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Pre-Riesz spaces

Definition
An ordered vector space X is called pre-Riesz if there exists a
vector lattice Y and a bipositive linear map i : X → Y such that
i [X ] is order dense in Y , i.e.,

∀y ∈ Y : y = inf {i(x); x ∈ X , i(x) ≥ y} .

The pair (Y , i) is called a vector lattice cover of X . If Y is the
smallest vector lattice1 that contains i [X ], then (Y , i) is called the
Riesz completion of X .

• The Riesz completion of X is unique up to order isomorphism.

1with respect to inclusion
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Examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.

Archimedean directed ordered vector spaces are pre-Riesz spaces:
• Cn[a, b], Pn[a, b]
• Lr(X , Y ) with X directed and Y Archimedean
• Finite-dimensional spaces X with closed positive cone K and

int(K ) ̸= ∅.

Florian Boisen Dresden University of Technology, Germany
A generalization of Riesz* homomorphisms in order unit spaces 3 / 16



Pre-Riesz spaces Riesz* homomorphisms Mild Riesz* homomorphisms

Examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.
Archimedean directed ordered vector spaces are pre-Riesz spaces:

• Cn[a, b], Pn[a, b]
• Lr(X , Y ) with X directed and Y Archimedean
• Finite-dimensional spaces X with closed positive cone K and

int(K ) ̸= ∅.

Florian Boisen Dresden University of Technology, Germany
A generalization of Riesz* homomorphisms in order unit spaces 3 / 16



Pre-Riesz spaces Riesz* homomorphisms Mild Riesz* homomorphisms

Examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.
Archimedean directed ordered vector spaces are pre-Riesz spaces:

• Cn[a, b], Pn[a, b]

• Lr(X , Y ) with X directed and Y Archimedean
• Finite-dimensional spaces X with closed positive cone K and

int(K ) ̸= ∅.

Florian Boisen Dresden University of Technology, Germany
A generalization of Riesz* homomorphisms in order unit spaces 3 / 16



Pre-Riesz spaces Riesz* homomorphisms Mild Riesz* homomorphisms

Examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.
Archimedean directed ordered vector spaces are pre-Riesz spaces:

• Cn[a, b], Pn[a, b]
• Lr(X , Y ) with X directed and Y Archimedean

• Finite-dimensional spaces X with closed positive cone K and
int(K ) ̸= ∅.

Florian Boisen Dresden University of Technology, Germany
A generalization of Riesz* homomorphisms in order unit spaces 3 / 16



Pre-Riesz spaces Riesz* homomorphisms Mild Riesz* homomorphisms

Examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.
Archimedean directed ordered vector spaces are pre-Riesz spaces:

• Cn[a, b], Pn[a, b]
• Lr(X , Y ) with X directed and Y Archimedean
• Finite-dimensional spaces X with closed positive cone K and

int(K ) ̸= ∅.

Florian Boisen Dresden University of Technology, Germany
A generalization of Riesz* homomorphisms in order unit spaces 3 / 16



Pre-Riesz spaces Riesz* homomorphisms Mild Riesz* homomorphisms

Order unit spaces

Let X be an ordered vector space. An element u ∈ X , u > 0 is
called an order unit if

∀x ∈ X ∃λ ∈ (0, ∞) : x ∈ [−λu, λu].

Then X is directed.

If X is Archimedean, then

∥x∥u := inf {λ ∈ (0, ∞); x ∈ [−λu, λu]}

defines a norm on X . X is called an order unit space. Order unit
spaces are pre-Riesz.

• For example, if (X , K ) is an ordered normed space with
int(K ) ̸= ∅, then u is an order unit ⇐⇒ u ∈ int(K ).
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Riesz* homomorphisms

Definition
Let X and Y be pre-Riesz spaces with respective Riesz completions
(Xρ, iX ) and (Y ρ, iY ). A linear map T : X → Y is called a Riesz*
homomorphism if there exists a lattice homomorphism
T ρ : Xρ → Y ρ such that T ρ ◦ iX = iY ◦ T .

X Y

X ρ Y ρ

T

iX iY

Tρ

• The extension T ρ is unique.
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Let (X , K ) be an order unit space with order unit u. The set

Σ :=
{
φ ∈ K ′; φ(u) = 1

}
is a weakly-* compact base of K ′. Define Λ := ext(Σ) and let Λ be
the weak-*-closure of Λ in Σ.

Theorem (Van Haandel, 1993)
The elements of Λ are precisely the Riesz* homomorphisms in Σ.

• For example, consider the ordered vector space (R4, K ) where
the dual base Σ (as a subset of R3) is:

Σ

Λ
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Theorem (Van Haandel, 1993)
Let X and Y be pre-Riesz spaces. A linear map T : X → Y is a
Riesz* homomorphism if and only if

∀∅ ̸= F ⊆ X finite : T
[
F uℓ

]
⊆ T [F ]uℓ.

• 1993: Van Haandel claimed that T even is a Riesz*
homomorphism if and only if

∀x1, x2 ∈ X : T
[
{x1, x2}uℓ

]
⊆ T [{x1, x2}]uℓ .

• 2018: A gap in van Haandel’s proof for this claim has been
found.

• 2023: A counterexample for van Haandel’s claim has been
found.
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Mild Riesz* homomorphisms

Definition
Let X and Y be pre-Riesz spaces. A linear map T : X → Y is
called a mild Riesz* homomorphism if

∀x1, x2 ∈ X : T
[
{x1, x2}uℓ

]
⊆ T [{x1, x2}]uℓ .

Immediate properties:
• Riesz* =⇒ mild Riesz* =⇒ positive
• If X and Y are vector lattices, then

{mild Riesz* hom.} = {lattice hom.} = {Riesz* hom} .
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A mild Riesz* hom. that is not a Riesz* hom.

Let B be the closed unit ball in R2 and Aff(B) the space of affine
functions B → R endowed with the pointwise order.

• 1 ∈ Aff(B) is an order unit and Σ = {evp; p ∈ B}.2

• Λ = {evp; p ∈ ext(B) = ∂B}.
• evp is mild Riesz* ⇐⇒ ∀f , g ∈ Aff(B) :

f (p) > g(p)+ =⇒ ∃q ∈ ext(B) = ∂B : f (q) > g(q)+ (1)

• =⇒ For a mild Riesz* hom. that is not a Riesz* hom., we
need to find points p ∈ int(B) that satisfy (1).

2evp : Aff(B) → R, f 7→ f (p)
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∀f , g ∈ Aff(B) :
f (p) > g(p)+ =⇒ ∃q ∈ ∂B : f (q) > g(q)+ (1)

f

g+

pq

• For every p ∈ B, evp is a mild Riesz* homomorphism!
• Every positive linear functional on Aff(B) is a mild Riesz*

homomorphism.
• For every p ∈ int(B), evp is a mild Riesz* homomorphism

that is not a Riesz* homomorphism.
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What we know so far

Riesz* ⊆ mild Riesz* ⊆ K ′

Aff(B) ⊊ =

vector lattices = ⊊
four-ray-cone = ⊊

? ⊊ ⊊
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Mild Riesz* homomorphisms on three-dimensional spaces

Theorem (B., Kalauch, Stennder, van Gaans, 2023)
Let X be a three-dimensional order unit space.

• Σ is strictly convex =⇒ Every positive linear functional on X
is a mild Riesz* homomorphism.

• Σ is not strictly convex =⇒ Every mild Riesz*
homomorphism X → R is a Riesz* homomorphism.

Question
Can this be generalized to finite-dimensional order unit spaces?
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Mild Riesz* homomorphisms on finite-dimensional spaces

Theorem (B., Kalauch, Stennder, van Gaans, 2023)
Let X be a finite-dimensional order unit space. If every
one-dimensional face of Σ is contained in Λ, then every positive
linear functional on X is a mild Riesz* homomorphism.

Questions
• What can happen if Σ has a one-dimensional face that is not

entirely contained in Λ?
• Is this also true in infinite dimensions?
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And operators?

Theorem (B. Kalauch, Stennder, van Gaans, 2023)
Let X and Y be order unit spaces, where every mild Riesz*
homomorphism X → R is a Riesz* homomorphism. Then every
mild Riesz* homomorphism X → Y is a Riesz* homomorphism.
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Thank you :)
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