Essential norms of pointwise multipliers between distinct Köthe spaces Positivity XI

Jakub Tomaszewski

Poznań University of Technology

Ljubljana, 2023

Jakub Tomaszewski Essential norms of pointwise multipliers between distinct Köthe s

A 3 b

Contents

2 Definitions

- Function spaces
- Essential norms
- Pointwise multipliers
- Order continuity

3 Results

- Theorems
- Applications

• PROBLEM: Find $\|M_{\lambda} \colon X \to X\|_{e}$,

・ロト ・回ト ・ヨト ・ヨト

3

• PROBLEM: Find $||M_{\lambda} \colon X \to X||_e$, where X is the Lebesgue space ℓ_p ,

・ 戸 ト ・ ヨ ト ・ ヨ ト

3

PROBLEM: Find ||M_λ: X → X||_e, where X is the Lebesgue space ℓ_p, Lorentz space ℓ_{p,q} or Marcinkiewicz space ℓ_{p,∞},

• • = • • = •

• PROBLEM: Find $||M_{\lambda} \colon X \to X||_{e}$, where X is the Lebesgue space ℓ_{p} , Lorentz space $\ell_{p,q}$ or Marcinkiewicz space $\ell_{p,\infty}$, Orlicz space ℓ_{M} ,

「ヨト・ヨト・ヨト

• PROBLEM: Find $||M_{\lambda}: X \to X||_{e}$, where X is the Lebesgue space ℓ_{p} , Lorentz space $\ell_{p,q}$ or Marcinkiewicz space $\ell_{p,\infty}$, Orlicz space ℓ_{M} , Orlicz–Lorentz space λ_{M} ,

PROBLEM: Find ||M_λ: X → X||_e, where X is the Lebesgue space ℓ_p, Lorentz space ℓ_{p,q} or Marcinkiewicz space ℓ_{p,∞}, Orlicz space ℓ_M, Orlicz–Lorentz space λ_M, Nakano space ℓ_M,

- 3 b - 4 3 b

PROBLEM: Find ||M_λ: X → X||_e, where X is the Lebesgue space ℓ_p, Lorentz space ℓ_{p,q} or Marcinkiewicz space ℓ_{p,∞}, Orlicz space ℓ_M, Orlicz–Lorentz space λ_M, Nakano space ℓ_M, Cesáro space ces_p,

PROBLEM: Find ||M_λ: X → X||_e, where X is the Lebesgue space ℓ_p, Lorentz space ℓ_{p,q} or Marcinkiewicz space ℓ_{p,∞}, Orlicz space ℓ_M, Orlicz–Lorentz space λ_M, Nakano space ℓ_M, Cesáro space ces_p, Cesáro–Orlicz space ces_M, ...

- PROBLEM: Find ||M_λ: X → X||_e, where X is the Lebesgue space ℓ_p, Lorentz space ℓ_{p,q} or Marcinkiewicz space ℓ_{p,∞}, Orlicz space ℓ_M, Orlicz–Lorentz space λ_M, Nakano space ℓ_M, Cesáro space ces_p, Cesáro–Orlicz space ces_M, ...
- ANSWER: $\limsup_{n \to \infty} |\lambda_n|$.

- PROBLEM: Find ||M_λ: X → X||_e, where X is the Lebesgue space ℓ_p, Lorentz space ℓ_{p,q} or Marcinkiewicz space ℓ_{p,∞}, Orlicz space ℓ_M, Orlicz–Lorentz space λ_M, Nakano space ℓ_M, Cesáro space ces_p, Cesáro–Orlicz space ces_M, ...
- ANSWER: $\limsup_{n \to \infty} |\lambda_n|$.
- Voigt's preprint
 - J. Voigt, The essential norm of multiplication operators on $L_p(\mu)$, Afrika Matematika 33 (2022).

伺下 イヨト イヨト

- PROBLEM: Find ||M_λ: X → X||_e, where X is the Lebesgue space ℓ_p, Lorentz space ℓ_{p,q} or Marcinkiewicz space ℓ_{p,∞}, Orlicz space ℓ_M, Orlicz–Lorentz space λ_M, Nakano space ℓ_M, Cesáro space ces_p, Cesáro–Orlicz space ces_M, ...
- ANSWER: $\limsup_{n \to \infty} |\lambda_n|$.
- Voigt's preprint
 - J. Voigt, The essential norm of multiplication operators on $L_p(\mu)$, Afrika Matematika 33 (2022).
- Schep's response
 - A. R. Schep, *The essential spectrum, norm, and spectral radius of abstract multiplication operators*, Concrete Operators 10 (2023).

(ロ) (同) (三) (三) 三

What about the non-algebraic case?

Find $\|M_{\lambda} \colon X \to Y\|_{e}$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

What about the non-algebraic case?

Find
$$\|M_{\lambda} \colon X \to Y\|_{e}$$

T. Kiwerski and J. Tomaszewski, Essential norms of pointwise multipliers acting between Köthe spaces: The non-algebraic case, preprint available on arXiv.org.

Function spaces Essential norms Pointwise multipliers Order continuity

Contents

2 Definitions

Function spaces

- Essential norms
- Pointwise multipliers
- Order continuity

3 Results

- Theorems
- Applications

• • = • • = •

Function spaces Essential norms Pointwise multipliers Order continuity

Definition: Köthe space

A Banach space $X \subset L_0(\mu)$ is said to be a **Köthe space** on a complete σ -finite measure space (Ω, Σ, μ) , if

3

Function spaces Essential norms Pointwise multipliers Order continuity

Definition: Köthe space

A Banach space $X \subset L_0(\mu)$ is said to be a **Köthe space** on a complete σ -finite measure space (Ω, Σ, μ) , if

(i) X satisfies the **ideal property**, that is, if $g \in X$, $f \in L_0(\mu)$ and $|f| \leq |g|$, then $f \in X$ and $||f||_X \leq ||g||_X$.

-

Function spaces Essential norms Pointwise multipliers Order continuity

Definition: Köthe space

A Banach space $X \subset L_0(\mu)$ is said to be a **Köthe space** on a complete σ -finite measure space (Ω, Σ, μ) , if

- (i) X satisfies the **ideal property**, that is, if $g \in X$, $f \in L_0(\mu)$ and $|f| \leq |g|$, then $f \in X$ and $||f||_X \leq ||g||_X$.
- (ii) X has a weak unit, that is, an element $f \in X$ such that f > 0

Function spaces Essential norms Pointwise multipliers Order continuity

Definition: Köthe space

A Banach space $X \subset L_0(\mu)$ is said to be a **Köthe space** on a complete σ -finite measure space (Ω, Σ, μ) , if

- (i) X satisfies the **ideal property**, that is, if $g \in X$, $f \in L_0(\mu)$ and $|f| \leq |g|$, then $f \in X$ and $||f||_X \leq ||g||_X$.
- (ii) X has a weak unit, that is, an element $f \in X$ such that f > 0

(iii) X has the **Fatou property**, that is, $f \in L^0(\mu)$, $(f_n) \subset X$, $\sup\{\|f_n\|_X : n \in \mathbb{N}\} < \infty$ and $|f_n| \uparrow |f|$, then $f \in X$ with $\|f\|_X = \sup\{\|f_n\|_X : n \in \mathbb{N}\}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Function spaces Essential norms Pointwise multipliers Order continuity

Definition: Köthe space

A Banach space $X \subset L_0(\mu)$ is said to be a **Köthe space** on a complete σ -finite measure space (Ω, Σ, μ) , if

- (i) X satisfies the **ideal property**, that is, if $g \in X$, $f \in L_0(\mu)$ and $|f| \leq |g|$, then $f \in X$ and $||f||_X \leq ||g||_X$.
- (ii) X has a weak unit, that is, an element $f \in X$ such that f > 0

(iii) X has the **Fatou property**, that is, $f \in L^0(\mu)$, $(f_n) \subset X$, $\sup\{\|f_n\|_X : n \in \mathbb{N}\} < \infty$ and $|f_n| \uparrow |f|$, then $f \in X$ with $\|f\|_X = \sup\{\|f_n\|_X : n \in \mathbb{N}\}$

Examples: Lebesgue spaces $L_p(\mu)$,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Function spaces Essential norms Pointwise multipliers Order continuity

Definition: Köthe space

A Banach space $X \subset L_0(\mu)$ is said to be a **Köthe space** on a complete σ -finite measure space (Ω, Σ, μ) , if

- (i) X satisfies the **ideal property**, that is, if $g \in X$, $f \in L_0(\mu)$ and $|f| \leq |g|$, then $f \in X$ and $||f||_X \leq ||g||_X$.
- (ii) X has a weak unit, that is, an element $f \in X$ such that f > 0

(iii) X has the **Fatou property**, that is, $f \in L^{0}(\mu)$, $(f_{n}) \subset X$, $\sup\{\|f_{n}\|_{X} : n \in \mathbb{N}\} < \infty$ and $|f_{n}| \uparrow |f|$, then $f \in X$ with $\|f\|_{X} = \sup\{\|f_{n}\|_{X} : n \in \mathbb{N}\}$

Examples: Lebesgue spaces $L_p(\mu)$, Orlicz spaces $L_M(\mu)$,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Function spaces Essential norms Pointwise multipliers Order continuity

Definition: Köthe space

A Banach space $X \subset L_0(\mu)$ is said to be a **Köthe space** on a complete σ -finite measure space (Ω, Σ, μ) , if

- (i) X satisfies the **ideal property**, that is, if $g \in X$, $f \in L_0(\mu)$ and $|f| \leq |g|$, then $f \in X$ and $||f||_X \leq ||g||_X$.
- (ii) X has a weak unit, that is, an element $f \in X$ such that f > 0

(iii) X has the **Fatou property**, that is, $f \in L^{0}(\mu)$, $(f_{n}) \subset X$, $\sup\{\|f_{n}\|_{X} : n \in \mathbb{N}\} < \infty$ and $|f_{n}| \uparrow |f|$, then $f \in X$ with $\|f\|_{X} = \sup\{\|f_{n}\|_{X} : n \in \mathbb{N}\}$

Examples: Lebesgue spaces $L_p(\mu)$, Orlicz spaces $L_M(\mu)$, Lorentz spaces Λ_{φ} or $L_{p,q}$ and Marcinkiewicz spaces M_{φ} or $L_{p,\infty}$,

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Function spaces Essential norms Pointwise multipliers Order continuity

Definition: Köthe space

A Banach space $X \subset L_0(\mu)$ is said to be a **Köthe space** on a complete σ -finite measure space (Ω, Σ, μ) , if

- (i) X satisfies the **ideal property**, that is, if $g \in X$, $f \in L_0(\mu)$ and $|f| \leq |g|$, then $f \in X$ and $||f||_X \leq ||g||_X$.
- (ii) X has a weak unit, that is, an element $f \in X$ such that f > 0

(iii) X has the **Fatou property**, that is, $f \in L^{0}(\mu)$, $(f_{n}) \subset X$, $\sup\{\|f_{n}\|_{X} : n \in \mathbb{N}\} < \infty$ and $|f_{n}| \uparrow |f|$, then $f \in X$ with $\|f\|_{X} = \sup\{\|f_{n}\|_{X} : n \in \mathbb{N}\}$

Examples: Lebesgue spaces $L_{\rho}(\mu)$, Orlicz spaces $L_{M}(\mu)$, Lorentz spaces Λ_{φ} or $L_{\rho,q}$ and Marcinkiewicz spaces M_{φ} or $L_{\rho,\infty}$, Musielak–Orlicz spaces $L_{M}(\mu)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Function spaces Essential norms Pointwise multipliers Order continuity

Definition: Köthe space

A Banach space $X \subset L_0(\mu)$ is said to be a **Köthe space** on a complete σ -finite measure space (Ω, Σ, μ) , if

- (i) X satisfies the **ideal property**, that is, if $g \in X$, $f \in L_0(\mu)$ and $|f| \leq |g|$, then $f \in X$ and $||f||_X \leq ||g||_X$.
- (ii) X has a weak unit, that is, an element $f \in X$ such that f > 0

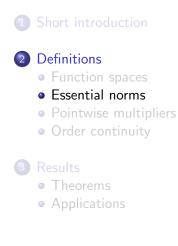
(iii) X has the **Fatou property**, that is, $f \in L^{0}(\mu)$, $(f_{n}) \subset X$, $\sup\{\|f_{n}\|_{X} : n \in \mathbb{N}\} < \infty$ and $|f_{n}| \uparrow |f|$, then $f \in X$ with $\|f\|_{X} = \sup\{\|f_{n}\|_{X} : n \in \mathbb{N}\}$

Examples: Lebesgue spaces $L_p(\mu)$, Orlicz spaces $L_M(\mu)$, Lorentz spaces Λ_{φ} or $L_{p,q}$ and Marcinkiewicz spaces M_{φ} or $L_{p,\infty}$, Musielak–Orlicz spaces $L_M(\mu)$ but not Morrey–Hardy–Sobolev–Besov–Triebel–Lizorkin spaces, etc.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Function spaces Essential norms Pointwise multipliers Order continuity

Contents



▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Function spaces Essential norms Pointwise multipliers Order continuity

Essential norm of operator

Definition: Essential norm

Let X, Y be a Banach spaces. Denote by $\mathcal{K}(X, Y)$ ideal of compact operators acting between X and Y.

・ 同 ト ・ ヨ ト ・ ヨ ト

Function spaces Essential norms Pointwise multipliers Order continuity

Essential norm of operator

Definition: Essential norm

Let X, Y be a Banach spaces. Denote by $\mathscr{K}(X, Y)$ ideal of compact operators acting between X and Y. By the **essential norm** of an operator $T: X \to Y$ acting between two Banach spaces we understand

・ 同 ト ・ ヨ ト ・ ヨ ト …

Function spaces Essential norms Pointwise multipliers Order continuity

Essential norm of operator

Definition: Essential norm

Let X, Y be a Banach spaces. Denote by $\mathscr{K}(X, Y)$ ideal of compact operators acting between X and Y. By the **essential norm** of an operator $T: X \to Y$ acting between two Banach spaces we understand

$$\begin{split} \|T: X \to Y\|_e &\coloneqq \|T: X \to Y\|_{\mathscr{L}(X,Y)/\mathscr{K}(X,Y)} \\ &= \operatorname{dist}_{\mathscr{L}(X,Y)}(T: X \to Y, \mathscr{K}(X,Y)) \\ &= \inf\{\|T - K\|_{X \to Y} : K \in \mathscr{K}(X,Y)\}. \end{split}$$

Function spaces Essential norms Pointwise multipliers Order continuity

Contents

3 Results

- Theorems
- Applications

• • = • • = •

Function spaces Essential norms Pointwise multipliers Order continuity

Definition: Space of pointwise multipliers

Let X and Y be two Köthe spaces defined on the same σ -finite measure space (Ω, Σ, μ) .

イロト イボト イヨト イヨト

э

Function spaces Essential norms Pointwise multipliers Order continuity

Definition: Space of pointwise multipliers

Let X and Y be two Köthe spaces defined on the same σ -finite measure space (Ω, Σ, μ) . The space of **pointwise multipliers** M(X, Y) is defined as a set

イロト イボト イヨト イヨト

э

Function spaces Essential norms Pointwise multipliers Order continuity

Definition: Space of pointwise multipliers

Let X and Y be two Köthe spaces defined on the same σ -finite measure space (Ω, Σ, μ) . The space of **pointwise multipliers** M(X, Y) is defined as a set

 $M(X, Y) \coloneqq \{ f \in L_0(\Omega) \colon fg \in Y \text{ for all } g \in X \}$

イロト イボト イヨト イヨト

Function spaces Essential norms Pointwise multipliers Order continuity

Definition: Space of pointwise multipliers

Let X and Y be two Köthe spaces defined on the same σ -finite measure space (Ω, Σ, μ) . The space of **pointwise multipliers** M(X, Y) is defined as a set

 $M(X, Y) \coloneqq \{ f \in L_0(\Omega) \colon fg \in Y \text{ for all } g \in X \}$

equipped with the natural operator norm

$$||f||_{M(X,Y)} = \sup_{||g||_X=1} ||fg||_Y.$$

イロト イボト イヨト イヨト

Short introduction Definitions Results Definitions

Function spaces Essential norms Pointwise multipliers Order continuity

Definition: Space of pointwise multipliers

Let X and Y be two Köthe spaces defined on the same σ -finite measure space (Ω, Σ, μ) . The space of **pointwise multipliers** M(X, Y) is defined as a set

 $M(X, Y) \coloneqq \{ f \in L_0(\Omega) \colon fg \in Y \text{ for all } g \in X \}$

equipped with the natural operator norm

$$||f||_{M(X,Y)} = \sup_{||g||_X=1} ||fg||_Y.$$

Every symbol $\lambda \in M(X, Y)$ induces **multiplication operator** $M_{\lambda} \colon X \to Y$ given by

$$M_{\lambda}x := \lambda x$$
 for $x \in X$

イロト イボト イヨト イヨト

Function spaces Essential norms Pointwise multipliers Order continuity

Some examples of pointwise multipliers

• if
$$1 \leq p < q \leq \infty$$
 then $M(L_q, L_p) \equiv L_r$, where $1/r = 1/p + 1/q$,

< ロ > < 同 > < 三 > < 三 >

Function spaces Essential norms Pointwise multipliers Order continuity

Some examples of pointwise multipliers

• if
$$1 \leq p < q \leq \infty$$
 then $M(L_q, L_p) \equiv L_r$, where $1/r = 1/p + 1/q$, and $M(L_p, L_q) = \{0\}$.

< ロ > < 同 > < 三 > < 三 >

Function spaces Essential norms Pointwise multipliers Order continuity

Some examples of pointwise multipliers

- if $1 \leq p < q \leq \infty$ then $M(L_q, L_p) \equiv L_r$, where 1/r = 1/p + 1/q, and $M(L_p, L_q) = \{0\}$.
- $M(\ell_p, \ell_q) \equiv \ell_r$ and

< 同 ト < 三 ト < 三 ト

Function spaces Essential norms Pointwise multipliers Order continuity

Some examples of pointwise multipliers

• if $1 \leq p < q \leq \infty$ then $M(L_q, L_p) \equiv L_r$, where 1/r = 1/p + 1/q, and $M(L_p, L_q) = \{0\}$.

•
$$M(\ell_p, \ell_q) \equiv \ell_r$$
 and $M(\ell_q, \ell_p) \equiv \ell_\infty$.

Function spaces Essential norms Pointwise multipliers Order continuity

Some examples of pointwise multipliers

• if $1 \leq p < q \leq \infty$ then $M(L_q, L_p) \equiv L_r$, where 1/r = 1/p + 1/q, and $M(L_p, L_q) = \{0\}$.

•
$$M(\ell_p, \ell_q) \equiv \ell_r$$
 and $M(\ell_q, \ell_p) \equiv \ell_\infty$.

•
$$M(L_M, L_N) = L_{N \ominus M}$$

Function spaces Essential norms Pointwise multipliers Order continuity

Some examples of pointwise multipliers

• if $1 \leq p < q \leq \infty$ then $M(L_q, L_p) \equiv L_r$, where 1/r = 1/p + 1/q, and $M(L_p, L_q) = \{0\}$.

•
$$M(\ell_p, \ell_q) \equiv \ell_r$$
 and $M(\ell_q, \ell_p) \equiv \ell_\infty$.

•
$$M(L_M, L_N) = L_{N \ominus M}$$

•
$$M(X,X)\equiv L_{\infty}(\mu)$$
 for any Köthe space X.

Definitions Results

Order continuity

Contents

Definitions 2

- Function spaces
- Essential norms
- Pointwise multipliers
- Order continuity

- Theorems
- Applications

• • = • • = •

Short introduction Definitions Results Define the second s

Definition: Order continuity

Let X be a Banach function space. We say that $f \in X$ is an order continuous element if

$$\|f\chi_{A_n}\|_X\to 0$$

for any sequence (A_n) satisfying $A_n \downarrow \emptyset$, that is, $\chi_{A_n} \downarrow 0$ as $n \to \infty$.

Definition: Order continuity

Let X be a Banach function space. We say that $f \in X$ is an order continuous element if

$$\|f\chi_{A_n}\|_X\to 0$$

for any sequence (A_n) satisfying $A_n \downarrow \emptyset$, that is, $\chi_{A_n} \downarrow 0$ as $n \to \infty$. By X_o we denote the subspace of all order continuous elements of X.

くロ と く 同 と く ヨ と 一

Definition: Order continuity

Let X be a Banach function space. We say that $f \in X$ is an order continuous element if

$$\|f\chi_{A_n}\|_X\to 0$$

for any sequence (A_n) satisfying $A_n \downarrow \emptyset$, that is, $\chi_{A_n} \downarrow 0$ as $n \to \infty$. By X_o we denote the subspace of all order continuous elements of X.

X is called an **order continuous** space if $X = X_o$.

Definition: Order continuity

Let X be a Banach function space. We say that $f \in X$ is an order continuous element if

$$\|f\chi_{A_n}\|_X\to 0$$

for any sequence (A_n) satisfying $A_n \downarrow \emptyset$, that is, $\chi_{A_n} \downarrow 0$ as $n \to \infty$. By X_o we denote the subspace of all order continuous elements of X.

X is called an **order continuous** space if $X = X_o$.

•
$$(L_p(\mu))_o = L_p(\mu)$$
 for $1 \leqslant p < \infty$,

Definition: Order continuity

Let X be a Banach function space. We say that $f \in X$ is an order continuous element if

$$\|f\chi_{A_n}\|_X\to 0$$

for any sequence (A_n) satisfying $A_n \downarrow \emptyset$, that is, $\chi_{A_n} \downarrow 0$ as $n \to \infty$. By X_o we denote the subspace of all order continuous elements of X.

X is called an **order continuous** space if $X = X_o$.

•
$$(L_p(\mu))_o = L_p(\mu)$$
 for $1 \leqslant p < \infty$,

•
$$(L_\infty)_o=\{0\}$$
, but $(\ell_\infty)_o=c_0$.

Theorems Applications

Contents

< ∃ →

Let X and Y be two Köthe spaces both defined on the same σ -finite non-atomic measure space (Ω, Σ, μ) .

Let X and Y be two Köthe spaces both defined on the same σ -finite non-atomic measure space (Ω, Σ, μ) . Suppose that either the space X is order continuous or the space Y is reflexive.

伺 ト イヨ ト イヨ ト

Let X and Y be two Köthe spaces both defined on the same σ -finite non-atomic measure space (Ω, Σ, μ) . Suppose that either the space X is order continuous or the space Y is reflexive. Then

$$\|M_{\lambda} \colon X \to Y\|_{e} = \|\lambda\|_{M(X,Y)}.$$
(1)

伺 と く ヨ と く ヨ と …

Let X and Y be two Köthe spaces both defined on the same σ -finite non-atomic measure space (Ω, Σ, μ) . Suppose that either the space X is order continuous or the space Y is reflexive. Then

$$\|M_{\lambda}\colon X \to Y\|_{e} = \|\lambda\|_{M(X,Y)}.$$
(1)

In particular, there are no non-trivial compact multiplication operators between X and Y.

Theorem: Essential norm of multipliers between Köthe sequence spaces

Let X and Y be two Köthe spaces both defined on $(\mathbb{N}, 2^{\mathbb{N}}, \mu)$, that is, on the purely atomic measure space.

• • = • • = •

Theorem: Essential norm of multipliers between Köthe sequence spaces

Let X and Y be two Köthe spaces both defined on $(\mathbb{N}, 2^{\mathbb{N}}, \mu)$, that is, on the purely atomic measure space. Suppose that either the space X is reflexive or the space Y is order continuous.

Theorem: Essential norm of multipliers between Köthe sequence spaces

Let X and Y be two Köthe spaces both defined on $(\mathbb{N}, 2^{\mathbb{N}}, \mu)$, that is, on the purely atomic measure space. Suppose that either the space X is reflexive or the space Y is order continuous. Then

$$\|M_{\lambda}\colon X\to Y\|_{e}=\lim_{n\to\infty}\left\|\lambda\chi_{\{n,n+1,\ldots\}}\right\|_{M(X,Y)}.$$

Theorems Applications

Corollary

Let X be an order continuous Köthe sequence space. Then

$$\|M_{\lambda} \colon X \circlearrowleft \|_{e} = \lim_{n \to \infty} \left\| \lambda \chi_{\{n, n+1, \dots\}} \right\|_{\ell_{\infty}}$$
$$= \lim_{n \to \infty} \left(\sup_{m \ge n} |\lambda_{m}| \right) = \limsup_{n \to \infty} |\lambda_{n}|.$$

< ロ > < 同 > < 三 > < 三 > 、

э

Theorems Applications

Corollary

Let X be an order continuous Köthe sequence space. Then

$$\|M_{\lambda} \colon X \circlearrowleft \|_{e} = \lim_{n \to \infty} \left\| \lambda \chi_{\{n, n+1, \dots\}} \right\|_{\ell_{\infty}}$$
$$= \lim_{n \to \infty} \left(\sup_{m \ge n} |\lambda_{m}| \right) = \limsup_{n \to \infty} |\lambda_{n}|.$$

Between *ideals* and ideals

Let X and Y be two Köthe sequence spaces. Suppose that either the space X is reflexive or the space Y is order continuous.

Theorems Applications

Corollary

Let X be an order continuous Köthe sequence space. Then

$$\|M_{\lambda} \colon X \circlearrowleft \|_{e} = \lim_{n \to \infty} \left\| \lambda \chi_{\{n, n+1, \dots\}} \right\|_{\ell_{\infty}}$$
$$= \lim_{n \to \infty} \left(\sup_{m \ge n} |\lambda_{m}| \right) = \limsup_{n \to \infty} |\lambda_{n}|.$$

Between *ideals* and ideals

Let X and Y be two Köthe sequence spaces. Suppose that either the space X is reflexive or the space Y is order continuous. Then

$$\mathsf{dist}_{\mathscr{L}(X,Y)}(M_{\lambda}\colon X\to Y,\mathscr{K}(X,Y))=\mathsf{dist}_{M(X,Y)}(\lambda,M(X,Y)_o).$$

Theorems Applications

Corollary

Let X be an order continuous Köthe sequence space. Then

$$\|M_{\lambda} \colon X \circlearrowleft \|_{e} = \lim_{n \to \infty} \left\| \lambda \chi_{\{n, n+1, \dots\}} \right\|_{\ell_{\infty}}$$
$$= \lim_{n \to \infty} \left(\sup_{m \ge n} |\lambda_{m}| \right) = \limsup_{n \to \infty} |\lambda_{n}|.$$

Between *ideals* and ideals

Let X and Y be two Köthe sequence spaces. Suppose that either the space X is reflexive or the space Y is order continuous. Then

$$\operatorname{dist}_{\mathscr{L}(X,Y)}(M_{\lambda}\colon X\to Y,\mathscr{K}(X,Y))=\operatorname{dist}_{M(X,Y)}(\lambda,M(X,Y)_{o}).$$

In particular, the multiplication operator $M_{\lambda} \colon X \to Y$ is compact if, and only if, $\lambda \in M(X, Y)_o$.

Theorems Applications

Theorem: Essential norm of multipliers between general Köthe spaces

Let X and Y be two Köthe spaces both defined on the same σ -finite measure space (Ω, Σ, μ) .

伺 ト イヨト イヨト

Theorems Applications

Theorem: Essential norm of multipliers between general Köthe spaces

Let X and Y be two Köthe spaces both defined on the same σ -finite measure space (Ω, Σ, μ) . Let, moreover, Ω_c and Ω_a denote the non-atomic and the purely atomic part of (Ω, Σ, μ) , respectively.

• • = • • = •

Theorems Applications

Theorem: Essential norm of multipliers between general Köthe spaces

Let X and Y be two Köthe spaces both defined on the same σ -finite measure space (Ω, Σ, μ) . Let, moreover, Ω_c and Ω_a denote the non-atomic and the purely atomic part of (Ω, Σ, μ) , respectively. Suppose that one of the spaces X or Y is reflexive.

Theorem: Essential norm of multipliers between general Köthe spaces

Let X and Y be two Köthe spaces both defined on the same σ -finite measure space (Ω, Σ, μ) . Let, moreover, Ω_c and Ω_a denote the non-atomic and the purely atomic part of (Ω, Σ, μ) , respectively. Suppose that one of the spaces X or Y is reflexive. Then

$$\begin{split} \|M_{\lambda} \colon X \to Y\|_{e} \\ &\approx \max \left\{ \|M_{\lambda} \colon X|_{\Omega_{c}} \to Y|_{\Omega_{c}} \|_{e}, \|M_{\lambda} \colon X|_{\Omega_{a}} \to Y|_{\Omega_{a}} \|_{e} \right\} \end{split}$$

with an equivalence involving universal constants only.

Theorems Applications

Contents

< E

< ∃ →

Applications

Pitt's theorem

Every operator from ℓ_p into ℓ_q is compact if, and only if, $1 \leq q (with the convention that whenever <math>p = \infty$, then we are working with c_0 instead of ℓ_{∞}), or, pictographically,

$$\mathscr{L}(\ell_p,\ell_q) = \mathscr{K}(\ell_p,\ell_q)$$

L. Pitt, A compactness condition for linear operators on function spaces, J. Operator Theory 1 (1979), 49-54.

< 同 > < 三 > < 三 > -

Applications

Pitt's theorem

Every operator from ℓ_p into ℓ_q is compact if, and only if, $1 \leq q (with the convention that whenever <math>p = \infty$, then we are working with c_0 instead of ℓ_{∞}), or, pictographically,

$$\mathscr{L}(\ell_p,\ell_q) = \mathscr{K}(\ell_p,\ell_q)$$

L. Pitt, A compactness condition for linear operators on function spaces, J. Operator Theory 1 (1979), 49-54.

Theorem: Pitt's theorem for pointwise multipliers

Let X and Y be two Köthe sequence spaces.

Applications

Pitt's theorem

Every operator from ℓ_p into ℓ_q is compact if, and only if, $1 \leq q (with the convention that whenever <math>p = \infty$, then we are working with c_0 instead of ℓ_{∞}), or, pictographically,

$$\mathscr{L}(\ell_p,\ell_q) = \mathscr{K}(\ell_p,\ell_q)$$

L. Pitt, A compactness condition for linear operators on function spaces, J. Operator Theory 1 (1979), 49-54.

Theorem: Pitt's theorem for pointwise multipliers

Let X and Y be two Köthe sequence spaces. Then every multiplication operator M_{λ} acting from X into Y is compact if, and only if, the space M(X, Y) is order continuous.

< ロ > < 同 > < 回 > < 回 >

Theorems Applications

Definition: Spaces of analytic functions

Let $\mathscr{H}(\mathbb{D})$ be the space of all analytic functions on the unit disc $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorems Applications

Definition: Spaces of analytic functions

Let $\mathscr{H}(\mathbb{D})$ be the space of all analytic functions on the unit disc $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$. With a linear subspace, say $H(\mathbb{D})$, of $\mathscr{H}(\mathbb{D})$ we can associate the space

$$\widehat{H}(\mathbb{D}) := \left\{ \left\{ \widehat{f}(n) \right\}_{n=0}^{\infty} : \sum_{n=0}^{\infty} \widehat{f}(n) \chi_n \in H(\mathbb{D}) \right\}$$

of Taylor's coefficients of functions from $H(\mathbb{D})$, where $\chi_n(z) = z^n$ for $z \in \mathbb{D}$ and n = 0, 1, 2, ...

- 4 同 6 4 日 6 - 日 5 - 日

Theorems Applications

Definition: Fourier multipliers

Let $H(\mathbb{D})$ be a Banach space of analytic function on the unit disc and Y be a Köthe sequence space.

伺 ト イヨト イヨト

Theorems Applications

Definition: Fourier multipliers

Let $H(\mathbb{D})$ be a Banach space of analytic function on the unit disc and Y be a Köthe sequence space. For $\lambda \in M(\widehat{H}(\mathbb{D}), Y)$ we define the **Fourier multiplier** $\mathscr{M}_{\lambda} \colon H(\mathbb{D}) \to Y$ as

$$\mathscr{M}_{\lambda} \colon f \mapsto \left\{\lambda_n \widehat{f}(n)\right\}_{n=0}^{\infty},$$

where $f = \sum_{n=0}^{\infty} \widehat{f}(n) \chi_n \in H(\mathbb{D})$.

Theorems Applications

Theorem: Essential norm of Fourier multiplier

Let $H(\mathbb{D})$ be a Banach space of analytic function on the unit disc intermediate between $H_{\infty}(\mathbb{D})$ and $H_2(\mathbb{D})$, that is, $H_{\infty} \hookrightarrow H \hookrightarrow H_2$.

伺 ト イヨ ト イヨ ト

Theorem: Essential norm of Fourier multiplier

Let $H(\mathbb{D})$ be a Banach space of analytic function on the unit disc intermediate between $H_{\infty}(\mathbb{D})$ and $H_2(\mathbb{D})$, that is, $H_{\infty} \hookrightarrow H \hookrightarrow H_2$. Moreover, let Y be an order continuous Köthe sequence space.

何 ト イヨ ト イヨ ト

Theorems Applications

Theorem: Essential norm of Fourier multiplier

Let $H(\mathbb{D})$ be a Banach space of analytic function on the unit disc intermediate between $H_{\infty}(\mathbb{D})$ and $H_2(\mathbb{D})$, that is, $H_{\infty} \hookrightarrow H \hookrightarrow H_2$. Moreover, let Y be an order continuous Köthe sequence space. Then

$$\left\|\mathscr{M}_{\lambda}\colon H(\mathbb{D})\to Y\right\|_{ess} = \lim_{n\to\infty} \left\|\lambda\chi_{\{n,n+1,\dots\}}\right\|_{M(\ell_2,Y)}$$

「ヨト・ヨト・ヨト

Theorem: Essential norm of Fourier multiplier

Let $H(\mathbb{D})$ be a Banach space of analytic function on the unit disc intermediate between $H_{\infty}(\mathbb{D})$ and $H_2(\mathbb{D})$, that is, $H_{\infty} \hookrightarrow H \hookrightarrow H_2$. Moreover, let Y be an order continuous Köthe sequence space. Then

$$\left\|\mathscr{M}_{\lambda}\colon H(\mathbb{D})\to Y\right\|_{ess}=\lim_{n\to\infty}\left\|\lambda\chi_{\{n,n+1,\ldots\}}\right\|_{M(\ell_2,Y)}$$

In particular, the Fourier multiplier $\mathcal{M}_{\lambda} \colon H(\mathbb{D}) \to Y$ is compact if and only if $\lambda \in M(\ell_2, Y)_o$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Short introduction Definitions Results Applications

Thank you for attention!

伺下 イヨト イヨト