {nuc }}\right) \hat{\otimes}_{\pi} \mathcal{N}(E, F)$ is isometrically isomorphic to the Banach space $\left(L^{1}\left(\left|m_{F}\right|_{n u c}, \mathcal{N}(E, F)\right),\|\cdot\|_{1}\right)$ throughout the isometry J, where

$$
J(v \otimes U):=v(\cdot) U \text { for } v \in L^{1}\left(\left|m_{F}\right|_{n u c}\right), U \in \mathcal{N}(E, F)
$$

(see [DU, Example 10, p. 228], [R, Example 2.19, p. 29]).
Then there exist $\left(v_{n}\right)$ in $L^{1}\left(\left|m_{F}\right|_{n u c}\right)$ and $\left(U_{n}\right)$ in $\mathcal{N}(E, F)$ with $\lim _{n}\left\|v_{n}\right\|_{1}=0=\lim _{n}\left\|U_{n}\right\|_{n u c}$ and $\left(\alpha_{n}\right) \in \ell^{1}$ so that

$$
J^{-1}(H)=\sum_{n=1}^{\infty} \alpha_{n} v_{n} \otimes U_{n} \text { in } L^{1}\left(\left|m_{F}\right|_{n u c}\right) \hat{\otimes}_{\pi} \mathcal{N}(E, F)
$$

Hence we have

Nuclear operators on $C_{b}(X, E)$

It is known that $L^{1}\left(\left|m_{F}\right|_{n u c}\right) \hat{\otimes}_{\pi} \mathcal{N}(E, F)$ is isometrically isomorphic to the Banach space $\left(L^{1}\left(\left|m_{F}\right|_{\text {nuc }}, \mathcal{N}(E, F)\right),\|\cdot\|_{1}\right)$ throughout the isometry J, where

$$
J(v \otimes U):=v(\cdot) U \text { for } v \in L^{1}\left(\left|m_{F}\right|_{\text {nuc }}\right), U \in \mathcal{N}(E, F)
$$

(see [DU, Example 10, p. 228], [R, Example 2.19, p. 29]).
Then there exist $\left(v_{n}\right)$ in $L^{1}\left(\left|m_{F}\right|_{n u c}\right)$ and $\left(U_{n}\right)$ in $\mathcal{N}(E, F)$ with $\lim _{n}\left\|v_{n}\right\|_{1}=0=\lim _{n}\left\|U_{n}\right\|_{n u c}$ and $\left(\alpha_{n}\right) \in \ell^{1}$ so that

$$
J^{-1}(H)=\sum_{n=1}^{\infty} \alpha_{n} v_{n} \otimes U_{n} \text { in } L^{1}\left(\left|m_{F}\right|_{n u c}\right) \hat{\otimes}_{\pi} \mathcal{N}(E, F) .
$$

Hence we have

$$
H=J\left(\sum_{n=1}^{\infty} \alpha_{n} v_{n} \otimes U_{n}\right)=\sum_{n=1}^{\infty} \alpha_{n} v_{n}(\cdot) U_{n} \text { in } L^{1}\left(\left|m_{F}\right|_{n u c}, \mathcal{N}(E, F)\right) .
$$

Therefore

Nuclear operators on $C_{b}(X, E)$

It is known that $L^{1}\left(\left|m_{F}\right|_{n u c}\right) \hat{\otimes}_{\pi} \mathcal{N}(E, F)$ is isometrically isomorphic to the Banach space $\left(L^{1}\left(\left|m_{F}\right|_{n u c}, \mathcal{N}(E, F)\right),\|\cdot\|_{1}\right)$ throughout the isometry J, where

$$
J(v \otimes U):=v(\cdot) U \text { for } v \in L^{1}\left(\left|m_{F}\right|_{n u c}\right), U \in \mathcal{N}(E, F)
$$

(see [DU, Example 10, p. 228], [R, Example 2.19, p. 29]).
Then there exist $\left(v_{n}\right)$ in $L^{1}\left(\left|m_{F}\right|_{n u c}\right)$ and $\left(U_{n}\right)$ in $\mathcal{N}(E, F)$ with $\lim _{n}\left\|v_{n}\right\|_{1}=0=\lim _{n}\left\|U_{n}\right\|_{n u c}$ and $\left(\alpha_{n}\right) \in \ell^{1}$ so that

$$
J^{-1}(H)=\sum_{n=1}^{\infty} \alpha_{n} v_{n} \otimes U_{n} \text { in } L^{1}\left(\left|m_{F}\right|_{n u c}\right) \hat{\otimes}_{\pi} \mathcal{N}(E, F) .
$$

Hence we have

$$
H=J\left(\sum_{n=1}^{\infty} \alpha_{n} v_{n} \otimes U_{n}\right)=\sum_{n=1}^{\infty} \alpha_{n} v_{n}(\cdot) U_{n} \text { in } L^{1}\left(\left|m_{F}\right|_{n u c}, \mathcal{N}(E, F)\right) .
$$

Therefore

$$
T(f)=\sum_{n=1}^{\infty} \alpha_{n} \int_{X} v_{n}(t) U_{n}(f(t)) d\left|m_{F}\right|_{n u c} \text { for } f \in C_{b}(X, E)
$$

Nuclear operators on $C_{b}(X, E)$

For $n \in \mathbb{N}$, we can choose sequences $\left(x_{n, k}^{\prime}\right)$ in E^{\prime} and $\left(y_{n, k}\right)$ in F so that

$$
U_{n}(x)=\sum_{k=1}^{\infty} x_{n, k}^{\prime}(x) y_{n, k} \text { for } x \in E
$$

Then for every $f \in C_{b}(X, E)$, we have

Nuclear operators on $C_{b}(X, E)$

For $n \in \mathbb{N}$, we can choose sequences $\left(x_{n, k}^{\prime}\right)$ in E^{\prime} and $\left(y_{n, k}\right)$ in F so that

$$
U_{n}(x)=\sum_{k=1}^{\infty} x_{n, k}^{\prime}(x) y_{n, k} \text { for } x \in E
$$

Then for every $f \in C_{b}(X, E)$, we have

$$
\begin{aligned}
& T(f)=\sum_{n=1}^{\infty} \alpha_{n} \int_{X}\left(v_{n}(t) \sum_{k=1}^{\infty} x_{n, k}^{\prime}(f(t)) y_{n, k}\right) d\left|m_{F}\right|_{n u c} \\
& =\sum_{n=1}^{\infty} \alpha_{n} \sum_{k=1}^{\infty}\left\|x_{n, k}^{\prime}\right\|_{E^{\prime}}\left\|y_{n, k}\right\|_{F}\left(\int_{X} v_{n}(t) \frac{x_{n, k}^{\prime}(f(t))}{\left\|x_{n, k}^{\prime}\right\|_{E^{\prime}}} d\left|m_{F}\right|_{n u c}\right) \frac{y_{n, k}}{\left\|y_{n, k}\right\|_{F}} .
\end{aligned}
$$

Nuclear operators on $C_{b}(X, E)$

Step 3. For $n, k \in \mathbb{N}$, denote

$$
\Phi_{n, k}(f):=\int_{X} v_{n}(t) \frac{x_{n, k}^{\prime}(f(t))}{\left\|x_{n, k}^{\prime}\right\|_{E^{\prime}}} d\left|m_{F}\right|_{n u c} \text { for } f \in C_{b}(X, E) .
$$

Now, we should show that $\left(\Phi_{n, k}\right)$ is β-equicontinuous sequence in $C_{b}(X, E)_{\beta}^{\prime}$. In view of $\left[F\right.$, Theorem 3.2] it is enough to prove that $\left(\left.\Phi_{n, k}\right|_{B_{1}}\right)$ is τ_{c}-equicontinuous sequence at 0 , where $B_{1}=\left\{f \in C_{b}(X, E):\|f\| \leq 1\right\}$

Step 4. To complete the proof we need to show $\|T\|_{\beta-n u c}=\left|m_{F}\right|_{\text {nuc }}(X)$.

Nuclear operators on $C_{b}(X, E)$

Step 3. For $n, k \in \mathbb{N}$, denote

$$
\Phi_{n, k}(f):=\int_{X} v_{n}(t) \frac{x_{n, k}^{\prime}(f(t))}{\left\|x_{n, k}^{\prime}\right\|_{E^{\prime}}} d\left|m_{F}\right|_{n u c} \text { for } f \in C_{b}(X, E) .
$$

Now, we should show that $\left(\Phi_{n, k}\right)$ is β-equicontinuous sequence in $C_{b}(X, E)_{\beta}^{\prime}$. view of $\left[F\right.$, Theorem 3.2] it is enough to prove that $\left(\Phi_{n, k} \mid B_{1}\right)$ is τ_{c}-equicontinuous sequence at 0 , where $B_{1}=\left\{f \in C_{b}(X, E):\|f\| \leq 1\right\}$

Step 4. To complete the proof we need to show $\|T\|_{\beta-n u c}=\left|m_{F}\right|_{\text {nuc }}(X)$.

Nuclear operators on $C_{b}(X, E)$

Step 3. For $n, k \in \mathbb{N}$, denote

$$
\Phi_{n, k}(f):=\int_{X} v_{n}(t) \frac{x_{n, k}^{\prime}(f(t))}{\left\|x_{n, k}^{\prime}\right\|_{E^{\prime}}} d\left|m_{F}\right|_{n u c} \text { for } f \in C_{b}(X, E)
$$

Now, we should show that ($\Phi_{n, k}$) is β-equicontinuous sequence in $C_{b}(X, E)_{\beta}^{\prime}$. In view of $\left[F\right.$, Theorem 3.2] it is enough to prove that $\left(\left.\Phi_{n, k}\right|_{B_{1}}\right)$ is τ_{c}-equicontinuous sequence at 0 , where $B_{1}=\left\{f \in C_{b}(X, E):\|f\| \leq 1\right\}$.

Step 4. To complete the proof we need to show $\|T\|_{\beta-n u c}=\left|m_{F}\right|_{\text {nuc }}(X)$.

Nuclear operators on $C_{b}(X, E)$

Step 3. For $n, k \in \mathbb{N}$, denote

$$
\Phi_{n, k}(f):=\int_{X} v_{n}(t) \frac{x_{n, k}^{\prime}(f(t))}{\left\|x_{n, k}^{\prime}\right\|_{E^{\prime}}} d\left|m_{F}\right|_{n u c} \text { for } f \in C_{b}(X, E)
$$

Now, we should show that $\left(\Phi_{n, k}\right)$ is β-equicontinuous sequence in $C_{b}(X, E)_{\beta}^{\prime}$. In view of $\left[F\right.$, Theorem 3.2] it is enough to prove that $\left(\left.\Phi_{n, k}\right|_{B_{1}}\right)$ is τ_{c}-equicontinuous sequence at 0 , where $B_{1}=\left\{f \in C_{b}(X, E):\|f\| \leq 1\right\}$.

Step 4. To complete the proof we need to show $\|T\|_{\beta-n u c}=\left|m_{F}\right|_{\text {nuc }}(X)$.

Nuclear operators on $C_{b}(X, E)$

Corollary 2.5. [St]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a $\left(\beta,\|\cdot\|_{F}\right)$-continuous strongly bounded linear operator and E^{\prime} has the Radon-Nikodym property. Then the following statements are equivalent:
(i) T is a nuclear operator between the locally convex space $\left(C_{b}(X, E), \beta\right)$ and the Banach space F.
(ii) $m_{F}(A) \in \mathcal{N}(E, F)$ for $A \in \mathcal{B} o$ and $\left|m_{F}\right|_{n u c} \in M^{+}(X)$ and there exists $H \in L^{1}\left(\left|m_{F}\right|_{\text {nuc }}, \mathcal{N}(E, F)\right)$ such that

$$
m_{F}(A)=\int_{A} H(t) d\left|m_{F}\right|_{\text {nuc }} \text { for } A \in \mathcal{B} o .
$$

In this case: $\|T\|_{\beta-\text { nuc }}=\left|m_{F}\right|_{\text {nuc }}(X)$.

Nuclearity of conjugate operator

Let $T: C_{b}(X, E) \rightarrow F$ be a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator and m be its representing measure. Then its conjugate operator $T^{\prime}: F^{\prime} \rightarrow M\left(X, E^{\prime}\right)$ is given by

$$
T^{\prime}\left(y^{\prime}\right):=m_{y^{\prime}} \text { for } y^{\prime} \in F^{\prime} .
$$

Corollary 2.6. [St]
 Assume that $T: C_{b}(X, E) \rightarrow F$ is a $(\beta,\|\cdot\| F)$-continuous linear operator. If E^{\prime} has the Radon-Nikodym property and F is reflexive, then the following statements are equivalent:

In this case: $\left\|T^{\prime}\right\|_{n u c}=\|T\|_{\beta-n u c}$.

Nuclearity of conjugate operator

Let $T: C_{b}(X, E) \rightarrow F$ be a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator and m be its representing measure. Then its conjugate operator $T^{\prime}: F^{\prime} \rightarrow M\left(X, E^{\prime}\right)$ is given by

$$
T^{\prime}\left(y^{\prime}\right):=m_{y^{\prime}} \text { for } y^{\prime} \in F^{\prime} .
$$

Corollary 2.6. [St]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator. If E^{\prime} has the Radon-Nikodym property and F is reflexive, then the following statements are equivalent:

Nuclearity of conjugate operator

Let $T: C_{b}(X, E) \rightarrow F$ be a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator and m be its representing measure. Then its conjugate operator $T^{\prime}: F^{\prime} \rightarrow M\left(X, E^{\prime}\right)$ is given by

$$
T^{\prime}\left(y^{\prime}\right):=m_{y^{\prime}} \text { for } y^{\prime} \in F^{\prime} .
$$

Corollary 2.6. [St]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator. If E^{\prime} has the Radon-Nikodym property and F is reflexive, then the following statements are equivalent:
(i) T is a nuclear operator between the locally convex space $\left(C_{b}(X, E), \beta\right)$ and the Banach space F.
(ii) T^{\prime} is nuclear.

In this case: $\left\|T^{\prime}\right\|_{\text {nuc }}=\|T\|_{\beta-\text { nuc }}$.

Nuclearity of conjugate operator

Let $T: C_{b}(X, E) \rightarrow F$ be a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator and m be its representing measure. Then its conjugate operator $T^{\prime}: F^{\prime} \rightarrow M\left(X, E^{\prime}\right)$ is given by

$$
T^{\prime}\left(y^{\prime}\right):=m_{y^{\prime}} \text { for } y^{\prime} \in F^{\prime} .
$$

Corollary 2.6. [St]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator. If E^{\prime} has the Radon-Nikodym property and F is reflexive, then the following statements are equivalent:
(i) T is a nuclear operator between the locally convex space $\left(C_{b}(X, E), \beta\right)$ and the Banach space F.
(ii) T^{\prime} is nuclear.

In this case: $\left\|T^{\prime}\right\|_{\text {nuc }}=\|T\|_{\beta \text {-nuc }}$.

Nuclearity of conjugate operator

Let $T: C_{b}(X, E) \rightarrow F$ be a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator and m be its representing measure. Then its conjugate operator $T^{\prime}: F^{\prime} \rightarrow M\left(X, E^{\prime}\right)$ is given by

$$
T^{\prime}\left(y^{\prime}\right):=m_{y^{\prime}} \text { for } y^{\prime} \in F^{\prime} .
$$

Corollary 2.6. [St]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator. If E^{\prime} has the Radon-Nikodym property and F is reflexive, then the following statements are equivalent:
(i) T is a nuclear operator between the locally convex space $\left(C_{b}(X, E), \beta\right)$ and the Banach space F.
(ii) T^{\prime} is nuclear.

In this case: $\left\|T^{\prime}\right\|_{\text {nuc }}=\|T\|_{\beta \text {-nuc }}$.

Nuclearity of conjugate operator

Let $T: C_{b}(X, E) \rightarrow F$ be a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator and m be its representing measure. Then its conjugate operator $T^{\prime}: F^{\prime} \rightarrow M\left(X, E^{\prime}\right)$ is given by

$$
T^{\prime}\left(y^{\prime}\right):=m_{y^{\prime}} \text { for } y^{\prime} \in F^{\prime} .
$$

Corollary 2.6. [St]

Assume that $T: C_{b}(X, E) \rightarrow F$ is a $\left(\beta,\|\cdot\|_{F}\right)$-continuous linear operator. If E^{\prime} has the Radon-Nikodym property and F is reflexive, then the following statements are equivalent:
(i) T is a nuclear operator between the locally convex space $\left(C_{b}(X, E), \beta\right)$ and the Banach space F.
(ii) T^{\prime} is nuclear.

In this case: $\left\|T^{\prime}\right\|_{\text {nuc }}=\|T\|_{\beta-n u c}$.

References

[A] Alexander, G., Linear operators on the space of vector-valued continuous functions, Ph.D. thesis, New Mexico State university, Las Cruces, New Mexico, 1976.
[B] Buck, R.C., Bounded continuous functions on a locally compact space, Michigan Math. J., 5 (1958), 95-104.
[DU] Diestel, J. and J.J. Uhl, Vector Measures, Amer. Math. Soc., Math. Surveys 15, Providence, RI, 1977.
[F] Fontenot, D., Strict topologies for vector-valued functions, Canad. J. Math., 26 no. 4 (1974), 841-853.
[Gi] Giles, R., A generalization of the strict topology, Trans. Amer. Math. Soc., 161 (1971), 467-474.
[Go] Goodrich, R.K., A Riesz representation theorem, Proc. Amer. Math. Soc., 24 (1970), 629-636.
[K] Khan, L.A., The strict topology on a space of vector-valued functions, Proc. Edinburgh Math. Soc., 22 no. 1 (1979), 35-41.
[KC] Khurana, S.S., S.A. Choo, Strict topology and P-spaces, Proc. Amer. Math. Soc., 61 (1976), 280-284.

References

[N] Nowak, M., A Riesz representation theory for completely regular Hausdorff spaces and its applications, Open Math., 14 (2016), 474-496.
[NS] Nowak, M., J. Stochmal, Nuclear operators on $C_{b}(X, E)$ and the strict topology, Math. Slovaca, 68 no. 1 (2018), 135-146.
[P] Pietsch, A., Nuclear Locally Convex Spaces, Springer-Verlag, 1972.
[Po] Popa, D., Nuclear operators on $C(T, X)$, Stud. Cerc. Mat., 42 no. 1 (1990), 47-50.
[R] Ryan, R., Introduction to Tensor Products of Banach Spaces, Springer Monographs in Math., 2002.
[SS] Saab, P., B. Smith, Nuclear operators on spaces of continuous vector-valued functions, Glasgow Math. J., 33 no. 2 (1994), 223-230.
[Sch] Schaefer, H.H., Topological Vector Spaces, Springer-Verlag, New York, Heidelberg, Berlin, 1971.
[S] Schwartz, L., Séminaire Schwartz, Exposé 13, Université de Paris, (1953/54).
[St] Stochmal, J., A characterization of nuclear operators on spaces of vector-valued continuous functions with the strict topology, submitted.
[To] Tong, A.E., Nuclear mappings on $C(X)$, Math. Ann. 194 (1971), 213-224.

References

Thank you for your attention!

