Fubini's theorem for a vector-valued Daniell integral

J.J. Grobler

Research Focus Area Pure and Applied Analytics, North-West University, Potchefstroom Campus, South Africa. email: jacjgrobler@gmail.com

Positivity XI, Ljubljana, Slovenia, 10–14 July, 2023.

< ロ > < 同 > < 三 > .

크 > 크

- I Introduction
- II The Daniell integral
- III The double integral
- IV The iterated integral
- V Fubini's theorem

ヘロト ヘアト ヘヨト ヘ

문▶ 문

Let *T* be an arbitrary set and let \mathfrak{E}^T be the set of all functions defined on *T* with values in the universally complete Riesz space \mathfrak{E} with weak order unit *E*. We note that \mathfrak{E} is an *f*-algebra with *E* as algebraic unit.

By defining the operations point wise, i.e., for all $t \in T$,

 $(X+Y)(t):=X(t)+Y(t), \ (cX)(t):=cX(t), \ X\leq Y \iff X(t)\leq Y(t),$

it follows that \mathfrak{E}^T is a Dedekind complete Riesz space with weak order unit (E(t)), where E(t) = E for all $t \in T$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let \mathbb{L} be a Riesz subspace of \mathfrak{E}^T contained in the ideal generated in \mathfrak{E}^T by the weak order unit E = E(t) for all $t \in T$.

Definition

A positive linear operator $I : \mathbb{L} \to \mathfrak{E}$ is called a *vector-valued I-integral* whenever, for every sequence (X_n) in \mathbb{L} that satisfies $X_n(t) \downarrow 0$ for every $t \in \mathfrak{E}^T$, it follows that $I(X_n) \downarrow 0$.

We refer to \mathbb{L} as the *initial domain* of the integral *I*. The integral is a positive σ -order continuous linear operator mapping \mathbb{L} into \mathfrak{E} .

The vector-valued *I*-integral is then extended by the well-known Daniell extension process to a positive integral. We denote the extended integral again by *I*. A function X(t) is called *I*-summable if $I(X(t)) \in \mathfrak{E}$. The set of all *I*-summable functions are denoted by \mathcal{L}_I . For the detail we refer the reader to [1].

・ロト ・ 『 ト ・ ヨ ト

Stochastic &-homogeneous Integral

Definition

• We call *I* a *stochastic integral* if I(E(t)) = E.

Interintegral is called & homogeneous, if

I(XY(t)) = XI(Y(t)) for all $X \in \mathfrak{E}, Y(t) \in \mathcal{L}_I$.

If *I* is \mathfrak{E} -homogeneous, then every constant vector *X* in \mathfrak{E} is summable because

$$I(X) = I(XE(t)) = XI(E(t)) = XE = X \in \mathfrak{E}.$$

We also note that a stochastic \mathfrak{E} -homogeneous integral I is a projection:

$$I^{2}(X(t)) = I(I(X(t))) = I([I(X(t)]E(t)))$$

= [I(X(t))]I(E(t)) = [I(X(t))]E = I(X(t)).

ヘロン 人間 とくほ とくほ とう

Let *I* and *J* denote two extended positive vector valued Daniell integrals each of which is stochastic and \mathfrak{E} -homogeneous with values in \mathfrak{E} , the latter being a universally complete Riesz space. The spaces \mathcal{L}_I and \mathcal{L}_J of summable functions are subspaces of \mathfrak{E}^S and \mathfrak{E}^T respectively.

If we identify the element $X(s) \otimes Y(t) \in \mathcal{L}_I \otimes \mathcal{L}_J$ with the element $X(s)Y(t) \in \mathfrak{E}^{S \times T}$, we find that $\mathcal{L}_I \otimes \mathcal{L}_J$ is a subspace of the Dedekind complete Riesz space $\mathfrak{E}^{S \times T}$. Hence, the Fremlin tensor product $\mathcal{L}_I \overline{\otimes} \mathcal{L}_J$ is, in this case, the Archimedean Riesz subspace generated by $\mathcal{L}_I \otimes \mathcal{L}_J$ in the Riesz space $\mathfrak{E}^{S \times T}$.

(日)

We now define a bilinear operator

 $b(X(s), Y(t)) = I(X(s))J(Y(t)) \in \mathfrak{E}, X(s) \in \mathcal{L}_I, Y(t) \in \mathcal{L}_J, \quad (0.1)$

This is a positive bilinear operator defined on $\mathcal{L}_I \times \mathcal{L}_J$ with values in the *f*-algebra \mathfrak{E} .

Using the universal properties of the Fremlin vector lattice tensor product, there exists a unique positive linear operator $K: \mathcal{L}_I \overline{\otimes} \mathcal{L}_J \to \mathfrak{E}$ with the property that

$$K(X \otimes Y) = I(X)J(Y)$$
, for all $X \in \mathcal{L}_I$, $Y \in \mathcal{L}_J$.

We shall show that *K* is a Daniell integral with initial domain

$$\mathcal{L}_I \overline{\otimes} \mathcal{L}_J \subset \mathfrak{E}^{S \times T}.$$

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● ④ ● ●

In exactly the same manner, by interchanging the variable in the above definition of *K*, we find a unique extension \tilde{K} of the bilinear form $\tilde{b}(Y, X) := J(Y)I(X)$ satisfying

$$\tilde{K}(Y \otimes X) = J(Y)I(X) = I(X)J(Y) = K(X \otimes Y),$$

since the f-algebra \mathfrak{E} is commutative.

The iterated integral

Following Zaanen [4] (see also Rompf and Kersting [3]), we denote by $\mathcal{L}_I * \mathcal{L}_J$ the collection of all elements $U(s,t) \in \mathfrak{E}^{S \times T}$ with the property that for fixed *s* we have that $U(s,t) \in \mathcal{L}_J$ and $J(U(s,t)) \in \mathcal{L}_I$ i.e.,

$$\mathcal{L}_I * \mathcal{L}_J := \{ U(s,t) \in \mathfrak{E}^{S \times T} : I(J(U(s,t))) \in \mathfrak{E} \}.$$

Observe that $\mathcal{L}_I * \mathcal{L}_J$ is a Riesz subspace of $\mathfrak{E}^{S \times T}$ that contains $\mathcal{L}_I \otimes \mathcal{L}_J$ and therefore also $\mathcal{L}_I \overline{\otimes} \mathcal{L}_J$. We define the positive operator I * J on $\mathcal{L}_I * \mathcal{L}_J$ by

$$I * J(U) := I(J(U(s,t))) \in \mathfrak{E}.$$

For every element U(s,t) in the tensor product $\mathcal{L}_I \otimes \mathcal{L}_J$ of the form

$$U(s,t) = \sum_{i=1}^{n} X_i(s) \otimes Y_i(t), \ X_i(s) \in \mathcal{L}_I, \ Y_i(t) \in \mathcal{L}_J.$$

we have that

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

$$\begin{split} I * J(U(s,t)) &= \sum_{i=1}^{n} I(J(X_{i}(s))Y_{i}(t)) \\ &= \sum_{i=1}^{n} I(X_{i}(s)J(Y_{i}(t)))(J \text{ is } \mathfrak{E}\text{-homogeneous}) \\ &= \sum_{i=1}^{n} J(Y_{i}(t))I(X_{i}(s))(I \text{ is } \mathfrak{E}\text{-homogeneous}) \\ &= \sum_{i=1}^{n} I(X_{i}(s))J(Y_{i}(t))(f\text{-algebra is commutative}). \\ &= K(U(s,t)). \end{split}$$

Hence *K* and *I* * *J* are positive operators on $\mathcal{L}_I \overline{\otimes} \mathcal{L}_J$ that coincide on $\mathcal{L}_I \otimes \mathcal{L}_J$, and so they are equal.

ヘロト 人間 とくほ とくほ とう

E DQC

We show that *K* is a Daniell integral on $\mathcal{L}_I \overline{\otimes} \mathcal{L}_J$. Let $Z_n(s, t) \downarrow 0$ for every $(s, t) \in S \times T$, with $Z_n \in \mathcal{L}_I \overline{\otimes} \mathcal{L}_J$. Then for every fixed *s* $Z_n^s(t) : Z_n(s, t) \downarrow 0$ and so $J(Z_n^s(t)) \downarrow 0$ for every fixed *s*. But then, $I * J(Z_n(s, t) = I(J(Z_n(s, t))) \downarrow 0$. But, on $\mathcal{L}_I \overline{\otimes} \mathcal{L}_J$, I * J is equal to *K* and so $K(Z_n(s, t)) \downarrow 0$. This shows that K = I * J is a primitive Daniell integral on the initial domain $\mathcal{L}_I \overline{\otimes} \mathcal{L}_J$ and can be extended to the Riesz space of Daniell summable functions using Daniell's extension procedure. This extension process preserves the property that I * J = K and we get Fubini's theorem:

Theorem

Every *K*-summable function belongs to $\mathcal{L}_I * \mathcal{L}_J$ and moreover, K(U) = IJ(U) for every $I \otimes J$ -summable function.

ヘロン 人間 とくほ とくほ とう

3

Remarks

1. If \mathfrak{E} is super Dedekind complete, every stochastic \mathfrak{E} -homogeneous Daniell integral is a conditional expectation. This is because the integral is order continuous mapping \mathcal{L}_I onto \mathfrak{E} , mapping the order unit onto the order unit, and is a projection. To see that it is a mapping onto \mathfrak{E} , let $X \in \mathfrak{E}$ Consider the function $E(t)X \in \mathfrak{E}^T$. Then

$$I(E(t)X) = XI(E(t)) = XE = X.$$

2. Our final remark is that if one considers the Bochner integral in a Banach space *B* which is also a Banach algebra, then the integral is *B*-homogeneous, for every step function of the form

$$a(t) = \sum_{i=1}^n a_i \chi_{E_i}(t),$$

with integral $I(a(t)) = \sum_{i=1}^{n} \mu(E_i)a_i$, satisfies I(ca(t)) = cI(a(t)).

Grobler, J.J., 101 years of vector lattice theory. A vector-valued Daniell integral, in: J.H. van der Walt, E. Kikianty, M. Mabula, M. Messerschmidt, M. Wortel (Eds.), Conference Proceedings, Positivity X, 8–12 July 2019, Trends in Mathematics, Birkhäuser Verlag, ISBN 978-3-030-70973-0 ISBN 978-3-030-70974-7 (eBook) https://doi.org/10.1007/978-3-030-70974-7 © Springer Nature Switzerland AG 2021.

- Protter, P.E., Stochastic integration and Differential equations, Sprinter-Verlag, Berlin, Heidelberg, New York, 2005.
- Rompf, G. and Kersting, G., *Products of Daniell Integrals,* ArXiv:2208.00762VI [malth.FA] 1 August 2022.
- Zaanen, A.C., *Integration*, North-Holland Publishing Co, Amsterdam, 1967.

ヘロト ヘアト ヘヨト ヘ