Truncated normed Riesz space. A representation of quasi-unitary Banach lattices.

HAMZA HAFSI

University of Tunis

Positivity XI, Ljubljana, 10-14 July 2023

HAMZA HAFSI (University of Tunis)

Truncated normed Riesz space.

Positivity XI, Ljubljana, 10-14 July 2023 / 23

Plan

Introduction :

- 2 Necessary condition :
- 3 Extreme unitization norms
- 4 Arbitrary unitization norms
- 5 Unitization of truncated Banach lattice
- 6 Representation of quasi-unitary Banach lattices

・ 同 ト ・ ヨ ト ・ ヨ ト

Truncated Riesz spaces has been defined by Fremlin (1974) as Riesz subspaces of ℝ^X satisfying Stone's condition, i.e., containing with any non-negative function f its meet 1 ∧ f with the constant function 1.

- Truncated Riesz spaces has been defined by Fremlin (1974) as Riesz subspaces of \mathbb{R}^X satisfying **Stone's condition**, i.e., containing with any non-negative function f its meet $1 \wedge f$ with the constant function 1.
- Quite recently, Ball (2014) provided an appropriate axiomatization of truncated Riesz spaces.

Definition

A **truncated Riesz space** we shall mean a Riesz space E along with a *truncation*, that is, a nonzero map $x \to x^*$ from the positive cone E^+ into itself such that

 $x \wedge y^* \leq x^* \leq x$, for all $x, y \in E^+$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

A **truncated Riesz space** we shall mean a Riesz space E along with a *truncation*, that is, a nonzero map $x \to x^*$ from the positive cone E^+ into itself such that

$$x \wedge y^* \leq x^* \leq x$$
, for all $x, y \in E^+$.

Lemma

A nonzero map $x \to x^*$ is a truncation on E if and only if

$$x^* \wedge y = x \wedge y^*$$
, for all $x, y \in E^+$.

HAMZA HAFSI (University of Tunis)

・ロン ・四 ・ ・ ヨン ・ ヨン

 What might be questioned regarding the connection between this abstract definition and the original definition provided by Fremlin?

< 4 **1** → 4

- N

- What might be questioned regarding the connection between this abstract definition and the original definition provided by Fremlin?
- Boulabiar and El Adeb proved that if E is a truncated Riesz space, then the direct sum E ⊕ ℝ can be equipped with a non-standard structure of a Riesz space such that E is a Riesz subspace of E ⊕ ℝ and the equality

$$x^* = 1 \land x$$
 in $E \oplus \mathbb{R}$ for all $x \in E^+$.

・ 同 ト ・ ヨ ト ・ ヨ ト

5 / 23

- What might be questioned regarding the connection between this abstract definition and the original definition provided by Fremlin?
- Boulabiar and El Adeb proved that if E is a truncated Riesz space, then the direct sum E ⊕ ℝ can be equipped with a non-standard structure of a Riesz space such that E is a Riesz subspace of E ⊕ ℝ and the equality

$$x^* = 1 \land x$$
 in $E \oplus \mathbb{R}$ for all $x \in E^+$.

Definition

The Riesz space $E \oplus \mathbb{R}$, called the **unitization** of *E*.

HAMZA HAFSI (University of Tunis)

- 4 同 6 4 日 6 4 日 6

- What might be questioned regarding the connection between this abstract definition and the original definition provided by Fremlin?
- Boulabiar and El Adeb proved that if E is a truncated Riesz space, then the direct sum E ⊕ ℝ can be equipped with a non-standard structure of a Riesz space such that E is a Riesz subspace of E ⊕ ℝ and the equality

$$x^* = 1 \wedge x$$
 in $E \oplus \mathbb{R}$ for all $x \in E^+$.

Definition

The Riesz space $E \oplus \mathbb{R}$, called the **unitization** of *E*.

• $E \oplus \mathbb{R}$ is a universal object.

HAMZA HAFSI (University of Tunis)

Truncated normed Riesz space.

Positivity XI, Ljubljana 5 / 23

Problem

How does the unitization $E \oplus \mathbb{R}$ behave when the given truncated Riesz space E is also a normed Riesz space?

3

Plan

Introduction :

- 2 Necessary condition :
 - 3 Extreme unitization norms
 - 4 Arbitrary unitization norms
- 5 Unitization of truncated Banach lattice
- 6 Representation of quasi-unitary Banach lattices

・ 同 ト ・ ヨ ト ・ ヨ ト

• Let (E, ||||) be a truncated normed vector lattice such that ||.|| extends to a lattice norm $||.||_u$ on $E \oplus \mathbb{R}$,

3

イロト 不得下 イヨト イヨト

 Let (E, ||||) be a truncated normed vector lattice such that ||.|| extends to a lattice norm ||.||_u on E ⊕ ℝ,so, we would have, for every x ∈ E⁺,

$$||x^*|| = ||x^*||_u = ||1 \wedge x||_u \le ||1||_u.$$

(人間) トイヨト イヨト

- Let (E, |||) be a truncated normed vector lattice such that ||.|| extends to a lattice norm ||.||_u on E ⊕ ℝ,so, we would have, for every x ∈ E⁺, ||x^{*}|| = ||x^{*}||_u = ||1 ∧ x||_u ≤ ||1||_u.
- Accordingly, a necessary condition for $E \oplus \mathbb{R}$ to be equipped with a lattice norm that extends $\|.\|$ is that the truncation $x \to x^*$ must be norm-bounded, i.e., there exists $M \in (0, \infty)$ such that

$$||x^*|| \leq M$$
, for all $x \in E^+$.

HAMZA HAFSI (University of Tunis)

- 4 同 6 4 日 6 4 日 6

Examples

• Let $(C_0(\mathbb{R}), \|\|_{\infty})$ be a truncated normed vector lattice, defined by :

 $f^* = f \wedge 1$

3

Examples

 ${\rm O}$ Let $(\mathit{C}_0(\mathbb{R}),\|\|_\infty)$ be a truncated normed vector lattice, defined by :

 $f^* = f \wedge 1$

Then

$$\sup\left\{\|f^*\|_{\infty}: f\in C_0(\mathbb{R})^+\right\}=1$$

3

Examples

• Let $(C_0(\mathbb{R}), \|\|_{\infty})$ be a truncated normed vector lattice, defined by :

$$f^* = f \wedge 1$$

Then

$$\sup\left\{\|f^*\|_{\infty}: f \in C_0(\mathbb{R})^+\right\} = 1$$

 ${\it O}$ Let $({\it C}_0(\mathbb{R}), \|\|_\infty)$ be a truncated normed vector lattice, defined by :

$$f^* = f \wedge |x|$$

HAMZA HAFSI (University of Tunis)

3

Examples

 ${\rm O}$ Let $(\mathit{C}_0(\mathbb{R}),\|\|_\infty)$ be a truncated normed vector lattice, defined by :

$$f^* = f \wedge 1$$

Then

$$\sup\left\{\|f^*\|_{\infty}: f\in \mathit{C}_0(\mathbb{R})^+\right\}=1$$

 ${\it O}$ Let $({\it C}_0(\mathbb{R}), \|\|_\infty)$ be a truncated normed vector lattice, defined by :

 $f^* = f \wedge |x|$

Then

$$\sup\left\{\left\|f^*\right\|_{\infty}:f\in C_0(\mathbb{R})^+\right\}=+\infty$$

HAMZA HAFSI (University of Tunis)

3

In the following we impose the equality

$$\sup\left\{\|x^*\|: x\in E^+\right\}=1$$

on any given truncated normed Riesz space E.

()

< A

In the following we impose the equality

$$\sup\left\{\|x^*\|: x\in E^+\right\}=1$$

on any given truncated normed Riesz space E.

Definition (Boulabiar, Hafsi. (2020))

An unitization norm $\|\cdot\|_u$ on $E \oplus \mathbb{R}$ is a lattice norm that extends the norm on E and satisfies $\|1\|_u = 1$.

Plan

1 Introduction :

- 2 Necessary condition :
- 3 Extreme unitization norms
 - 4 Arbitrary unitization norms
- 5 Unitization of truncated Banach lattice
- 6 Representation of quasi-unitary Banach lattices

・ 同 ト ・ ヨ ト ・ ヨ ト

The largest unitization norm

Theorem (Boulabiar, Hafsi. (2020))

Let E be a truncated normed Riesz space. The formula

$$\|x + \alpha\|_{\max} = \left\| (|x + \alpha| - |\alpha|)^+ \right\| + |\alpha|$$
, for all $x \in E$ and $\alpha \in \mathbb{R}$

defines a unitization norm on $E \oplus \mathbb{R}$,

(人間) トイヨト イヨト

The largest unitization norm

Theorem (Boulabiar, Hafsi. (2020))

Let E be a truncated normed Riesz space. The formula

$$\|x + \alpha\|_{\max} = \left\| (|x + \alpha| - |\alpha|)^+ \right\| + |\alpha|$$
, for all $x \in E$ and $\alpha \in \mathbb{R}$

defines a unitization norm on $E \oplus \mathbb{R}$, and it's the largest unitization norm on $E \oplus \mathbb{R}$.

(人間) トイヨト イヨト

The smallest unitization norm

Theorem (Boulabiar, Hafsi. (2020))

Let *E* be a truncated normed Riesz space with no truncation unit. Then the function that takes each $x + \alpha \in E \oplus \mathbb{R}$ to the positive real number

$$||x + \alpha||_{\min} = \sup \{||y|| : y \in E \text{ and } |y| \le |x + \alpha|\}$$

defines a unitization norm on $E \oplus \mathbb{R}$,

イロト 不得下 イヨト イヨト

The smallest unitization norm

Theorem (Boulabiar, Hafsi. (2020))

Let *E* be a truncated normed Riesz space with no truncation unit. Then the function that takes each $x + \alpha \in E \oplus \mathbb{R}$ to the positive real number

$$||x + \alpha||_{\min} = \sup \{||y|| : y \in E \text{ and } |y| \le |x + \alpha|\}$$

defines a unitization norm on $E \oplus \mathbb{R}$, and it's the smallest unitization norm on $E \oplus \mathbb{R}$.

イロト 不得下 イヨト イヨト

Plan

Introduction :

- 2 Necessary condition :
- 3 Extreme unitization norms
- 4 Arbitrary unitization norms
- 5 Unitization of truncated Banach lattice
- 6 Representation of quasi-unitary Banach lattices

・ 同 ト ・ ヨ ト ・ ヨ ト

Let E be a truncated normed Riesz space and $E \oplus \mathbb{R}$ be equipped with a unitization norm $\|.\|_{u}$. Then

Let E be a truncated normed Riesz space and $E \oplus \mathbb{R}$ be equipped with a unitization norm $\|.\|_u$. Then

(i) E is a closed set in $E \oplus \mathbb{R}$ if and only if $\|.\|_u$ and $\|.\|_{max}$ are equivalent.

Let E be a truncated normed Riesz space and $E \oplus \mathbb{R}$ be equipped with a unitization norm $\|.\|_u$. Then

(i) E is a closed set in E ⊕ ℝ if and only if ||.||_u and ||.||_{max} are equivalent.
In particular, E is closed in (E ⊕ ℝ, |||_{max})

イロト 不得下 イヨト イヨト

Let E be a truncated normed Riesz space and $E \oplus \mathbb{R}$ be equipped with a unitization norm $\|.\|_u$. Then

(i) E is a closed set in E ⊕ ℝ if and only if ||.||_u and ||.||_{max} are equivalent.

In particular, E is closed in $(E \oplus \mathbb{R}, |||_{\max})$

(ii) If E is dense in $(E \oplus \mathbb{R}, \|.\|_{\min})$ then E has no truncation unit and $\|.\|_u = \|.\|_{\min}$.

イロト イポト イヨト イヨト 二日

Let E be the set of continuous real-valued functions on [-1, 1] vsatisfying f(1) = 0 equipped with the lattice norm

$$||f|| = \frac{1}{2} \int_{-1}^{1} |f(s)| \, ds$$

(人間) トイヨト イヨト

Let E be the set of continuous real-valued functions on [-1, 1] vsatisfying f(1) = 0 equipped with the lattice norm

$$||f|| = \frac{1}{2} \int_{-1}^{1} |f(s)| \, ds$$

and the truncation :

$$f^* = f \wedge 1.$$

HAMZA HAFSI (U	niversity of Tunis)
----------------	---------------------

- 4 同 6 4 日 6 4 日 6

Let E be the set of continuous real-valued functions on $[-1,1]\,$ vsatisfying $f\,(1)=0$ equipped with the lattice norm

$$||f|| = \frac{1}{2} \int_{-1}^{1} |f(s)| \, ds$$

and the truncation :

$$f^* = f \wedge 1.$$

• *E* is dense in($E \oplus \mathbb{R}$, $|||_{\min}$)

HAMZA HAFSI (University of Tunis)

- 4 週 ト - 4 三 ト - 4 三 ト

Let E be the set of all functions in $C\left(\mathbb{R}\right)$ with compact support equipped with the lattice norm

$$\left\|f\right\|_{\infty} = \sup_{r \in \mathbb{R}} \left\{\left|f\left(r\right)\right|\right\}$$

< 回 > < 三 > < 三 >

Let E be the set of all functions in $C\left(\mathbb{R}\right)$ with compact support equipped with the lattice norm

$$\left\|f\right\|_{\infty} = \sup_{r \in \mathbb{R}} \left\{\left|f\left(r\right)\right|\right\}$$

and the truncation :

$$f^* = f \wedge 1.$$

A B F A B F

Example

Let *E* be the set of all functions in $C(\mathbb{R})$ with compact support equipped with the lattice norm

$$\left\|f\right\|_{\infty} = \sup_{r \in \mathbb{R}} \left\{\left|f\left(r\right)\right|\right\}$$

and the truncation :

$$f^* = f \wedge 1.$$

• *E* is a closed set in $(E \oplus \mathbb{R}, \|.\|_{\min})$.

A B F A B F

Plan

1 Introduction :

- 2 Necessary condition :
- 3 Extreme unitization norms
- 4 Arbitrary unitization norms
- 5 Unitization of truncated Banach lattice
 - 6 Representation of quasi-unitary Banach lattices

・ 同 ト ・ ヨ ト ・ ヨ ト

Unitization of truncated Banach lattice

Treillis de Banach tronqué

Theorem (Boulabiar, Hafsi. (2020))

Let E be truncated normed Riesz space and suppose that $E \oplus \mathbb{R}$ is equipped with any unitization norm.

Unitization of truncated Banach lattice

Treillis de Banach tronqué

Theorem (Boulabiar, Hafsi. (2020))

Let E be truncated normed Riesz space and suppose that $E \oplus \mathbb{R}$ is equipped with any unitization norm. Then, E is a Banach lattice if and only if $E \oplus \mathbb{R}$ is a Banach lattice.

< 回 > < 三 > < 三 >

Plan

- Representation of quasi-unitary Banach lattices 6

4 A N

Definition (Boulabiar, Hafsi. (2020))

A Banach lattice *E* is said to be **quasi-unitary** if there exists a truncation map $x \to x^*$ on *E* satisfying :

$$\overline{B}_{E}(0,1) = E^{*} = \{x \in E : |x|^{*} = |x|\}$$

Definition (Boulabiar, Hafsi. (2020))

A Banach lattice *E* is said to be **quasi-unitary** if there exists a truncation map $x \to x^*$ on *E* satisfying :

$$\overline{B}_{E}(0,1) = E^{*} = \{x \in E : |x|^{*} = |x|\}$$

Example

The function $f \to f^*$ defined on $C_0(X)$ by

$$f^* = \mathbf{1} \wedge f$$
, for all $0 \leq f \in C_0(X)$.

makes $C_0(X)$ a quasi-unitary Banach lattice.

イロト 人間ト イヨト イヨト

Theorem (Boulabiar, Hafsi. (2020))

Let E be a quasi-unitary Banach lattice. Then, there exists a unique locally compact space X such that :

Theorem (Boulabiar, Hafsi. (2020))

Let E be a quasi-unitary Banach lattice. Then, there exists a unique locally compact space X such that :

(i) E is isometrically isomorphic to $C_0(X)$ and the truncation on E is given by $f^* = \mathbf{f} \wedge 1$ for every $f \in E^+$.

- 4 週 ト - 4 三 ト - 4 三 ト

Theorem (Boulabiar, Hafsi. (2020))

Let E be a quasi-unitary Banach lattice. Then, there exists a unique locally compact space X such that :

- (i) *E* is isometrically isomorphic to $C_0(X)$ and the truncation on *E* is given by $f^* = \mathbf{f} \wedge 1$ for every $f \in E^+$.
- (ii) $E \oplus \mathbb{R}$ is isometrically isomorphic to $C(\omega X)$, where ωX denotes the Alexandroff compactification X.

イロト 人間ト イヨト イヨト

Theorem (Boulabiar, Hafsi. (2020))

Let E be a quasi-unitary Banach lattice. Then, there exists a unique locally compact space X such that :

- (i) *E* is isometrically isomorphic to $C_0(X)$ and the truncation on *E* is given by $f^* = \mathbf{f} \wedge 1$ for every $f \in E^+$.
- (ii) $E \oplus \mathbb{R}$ is isometrically isomorphic to $C(\omega X)$, where ωX denotes the Alexandroff compactification X.

Corollary

Let X be a locally compact space. Then, $C_0(X) \oplus \mathbb{R}$ is isometrically isomorphic to $C(\omega X)$.

イロト 不得 トイヨト イヨト 二日

Thank you for your attention.

э