A generalization of Riesz* homomorphisms in order unit spaces

Florian Boisen

Dresden University of Technology, Germany

July 13th, 2023

Joint work with A. Kalauch, J. Stennder, O. van Gaans

Florian Boisen

Dresden University of Technology, Germany

< (T) >

Pre-Riesz spaces

Definition

An ordered vector space X is called *pre-Riesz* if there exists a vector lattice Y and a bipositive linear map $i: X \to Y$ such that i[X] is order dense in Y, i.e.,

$$\forall y \in Y : \quad y = \inf \left\{ i(x); x \in X, i(x) \ge y \right\}.$$

The pair (Y, i) is called a vector lattice cover of X. If Y is the smallest vector lattice¹ that contains i[X], then (Y, i) is called the *Riesz completion* of X.

• The Riesz completion of X is unique up to order isomorphism.

Florian Boisen

¹with respect to inclusion

A generalization of Riesz* homomorphisms in order unit spaces

Examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.

- 《 曰 》 《 라 》 《 문 》 《 문 》 _ 문 _ 《) 역

Dresden University of Technology, Germany

Examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.

Archimedean directed ordered vector spaces are pre-Riesz spaces:

Dresden University of Technology, Germany

Examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.

Archimedean directed ordered vector spaces are pre-Riesz spaces:

• Cⁿ[a, b], Pⁿ[a, b]

Examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.

Archimedean directed ordered vector spaces are pre-Riesz spaces:

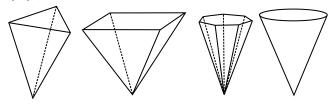
- $C^n[a, b]$, $P^n[a, b]$
- $L^{r}(X, Y)$ with X directed and Y Archimedean

Examples for pre-Riesz spaces

Every vector lattice is a pre-Riesz space.

Archimedean directed ordered vector spaces are pre-Riesz spaces:

- $C^n[a, b]$, $P^n[a, b]$
- $L^{r}(X, Y)$ with X directed and Y Archimedean
- Finite-dimensional spaces X with closed positive cone K and int(K) ≠ Ø.



Florian Boisen

Order unit spaces

Let X be an ordered vector space. An element $u \in X$, u > 0 is called an *order unit* if

$$\forall x \in X \exists \lambda \in (0,\infty): \quad x \in [-\lambda u, \lambda u].$$

Then X is directed.

Dresden University of Technology, Germany

< 口 > < 同 >

Order unit spaces

Let X be an ordered vector space. An element $u \in X$, u > 0 is called an *order unit* if

$$\forall x \in X \exists \lambda \in (0,\infty) : \quad x \in [-\lambda u, \lambda u].$$

Then X is directed. If X is Archimedean, then

$$\|x\|_{u} := \inf \{\lambda \in (0,\infty); x \in [-\lambda u, \lambda u]\}$$

defines a norm on X. X is called an *order unit space*. Order unit spaces are pre-Riesz.

< 口 > < 同 >

Order unit spaces

Let X be an ordered vector space. An element $u \in X$, u > 0 is called an *order unit* if

$$\forall x \in X \exists \lambda \in (0,\infty) : \quad x \in [-\lambda u, \lambda u].$$

Then X is directed. If X is Archimedean, then

$$\|x\|_{u} := \inf \{\lambda \in (0,\infty); x \in [-\lambda u, \lambda u]\}$$

defines a norm on X. X is called an *order unit space*. Order unit spaces are pre-Riesz.

 For example, if (X, K) is an ordered normed space with int(K) ≠ Ø, then u is an order unit ⇔ u ∈ int(K).

4 A >

Definition

Let X and Y be pre-Riesz spaces with respective Riesz completions (X^{ρ}, i_X) and (Y^{ρ}, i_Y) . A linear map $T: X \to Y$ is called a *Riesz** homomorphism if there exists a lattice homomorphism $T^{\rho}: X^{\rho} \to Y^{\rho}$ such that $T^{\rho} \circ i_X = i_Y \circ T$.

• The extension T^{ρ} is unique.

Let (X, K) be an order unit space with order unit u. The set

$$\Sigma := \{ \varphi \in \mathcal{K}'; \ \varphi(u) = 1 \}$$

is a weakly-* compact base of K'. Define $\Lambda := ext(\Sigma)$ and let $\overline{\Lambda}$ be the weak-*-closure of Λ in Σ .

Dresden University of Technology, Germany

Let (X, K) be an order unit space with order unit u. The set

$$\Sigma := \{ \varphi \in \mathsf{K}'; \ \varphi(u) = 1 \}$$

is a weakly-* compact base of K'. Define $\Lambda := ext(\Sigma)$ and let $\overline{\Lambda}$ be the weak-*-closure of Λ in Σ .

Theorem (Van Haandel, 1993)

The elements of $\overline{\Lambda}$ are precisely the Riesz* homomorphisms in Σ .

Let (X, K) be an order unit space with order unit u. The set

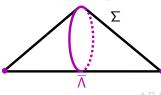
$$\Sigma := \{ \varphi \in \mathsf{K}'; \ \varphi(u) = 1 \}$$

is a weakly-* compact base of K'. Define $\Lambda := ext(\Sigma)$ and let $\overline{\Lambda}$ be the weak-*-closure of Λ in Σ .

Theorem (Van Haandel, 1993)

The elements of $\overline{\Lambda}$ are precisely the Riesz* homomorphisms in Σ .

 For example, consider the ordered vector space (R⁴, K) where the dual base Σ (as a subset of R³) is:



Florian Boisen

Theorem (Van Haandel, 1993)

Let X and Y be pre-Riesz spaces. A linear map $T: X \to Y$ is a Riesz* homomorphism if and only if

$$\forall \varnothing \neq F \subseteq X \text{ finite}: T\left[F^{\mathrm{u}\ell}\right] \subseteq T[F]^{\mathrm{u}\ell}.$$

Dresden University of Technology, Germany

< 口 > < 同 >

Theorem (Van Haandel, 1993)

Let X and Y be pre-Riesz spaces. A linear map $T: X \to Y$ is a Riesz* homomorphism if and only if

$$\forall \varnothing \neq F \subseteq X \text{ finite}: T\left[F^{\mathrm{u}\ell}\right] \subseteq T[F]^{\mathrm{u}\ell}.$$

• 1993: Van Haandel claimed that *T* even is a Riesz* homomorphism if and only if

$$\forall x_1, x_2 \in X: \quad T\left[\{x_1, x_2\}^{\mathrm{u}\ell}\right] \subseteq T\left[\{x_1, x_2\}\right]^{\mathrm{u}\ell}.$$

Dresden University of Technology, Germany

A D > <
 A P >
 A

Florian Boisen

Theorem (Van Haandel, 1993)

Let X and Y be pre-Riesz spaces. A linear map $T: X \to Y$ is a Riesz* homomorphism if and only if

$$\forall \varnothing \neq F \subseteq X \text{ finite}: T\left[F^{\mathrm{u}\ell}\right] \subseteq T[F]^{\mathrm{u}\ell}.$$

• 1993: Van Haandel claimed that *T* even is a Riesz* homomorphism if and only if

$$\forall x_1, x_2 \in X: \quad T\left[\{x_1, x_2\}^{\mathrm{u}\ell}\right] \subseteq T\left[\{x_1, x_2\}^{\mathrm{u}\ell}\right]$$

• 2018: A gap in van Haandel's proof for this claim has been found.

< 口 > < 同 >

Theorem (Van Haandel, 1993)

Let X and Y be pre-Riesz spaces. A linear map $T: X \to Y$ is a Riesz* homomorphism if and only if

$$\forall \varnothing \neq F \subseteq X \text{ finite}: T\left[F^{\mathrm{u}\ell}\right] \subseteq T[F]^{\mathrm{u}\ell}.$$

• 1993: Van Haandel claimed that *T* even is a Riesz* homomorphism if and only if

$$\forall x_1, x_2 \in X: \quad T\left[\{x_1, x_2\}^{\mathrm{u}\ell}\right] \subseteq T\left[\{x_1, x_2\}^{\mathrm{u}\ell}\right]$$

- 2018: A gap in van Haandel's proof for this claim has been found.
- 2023: A counterexample for van Haandel's claim has been found.

Florian Boisen

A generalization of Riesz* homomorphisms in order unit spaces

Mild Riesz* homomorphisms

Definition

Let X and Y be pre-Riesz spaces. A linear map $T: X \to Y$ is called a *mild Riesz* homomorphism* if

$$orall x_1, x_2 \in X: \quad \mathcal{T}\left[\left\{x_1, x_2
ight\}^{\mathrm{u}\ell}
ight] \subseteq \mathcal{T}\left[\left\{x_1, x_2
ight\}
ight]^{\mathrm{u}\ell}.$$

Dresden University of Technology, Germany

< (T) >

Mild Riesz* homomorphisms

Definition

Let X and Y be pre-Riesz spaces. A linear map $T: X \to Y$ is called a *mild Riesz* homomorphism* if

$$orall x_1, x_2 \in X: \quad \mathcal{T}\left[\left\{x_1, x_2
ight\}^{\mathrm{u}\ell}
ight] \subseteq \mathcal{T}\left[\left\{x_1, x_2
ight\}
ight]^{\mathrm{u}\ell}.$$

Immediate properties:

• Riesz* \implies mild Riesz* \implies positive

Florian Boisen

Dresden University of Technology, Germany

< 口 > < 同 >

Mild Riesz* homomorphisms

Definition

Let X and Y be pre-Riesz spaces. A linear map $T: X \to Y$ is called a *mild Riesz* homomorphism* if

$$orall x_1, x_2 \in X: \quad \mathcal{T}\left[\left\{x_1, x_2
ight\}^{\mathrm{u}\ell}
ight] \subseteq \mathcal{T}\left[\left\{x_1, x_2
ight\}
ight]^{\mathrm{u}\ell}.$$

Immediate properties:

- Riesz* \implies mild Riesz* \implies positive
- If X and Y are vector lattices, then

 ${\text{mild Riesz* hom.}} = {\text{lattice hom.}} = {\text{Riesz* hom}}.$

A mild Riesz* hom. that is not a Riesz* hom.

Let *B* be the closed unit ball in \mathbb{R}^2 and Aff(*B*) the space of affine functions $B \to \mathbb{R}$ endowed with the pointwise order.

²ev_p: Aff(B) $\rightarrow \mathbb{R}, f \mapsto f(p)$

Florian Boisen

A generalization of Riesz* homomorphisms in order unit spaces

Dresden University of Technology, Germany

A D > <
 A P >
 A

Let *B* be the closed unit ball in \mathbb{R}^2 and Aff(*B*) the space of affine functions $B \to \mathbb{R}$ endowed with the pointwise order.

• $\mathbb{1} \in \operatorname{Aff}(B)$ is an order unit and $\Sigma = {\operatorname{ev}_p; p \in B}.^2$

²ev_p: Aff(B) $\rightarrow \mathbb{R}, f \mapsto f(p)$

Florian Boisen

A generalization of Riesz* homomorphisms in order unit spaces

Let *B* be the closed unit ball in \mathbb{R}^2 and Aff(*B*) the space of affine functions $B \to \mathbb{R}$ endowed with the pointwise order.

- $\mathbb{1} \in \operatorname{Aff}(B)$ is an order unit and $\Sigma = {\operatorname{ev}_p; p \in B}.^2$
- $\overline{\Lambda} = \{ \operatorname{ev}_p; \ p \in \overline{\operatorname{ext}(B)} = \partial B \}.$

²ev_p: Aff(B) $\rightarrow \mathbb{R}, f \mapsto f(p)$

Florian Boisen

A generalization of Riesz* homomorphisms in order unit spaces

Let B be the closed unit ball in \mathbb{R}^2 and Aff(B) the space of affine functions $B \to \mathbb{R}$ endowed with the pointwise order.

• $\mathbb{1} \in Aff(B)$ is an order unit and $\Sigma = {ev_p; p \in B}.^2$

•
$$\overline{\Lambda} = \{ \operatorname{ev}_p; \ p \in \overline{\operatorname{ext}(B)} = \partial B \}.$$

• ev_{p} is mild Riesz* $\iff \forall f, g \in \operatorname{Aff}(B)$:

$$f(p) > g(p)^+ \implies \exists q \in \overline{\operatorname{ext}(B)} = \partial B : f(q) > g(q)^+ \quad (1)$$

²ev_p: Aff(B) $\rightarrow \mathbb{R}, f \mapsto f(p)$

Florian Boisen

A generalization of Riesz* homomorphisms in order unit spaces

Let B be the closed unit ball in \mathbb{R}^2 and Aff(B) the space of affine functions $B \to \mathbb{R}$ endowed with the pointwise order.

• $1 \in Aff(B)$ is an order unit and $\Sigma = {ev_p; p \in B}.^2$

•
$$\overline{\Lambda} = \{ \operatorname{ev}_p; \ p \in \overline{\operatorname{ext}(B)} = \partial B \}.$$

• ev_{ρ} is mild Riesz* $\iff \forall f, g \in \operatorname{Aff}(B)$:

$$f(p) > g(p)^+ \implies \exists q \in \overline{\operatorname{ext}(B)} = \partial B : f(q) > g(q)^+ \quad (1)$$

⇒ For a mild Riesz* hom. that is not a Riesz* hom., we need to find points p ∈ int(B) that satisfy (1).

²ev_p: Aff(B) $\rightarrow \mathbb{R}, f \mapsto f(p)$

Florian Boisen

A generalization of Riesz* homomorphisms in order unit spaces

Dresden University of Technology, Germany

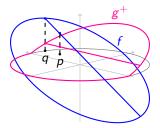
• • • • • • • • • • •

Riesz* homomorphisms

Mild Riesz* homomorphisms

$$\forall f, g \in \operatorname{Aff}(B) :$$

 $f(p) > g(p)^+ \implies \exists q \in \partial B : f(q) > g(q)^+$ (1)



Dresden University of Technology, Germany

< ロ > < 回 > < 回 > < 回 > < 回 >

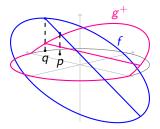
A generalization of Riesz* homomorphisms in order unit spaces

æ

Mild Riesz* homomorphisms

$$\forall f, g \in \operatorname{Aff}(B):$$

 $f(p) > g(p)^+ \implies \exists q \in \partial B: f(q) > g(q)^+$ (1)



• For every $p \in B$, ev_p is a mild Riesz* homomorphism!

Florian Boisen

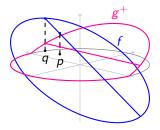
Dresden University of Technology, Germany

< 17 >

Mild Riesz* homomorphisms

$$\forall f, g \in \operatorname{Aff}(B):$$

 $f(p) > g(p)^+ \implies \exists q \in \partial B: f(q) > g(q)^+$ (1)

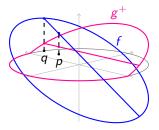


- For every $p \in B$, ev_p is a mild Riesz* homomorphism!
- Every positive linear functional on Aff(B) is a mild Riesz* homomorphism.

Mild Riesz* homomorphisms

$$\forall f, g \in \operatorname{Aff}(B):$$

 $f(p) > g(p)^+ \implies \exists q \in \partial B: f(q) > g(q)^+$ (1)



- For every $p \in B$, ev_p is a mild Riesz* homomorphism!
- Every positive linear functional on Aff(B) is a mild Riesz* homomorphism.
- For every p ∈ int(B), ev_p is a mild Riesz* homomorphism that is not a Riesz* homomorphism.

Florian Boisen

Dresden University of Technology, Germany

What we know so far

	Riesz*	\subseteq	mild Riesz*	\subseteq	K'
Aff(B)		Ç		=	

Dresden University of Technology, Germany

What we know so far

	Riesz*	\subseteq	mild Riesz*	\subseteq	K'
Aff(B)		Ç		=	
vector lattices		=		Ç	
four-ray-cone		=		\subsetneq	

Dresden University of Technology, Germany

э

æ

What we know so far

	Riesz*	\subseteq	mild Riesz*	\subseteq	K'
Aff(B)		Ç		=	
vector lattices		=		ç	
four-ray-cone		=		ç	
?		ç		ç	

Dresden University of Technology, Germany

э

æ

Mild Riesz* homomorphisms on three-dimensional spaces

Theorem (B., Kalauch, Stennder, van Gaans, 2023)

Let X be a three-dimensional order unit space.

- Σ is strictly convex ⇒ Every positive linear functional on X is a mild Riesz* homomorphism.
- Σ is not strictly convex \implies Every mild Riesz* homomorphism $X \rightarrow \mathbb{R}$ is a Riesz* homomorphism.

Mild Riesz* homomorphisms on three-dimensional spaces

Theorem (B., Kalauch, Stennder, van Gaans, 2023)

Let X be a three-dimensional order unit space.

- Σ is strictly convex ⇒ Every positive linear functional on X is a mild Riesz* homomorphism.
- Σ is not strictly convex \implies Every mild Riesz* homomorphism $X \rightarrow \mathbb{R}$ is a Riesz* homomorphism.

Question

Can this be generalized to finite-dimensional order unit spaces?

Mild Riesz* homomorphisms on finite-dimensional spaces

Theorem (B., Kalauch, Stennder, van Gaans, 2023)

Let X be a finite-dimensional order unit space. If every one-dimensional face of Σ is contained in $\overline{\Lambda}$, then every positive linear functional on X is a mild Riesz* homomorphism.

Florian Boisen

Mild Riesz* homomorphisms on finite-dimensional spaces

Theorem (B., Kalauch, Stennder, van Gaans, 2023)

Let X be a finite-dimensional order unit space. If every one-dimensional face of Σ is contained in $\overline{\Lambda}$, then every positive linear functional on X is a mild Riesz* homomorphism.

Questions

- What can happen if Σ has a one-dimensional face that is not entirely contained in $\overline{\Lambda}$?
- Is this also true in infinite dimensions?

And operators?

Theorem (B. Kalauch, Stennder, van Gaans, 2023) Let X and Y be order unit spaces, where every mild Riesz* homomorphism $X \to \mathbb{R}$ is a Riesz* homomorphism. Then every mild Riesz* homomorphism $X \to Y$ is a Riesz* homomorphism.

 F. Boisen, A. Kalauch, J. Stennder, and O. van Gaans. Mild Riesz* homomorphisms.
 In preperation, 2023.

M. van Haandel. Completions in Riesz space theory. PhD thesis, University of Nijmegen, 1993.

Florian Boisen

Dresden University of Technology, Germany

Thank you :)

Florian Boisen

Dresden University of Technology, Germany

(日)、<四)、<三</p>