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Origins

Arveson (1969/1972) uses completely positive maps as the basis of his work on
non-commutative dilation theory and non-self-adjoint operator algebras.

• W.B. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141-224.

• W.B. Arveson, Subalgebras of C*-algebras II, Acta Math. 128 (1972),
271-308.

Wittstock (1979) extended Arveson’s original result and introduced the notion
of operator convexity or matrix convexity, although the methods were difficult and
did not extend easily.

• G. Wittstock, Ein operatwertiger Hahn-Banach satz, J. Funct. Anal. 40
(1981), 127-150.
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Origins

Z.-J. Ruan (1988) provided an axiomatization for operator spaces, known as
Ruan’s representation theorem: Each (abstract) operator space is completely
isometrically isomorphic to a concrete operator space.

• Zhong-Jin Ruan, Subspaces of C∗-algebras, J. Funct. Anal., 76 (1988),
217-230.

S. Winkler (1996) proved a version of the bipolar theorem and give a simplified
proof of Arveson-Wittstock-Hahn-Banach theorem in even greater generality.

• S. Winkler, Matrix convexity, Ph.D. thesis, University of California, Los
Angeles, 1996.
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Origins

C. J. Webster (1997) developed a theory of "non-commutative locally convex
spaces" analogous to the theory of operator spaces, under the title local operator
spaces.

• C. Webster, Local operator spaces and applications, Ph.D. thesis, University
of California, Los Angeles, 1997.

A. Dosiev (2008) introduced a representation theorem for local operator spaces
which extends Ruan’s representation theorem for operator spaces.

• A. Dosiev, Local operator spaces, unbounded operators and multinormed
C∗-algebras, J. Funct. Anal., 255(7) (2008), 1724-1760.
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Locally C ∗-algebras

Let A be an unital ∗-algebra with unit 1A and let (Λ,≤) be a directed poset. A
family of seminorms P := {pλ : λ ∈ Λ} on A is called an upward filtered family
if λ1 ≤ λ2 in Λ implies that pλ1(a) ≤ pλ2(a) for every a ∈ A.

Definition
A locally C∗-algebra A is a ∗-algebra together with an upward filtered
(saturated) family of C∗-seminorms P on A such that A is complete with respect
to the locally convex topology generated by the family P.
We say that A is a Frechet locally C∗-algebra if the family P is countable.
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Some notations

• Iλ := {a ∈ A : pλ(a) = 0} an ∗− ideal;

• The quotient ∗-algebra A/Iλ is a C∗-algebra, denoted by Aλ, with the
C∗-norm induced by pλ.

• πλ denote the canonical quotient ∗-homomorphism from A to Aλ.

• For n ∈ N, let Mn(A) denotes the set of all n× n matrices over A. Naturally,
Mn(A) is a locally C∗-algebra with the family of seminorms {pnλ : λ ∈ Λ},
defined by pnλ ([aij ]) = ∥π(n)

λ ([aij ]) ∥λ for [aij ] ∈ Mn(A), where π(n)
λ stands for

the n-amplification of the map πλ.

7 / 36



8/ 36

Introduction Local operator system Stinespring’s Theorem Irreducible local representations Pure maps

Locally C ∗-algebras

Remark (Arens-Michael)
For λ1 ≤ λ2 in Λ, there is a canonical ∗-homomorphism πλ1λ2 : Aλ2 → Aλ1 ,
πλ1λ2 (a+ Iλ2) = a+ Iλ1 such that πλ1λ2 ◦ πλ2 = πλ1 . Then one can identify A as
the inverse limit of the projective system {Aλ1 , πλ1λ2 : λ1, λ2 ∈ Λ} of
C∗-algebras.
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Positive elements

Definition
Let A be a topological ∗-algebra . An element a ∈ A is called

• hermitian (or self-adjoint) if a∗ = a.

• positive and we write a ≥ 0 if it is hermitian and
spA(a) ⊆ [0,∞) ⇔ (∃)b ∈ A such that a = b∗b.
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Local positivity

Definition
An element a ∈ A is called local hermitian if a = a∗ + x for some x ∈ A such
that pλ(x) = 0 for some α ∈ Λ. An element a ∈ A is called local positive if
a = b∗b + x for some b, x ∈ A such that pλ(x) = 0 for some λ ∈ Λ.
In this case, we say that a is λ-hermitian and λ-positive, respectively. We denote
by a ≥λ 0 the fact that a is λ-positive.

Remark
• a ≥λ 0 in A if and only if πλ(a) ≥ 0 in the C∗-algebra Aλ.

• a is hermitian (respectively, positive) if and only if it is λ-hermitian
(respectively, λ-positive) for every λ ∈ Λ.
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Local Operator System

Definition
A local operator system in A is an unital self-adjoint linear subspace of A.

Definition
An element a in a local operator system S is local positive if a is local positive in
A.
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Local maps

Consider another locally C∗-algebra B with the associated family of seminorms
{ql : l ∈ Ω}, and let S1 and S2 be local operator systems in A and B, respectively.

Definition
A linear map ϕ : S1 → S2 is called

• local positive if for each l ∈ Ω, there exists λ ∈ Λ such that ϕ(a) ≥l 0
whenever a ≥λ 0 in S1, and ϕ(a) =l 0 if a =λ 0, a ∈ S1.

• local bounded if for each l ∈ Ω there exists an λ ∈ Λ and Cl,λ > 0 such that
ql(ϕ(a)) ≤ Cl,λpλ(a) for all a ∈ S1.

• local contractive if Cl,λ > 0 can be chosen above to be 1.
• local completely bounded (local CB-map) if for each l ∈ Ω, there exist
λ ∈ Λ and Cl,λ > 0 such that qnl ([ϕ(aij)]) ≤ Cl,λp

n
l ([aij ]), for every n ∈ N.

• local completely contractive (local CC-map) if Cl,λ = 1 above.
• local completely positive (local CP-map) if for each l ∈ Ω, there exists
λ ∈ Λ such that ϕ(n) ([aij ]) ≥l 0 in Mn(S2) whenever [aij ] ≥λ 0 in Mn(S1).
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Quantized domain

Definition
A quantized domain in H is a triple {H, E ,D}, where E := {Hl : l ∈ Ω} is an
upward filtered family of closed subspaces such that the union space D :=

⋃
l∈Ω

Hl

is dense in H. In short, we say that E is a quantized domain in H with its union
space D. A quantized domain E is called a quantized Frechet domain if E is a
countable family.

Remark
The quantized family E := {Hl : l ∈ Ω} determines an upward filtered family
{Pl : l ∈ Ω} of projections in B(H), where Pl is the orthogonal projection of H
onto the closed subspace Hl .
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Non-commutative continuous functions

Definition
The set of all non-commutative continuous functions on a quantized domain E
is defined as

CE(D) := {T ∈ L(D) : TPl = PlTPl ∈ B(H), ∀ l ∈ Ω} ,

where L(D) denotes the set of all linear operators on the linear subspace D.

Note that CE(D) is an algebra and if T ∈ L(D), then

T ∈ CE(D) ⇔ T (Hl) ⊆ Hl and T ↾Hl
∈ B(Hl) for all l ∈ Ω.
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Beyond B(H)

Definition
The ∗-algebra of all non-commutative continuous functions on a quantized
domain E is defined by

C∗
E (D) := {T ∈ CE(D) : PlT ⊆ TPl , ∀ l ∈ Ω} .

The adjoint
If T ∈ L(D), then T is a densely defined linear operator on H. The adjoint of T
is a linear map T⋆ : dom(T⋆) ⊆ H → H, where

dom(T⋆) := {ξ ∈ H : η → ⟨Tη, ξ⟩ is continous for every η ∈ dom(T )}

such that ⟨Tη, ξ⟩ =
〈
η,T⋆η

〉
for all ξ ∈ dom(T⋆) and η ∈ dom(T ).
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Beyond B(H)

Remark
• C∗

E (D) is an unital subalgebra of CE(D).
• If T ∈ L(D), then T ∈ C∗

E (D) if and only if
T (Hl) ⊆ Hl ,T

(
H⊥

l ∩ D
)
⊆ H⊥

l ∩ D and T ↾Hl
∈ B(Hl) for all l ∈ Ω.

• If T ∈ C∗
E (D), then

D ⊆ dom(T⋆), T⋆(D) ⊆ D and T ∗ = T⋆ ↾D∈ C∗
E (D)

.
• The correspondence T 7→ T ∗ = T⋆ ↾D∈ C∗

E (D) is an involution on C∗
E (D).
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Beyond B(H)

For each l ∈ Ω, the map ql : C
∗
E (D) → [0,∞) defined by

ql(T ) := ∥T∥l := ∥T ↾Hl
∥ is a C∗-seminorm on C∗

E (D).

Remark
• C∗

E (D) is a locally C∗-algebra with respect to the family of C∗-seminorms
{ql : l ∈ Ω}.

• If E = {H}, then C∗
E (D) = B(H).

CPCC loc (S ,C
∗
E (D)) stands for the class of all local completely positive and local

completely contractive maps from a local operator system S to C∗
E (D).
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Local representations

Definition
Let A be an unital locally C∗-algebra with the topology defined by the family of
C∗-seminorms {pλ}λ∈Λ . A local representation of A on a quantized domain
{H; E ;D} with E = {Hl}l∈Ω, is a ∗-homomorphism π : A → C∗

E (D) with the
property that for each l ∈ Ω, there exist λ ∈ Λ and Mλ > 0 such that
∥π(a)∥l ≤ Mλpλ(a) for all a ∈ A. If Mλ = 1, we say that π is a local contractive
representation.
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Local representations

Definition
We say that two local representations π : A → C∗

E (D) and π̃ : A → C∗
Ẽ (D̃) are

unitarily equivalent if there exists a unitary operator U : H → H̃ such that
U(Hl) ⊆ H̃l for all l ∈ Ω and Uπ(a) ⊆ π̃(a)U.

Definition
A local representation π : A → C∗

E (D) is called non-degenerate if [π(A)D] = H.
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Non-degenerate local representations

Proposition
Let π : A → C∗

E (D) be a local representation. Then π is non-degenerate if and
only if [π(A)Hl ] = Hl , ∀ l ∈ Ω.
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Representation theorem for locally C ∗-algebras

Theorem (Dosiev-2008)
Let A be an unital locally C∗-algebra. Then there is a local isometrical
∗-homomorphism A → C∗

E (D) for some quantized domain E with its union space
D.
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Stinespring’s theorem for local CP-maps

Theorem (Dosiev-2008)
Let ϕ ∈ CPCC loc (A,C∗

E (D)). Then there exists a Hilbert space Hϕ and a
quantized domain Eϕ :=

{
Hϕ

l : l ∈ Ω
}

in Hϕ with its union space Dϕ, a

contraction Vϕ : H → Hϕ, and an unital local contractive ∗-homomorphism
πϕ : A → C∗

Eϕ(Dϕ) such that

ϕ(a) ⊆ V ∗
ϕπϕ(a)Vϕ and Vϕ(Hl) ⊆ Hϕ

l

for every a ∈ A and l ∈ Ω. Moreover, if ϕ(1A) = 1D, then Vϕ is an isometry.
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Minimal Stinespring representation

B. R. Bhat, A. Ghatak, S. K. Pamula (2021) introduced a suitable notion of
minimality for Stinespring’s theorem for local CP-maps on locally C∗-algebras to
ensure uniqueness up to unitary equivalence for the associated representation.

• B. R. Bhat, A. Ghatak, S. K. Pamula, Stinespring’s theorem for unbounded
operator valued local completely positive maps and its applications,
Indagationes Mathematicae, 32(2) (2021), 547-578.
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Minimal Stinespring representation

Definition (Bhat-Ghatak-Pamula-2021)
Any triple

(
πϕ,Vϕ,

{
Hϕ; Eϕ;Dϕ

})
that satisfies the conditions of the previous

theorem is called a Stinespring representation for ϕ. A Stinespring
representation

(
πϕ,Vϕ,

{
Hϕ; Eϕ;Dϕ

})
of ϕ is called minimal if Hϕ

l = [πϕVϕHl ]
for every l ∈ Ω.

Proposition (Bhat-Ghatak-Pamula-2021)
Let

(
πϕ,Vϕ,

{
Hϕ; Eϕ;Dϕ

})
be a Stinespring representation of

ϕ ∈ CPCC loc (A,C∗
E (D)). Then there is a minimal Stinespring representation(

π̃ϕ, Ṽϕ,
{
H̃ϕ; Ẽϕ; D̃ϕ

})
for ϕ such that D̃ϕ ⊆ Eϕ and H̃ϕ =

[
π̃ϕ(A)ṼϕD

]
.
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The starting point of our questions

• C. S. Arunkumar, Local boundary representations of locally C∗-algebras,
Journal of Mathematical Analysis and Applications, 515(2) (2022), 126416.

Definition
Let π : A → C∗

E (D) be a representation. The commutant of π(A) is defined as
π(A)′ := {T ∈ B(H) : Tπ(a) ⊆ π(a)T} .

Definition
A representation π : A → C∗

E (D) is said to be irreducible if
π(A)′ ∩ C∗

E (D) = CID.
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The starting point of our questions

Remark
In fact, the author remained in the "classic" case on B(H) as it has been
pointed out by M. Joit,a.

• M. Joit,a, The Choquet boundary for a local operator system, preprint.

Question
What does a suitable notion of irreducible representation look like?
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Irreducible local representations

Definition
The center of C∗

E (D) is the locally von Neumann algebra Z (C∗
E (D)) generated

by the family {Pl : l ∈ Ω} .

Definition
Let {H; E ;D} be a quantized domain, π : A → C∗

E (D) be a local representation
of A and let π(A)′ := {T ∈ C∗

E (D) : Tπ(a) ⊆ π(a)T} . We say that
π : A → C∗

E (D) is irreducible if π(A)′ = Z (C∗
E (D)).
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Unitary equivalence

Proposition
Let π : A → C∗

E (D) and π̃ : A → C∗
Ẽ (D) be two local representations of A. If π

and π̃ are unitarily equivalent and π is irreducible, then π̃ is irreducible.

28 / 36



29/ 36

Introduction Local operator system Stinespring’s Theorem Irreducible local representations Pure maps

The Frechet algebra CE(D)

Let CE(D) be a Frechet algebra, where E = {Hn}n≥1. Let {Pn}n≥1 be the
projection net associated to E , and let Sn := (I − Pn−1)Pn be the projection onto
the subspace H⊥

n−1 ∩ Hn, n ≥ 2, where for n = 1 we set S1 = P1.

Proposition (Dosiev-2008)
If T ∈ CE(D), then it has a triangular matrix representation

T =
∞∑

m=1

m∑
k=1

SkTSm =

T11 T12 . . .
0 T22 . . .
...

...
. . .

 . Moreover, if T ∈ C∗
E (D), then it has a

diagonal representation T =
∞∑

m=1
SmTSm.
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Irreducible local representations

Definition
Let {H; E ;D} be a Frechet quantized domain (i.e., E = {Hn}n≥1) and let
π : A → C∗

E (D) be a local representation. We define the maps
πn : A → B

(
H⊥

n−1 ∩ Hn

)
, πn(a) := π(a) ↾H⊥

n−1∩Hn
for n > 1 and

π1 : A → B (H1) , π1(a) := π(a) ↾H1 .

Theorem
Let {H; E ;D} be a Frechet quantized domain (i.e., E = {Hn}n≥1) and let
π : A → C∗

E (D) be a local representation. Then π is irreducible if and only if for
each n ≥ 1, πn is an irreducible representation.
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Irreducible local representations

Corollary
Let {H; E ;D} be a Frechet quantized domain and let π : A → C∗

E (D) be a local
representation. If π is irreducible, then π is non-degenerate.

Question
What about the general situation?
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The starting point of our questions

• C. S. Arunkumar, Local boundary representations of locally C∗-algebras,
Journal of Mathematical Analysis and Applications, 515(2) (2022), 126416.

Definition
A map φ ∈ CPCC loc (A,C∗

E (D)) is called pure if for any map
ψ ∈ CPCC loc (A,C∗

E (D)) such that φ− ψ ∈ CPCC loc (A,C∗
E (D)), then there is a

scalar t ∈ [0, 1] such that ψ = tφ.
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The starting point of our questions

Remark
Again the author stayed in the "classic" case on B(H) as it has been
pointed out by M. Joit,a.

• M. Joit,a, The Choquet boundary for a local operator system, preprint.

Question
How can we correctly define the notion of a "pure map"?
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Pure maps

Definition
Let φ ∈ CPCC loc (A,C∗

E (D)). We say that φ is pure if for each
ψ ∈ CPCC loc (A,C∗

E (D)) with φ− ψ ∈ CPCC loc (A,C∗
E (D)) we have that for

∀ l ∈ Ω : ψ(a) =
∑
l

λlQlφ(a)

for some λl ≥ 0 and for ∀ a ∈ A, where Ql := Pl1Pl2 · . . . · Pln ↾D.
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Pure maps

Proposition
Let φ ∈ CPCC loc (A,C∗

E (D)). Then φ is pure if and only if its minimal Stinespring
representation is irreducible.
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Thank you for your attention !
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