Free Dual Banach Lattices

Enrique García-Sánchez

Instituto de Ciencias Matemáticas, Madrid

Positivity XI, Ljubljana, July 13 2023

Joint work with Pedro Tradacete.

Grant CEX2019-000904-S-21-3 funded by

Free Dual Banach Lattices

2 FBL^(*p*)[*E*^{**}] vs FBL^(*p*)[*E*]^{**}

Image: Image:

æ

2 FBL^(*p*)[*E*^{**}] vs FBL^(*p*)[*E*]^{**}

3 Free dual Banach lattices

Image: A matrix and a matrix

æ

Let \mathcal{C} be a subcategory of \mathcal{D} , and A an object in \mathcal{D} .

< A >

э

Let \mathcal{C} be a subcategory of \mathcal{D} , and A an object in \mathcal{D} . A **free object over** A **in the category** \mathcal{C} is a pair (F_A, j) composed by an object F_A in the category \mathcal{C} and a morphism $j : A \to F_A$ in \mathcal{D}

Let \mathcal{C} be a subcategory of \mathcal{D} , and A an object in \mathcal{D} . A **free object over** A **in the category** \mathcal{C} is a pair (F_A, j) composed by an object F_A in the category \mathcal{C} and a morphism $j : A \to F_A$ in \mathcal{D} such that for every object B in \mathcal{C}

Let \mathcal{C} be a subcategory of \mathcal{D} , and A an object in \mathcal{D} . A **free object over** A **in the category** \mathcal{C} is a pair (F_A, j) composed by an object F_A in the category \mathcal{C} and a morphism $j : A \to F_A$ in \mathcal{D} such that for every object Bin \mathcal{C} and every morphism $f : A \to B$ in \mathcal{D}

Let \mathcal{C} be a subcategory of \mathcal{D} , and A an object in \mathcal{D} . A **free object over** A **in the category** \mathcal{C} is a pair (F_A, j) composed by an object F_A in the category \mathcal{C} and a morphism $j : A \to F_A$ in \mathcal{D} such that for every object Bin \mathcal{C} and every morphism $f : A \to B$ in \mathcal{D} there exists a unique morphism $\hat{f} : F_A \to B$ in \mathcal{C} making the following diagram commutative.

Examples

Ξ.

イロト イヨト イヨト イヨト

• the free group over a set,

3

イロト イヨト イヨト

- the free group over a set,
- the free Banach space over a set

æ

- the free group over a set,
- the free Banach space over a set $(\equiv \ell_1(A))$,

< 47 ▶

э

- the free group over a set,
- the free Banach space over a set $(\equiv \ell_1(A))$,
- the Stone-Čech compactification of a topological space,

- the free group over a set,
- the free Banach space over a set $(\equiv \ell_1(A))$,
- the Stone-Čech compactification of a topological space,
- the Lipschitz-free Banach space over a metric space,

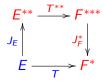
. . .

- the free group over a set,
- the free Banach space over a set $(\equiv \ell_1(A))$,
- the Stone-Čech compactification of a topological space,
- the Lipschitz-free Banach space over a metric space,

The bidual space E^{**} of a Banach space E, together with the canonical embedding $J_E : E \to E^{**}$, can be understood as the **free dual Banach** space over a Banach space E:

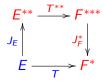
The bidual space E^{**} of a Banach space E, together with the canonical embedding $J_E : E \to E^{**}$, can be understood as the **free dual Banach** space over a Banach space E:

Every linear and bounded operator $T : E \to F^*$, with F^* a dual Banach space, can be extended to an adjoint, linear and bounded operator $J_F^* \circ T^{**}$: $E^{**} \to F^*$ such that $T = J_F^* \circ T^{**} \circ J_E$ and $||T|| = ||J_F^* \circ T^{**}||$.



The bidual space E^{**} of a Banach space E, together with the canonical embedding $J_E : E \to E^{**}$, can be understood as the **free dual Banach** space over a Banach space E:

Every linear and bounded operator $T : E \to F^*$, with F^* a dual Banach space, can be extended to an adjoint, linear and bounded operator $J_F^* \circ T^{**}$: $E^{**} \to F^*$ such that $T = J_F^* \circ T^{**} \circ J_E$ and $||T|| = ||J_F^* \circ T^{**}||$.



- if $x \leq y$, then $x + z \leq y + z$ for every $z \in X$;
- if $x \leq y$, then $\lambda x \leq \lambda y$ for every $\lambda \in \mathbb{R}_+$;

- if $x \leq y$, then $x + z \leq y + z$ for every $z \in X$;
- if $x \leq y$, then $\lambda x \leq \lambda y$ for every $\lambda \in \mathbb{R}_+$;
- for every x, y ∈ X there exist the least upper bound x ∨ y (supremum) and the greatest lower bound x ∧ y (infimum);

- if $x \leq y$, then $x + z \leq y + z$ for every $z \in X$;
- if $x \leq y$, then $\lambda x \leq \lambda y$ for every $\lambda \in \mathbb{R}_+$;
- for every x, y ∈ X there exist the least upper bound x ∨ y (supremum) and the greatest lower bound x ∧ y (infimum);
- if $|x| \le |y|$, then $||x|| \le ||y||$, where $|x| = x \lor (-x)$.

A **Banach lattice** is a Banach space $(X, \|\cdot\|)$ equipped with a partial order \leq satisfying:

- if $x \leq y$, then $x + z \leq y + z$ for every $z \in X$;
- if $x \leq y$, then $\lambda x \leq \lambda y$ for every $\lambda \in \mathbb{R}_+$;
- for every x, y ∈ X there exist the least upper bound x ∨ y (supremum) and the greatest lower bound x ∧ y (infimum);
- if $|x| \le |y|$, then $||x|| \le ||y||$, where $|x| = x \lor (-x)$.

Definition

An operator $T : X \to Y$ between two Banach lattices is called a **lattice** homomorphism if it is linear and preserves the lattice operations.

イロト 不得下 イヨト イヨト

p-convex Banach lattices

Definition

A Banach lattice X is said *p*-convex for $1 \le p \le \infty$ if there exists a constant $M \ge 1$ such that for any $x_1, \ldots, x_n \in X$ the inequality

$$\left\|\left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}}\right\| \leq M\left(\sum_{i=1}^{n}\|x_{i}\|^{p}\right)^{\frac{1}{p}}$$

holds,

A D N A B N A B N A B N

э

A Banach lattice X is said p-convex for $1 \le p \le \infty$ if there exists a constant $M \ge 1$ such that for any $x_1, \ldots, x_n \in X$ the inequality

$$\left\|\left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}}\right\| \leq M\left(\sum_{i=1}^{n}||x_{i}||^{p}\right)^{\frac{1}{p}}$$

holds, where

$$\left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} = \sup\left\{\sum_{i=1}^{n} a_i x_i : \left(\sum_{i=1}^{n} |a_i|^{p^*}\right)^{\frac{1}{p^*}} \le 1\right\} \text{ and } \frac{1}{p} + \frac{1}{p^*} = 1.$$

э

イロト イポト イヨト イヨト

A Banach lattice X is said p-convex for $1 \le p \le \infty$ if there exists a constant $M \ge 1$ such that for any $x_1, \ldots, x_n \in X$ the inequality

$$\left\|\left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}}\right\| \leq M\left(\sum_{i=1}^{n}\|x_{i}\|^{p}\right)^{\frac{1}{p}}$$

holds, where

$$\left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} = \sup\left\{\sum_{i=1}^{n} a_i x_i : \left(\sum_{i=1}^{n} |a_i|^{p^*}\right)^{\frac{1}{p^*}} \le 1\right\} \text{ and } \frac{1}{p} + \frac{1}{p^*} = 1.$$

The lowest constant M satisfying the above inequality is called the *p*-convexity constant of X, and is denoted by $M^{(p)}(X)$.

Enrique García-Sánchez (ICMAT)

イロト イヨト イヨト

э

Enrique García-Sánchez (ICMAT)

Free Dual Banach Lattices

Positivity XI

9/24

≣) ≣

Let E be a Banach space.

Let E be a Banach space. The **free Banach lattice over a Banach space** E

Let *E* be a Banach space. The **free Banach lattice over a Banach space** *E* is a pair (FBL[*E*], ϕ_E), where FBL[*E*] is a Banach lattice and $\phi_E : E \rightarrow FBL[E]$ is a linear isometrical embedding,

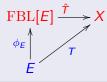
Let *E* be a Banach space. The **free Banach lattice over a Banach space** *E* is a pair (FBL[*E*], ϕ_E), where FBL[*E*] is a Banach lattice and $\phi_E : E \rightarrow FBL[E]$ is a linear isometrical embedding, satisfying that for every Banach lattice *X*

Let *E* be a Banach space. The **free Banach lattice over a Banach space** *E* is a pair (FBL[*E*], ϕ_E), where FBL[*E*] is a Banach lattice and $\phi_E : E \rightarrow$ FBL[*E*] is a linear isometrical embedding, satisfying that for every Banach lattice *X* and every bounded linear operator $T : E \rightarrow X$

9/24

Let *E* be a Banach space. The **free Banach lattice over a Banach space** *E* is a pair (FBL[*E*], ϕ_E), where FBL[*E*] is a Banach lattice and $\phi_E : E \rightarrow$ FBL[*E*] is a linear isometrical embedding, satisfying that for every Banach lattice *X* and every bounded linear operator $T : E \rightarrow X$ there exists a unique lattice homomorphism $\hat{T} : \text{FBL}[E] \rightarrow X$

Let *E* be a Banach space. The **free Banach lattice over a Banach space** *E* is a pair (FBL[*E*], ϕ_E), where FBL[*E*] is a Banach lattice and $\phi_E : E \to FBL[E]$ is a linear isometrical embedding, satisfying that for every Banach lattice *X* and every bounded linear operator $T : E \to X$ there exists a unique lattice homomorphism $\hat{T} : FBL[E] \to X$ such that $\hat{T} \circ \phi_E = T$, and $\|\hat{T}\| = \|T\|$.



Free *p*-convex Banach lattice over a Banach space

Enrique García-Sánchez (ICMAT)

Free Dual Banach Lattices

Positivity XI

э

Free *p*-convex Banach lattice over a Banach space

Definition (Jardón-Sánchez, Laustsen, Taylor, Tradacete, Troitsky, 2022)

Let *E* be a Banach space and $1 \leq p \leq \infty$.

10 / 24

Definition (Jardón-Sánchez, Laustsen, Taylor, Tradacete, Troitsky, 2022)

Let *E* be a Banach space and $1 \le p \le \infty$. The free *p*-convex Banach lattice over *E*

Definition (Jardón-Sánchez, Laustsen, Taylor, Tradacete, Troitsky, 2022)

Let *E* be a Banach space and $1 \le p \le \infty$. The free *p*-convex Banach lattice over *E* is a *p*-convex Banach lattice with *p*-convexity constant 1, denoted by $\text{FBL}^{(p)}[E]$, along with a linear isometrical embedding $\phi_E : E \to \text{FBL}^{(p)}[E]$,

Definition (Jardón-Sánchez, Laustsen, Taylor, Tradacete, Troitsky, 2022)

Let *E* be a Banach space and $1 \le p \le \infty$. The free *p*-convex Banach lattice over *E* is a *p*-convex Banach lattice with *p*-convexity constant 1, denoted by FBL^(p)[*E*], along with a linear isometrical embedding $\phi_E : E \to \text{FBL}^{(p)}[E]$, satisfying that for every bounded linear operator $T : E \to X$,

Definition (Jardón-Sánchez, Laustsen, Taylor, Tradacete, Troitsky, 2022)

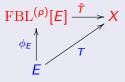
Let *E* be a Banach space and $1 \le p \le \infty$. The free *p*-convex Banach lattice over *E* is a *p*-convex Banach lattice with *p*-convexity constant 1, denoted by FBL^(p)[*E*], along with a linear isometrical embedding $\phi_E : E \to \text{FBL}^{(p)}[E]$, satisfying that for every bounded linear operator $T : E \to X$, where *X* is a *p*-convex Banach lattice,

Definition (Jardón-Sánchez, Laustsen, Taylor, Tradacete, Troitsky, 2022)

Let *E* be a Banach space and $1 \le p \le \infty$. The **free** *p*-convex **Banach lattice over** *E* is a *p*-convex Banach lattice with *p*-convexity constant 1, denoted by FBL^(p)[*E*], along with a linear isometrical embedding $\phi_E : E \to \text{FBL}^{(p)}[E]$, satisfying that for every bounded linear operator $T : E \to X$, where *X* is a *p*-convex Banach lattice, there exists a unique lattice homomorphism $\hat{T} : \text{FBL}^{(p)}[E] \to X$

Definition (Jardón-Sánchez, Laustsen, Taylor, Tradacete, Troitsky, 2022)

Let *E* be a Banach space and $1 \le p \le \infty$. The free *p*-convex Banach lattice over *E* is a *p*-convex Banach lattice with *p*-convexity constant 1, denoted by FBL^(p)[*E*], along with a linear isometrical embedding $\phi_E : E \to \text{FBL}^{(p)}[E]$, satisfying that for every bounded linear operator $T : E \to X$, where *X* is a *p*-convex Banach lattice, there exists a unique lattice homomorphism $\hat{T} : \text{FBL}^{(p)}[E] \to X$ such that $\hat{T} \circ \phi_E = T$, and $\|\hat{T}\| \le M^{(p)}(X)\|T\|$.



Definition (Jardón-Sánchez, Laustsen, Taylor, Tradacete, Troitsky, 2022)

Let *E* be a Banach space and $1 \le p \le \infty$. The free *p*-convex Banach lattice over *E* is a *p*-convex Banach lattice with *p*-convexity constant 1, denoted by $\operatorname{FBL}^{(p)}[E]$, along with a linear isometrical embedding $\phi_E : E \to \operatorname{FBL}^{(p)}[E]$, satisfying that for every bounded linear operator $T : E \to X$, where *X* is a *p*-convex Banach lattice, there exists a unique lattice homomorphism $\hat{T} : \operatorname{FBL}^{(p)}[E] \to X$ such that $\hat{T} \circ \phi_E = T$, and $\|\hat{T}\| \le M^{(p)}(X)\|T\|$.

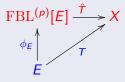
$$\operatorname{FBL}^{(p)}[E] \xrightarrow{\tilde{T}} X$$

$$\begin{array}{c} & & \\ & \phi_E \\ & & \\ & E \end{array}$$

Every Banach lattice is 1-convex with constant 1, so $FBL^{(1)}[E] = FBL[E]$.

Definition (Jardón-Sánchez, Laustsen, Taylor, Tradacete, Troitsky)

Let *E* be a Banach space and $1 \le p \le \infty$. The free *p*-convex Banach lattice over *E* is a *p*-convex Banach lattice with *p*-convexity constant 1, denoted by FBL^(p)[*E*], along with a linear isometrical embedding $\phi_E : E \to \text{FBL}^{(p)}[E]$, satisfying that for every bounded linear operator $T : E \to X$, where *X* is a *p*-convex Banach lattice, there exists a unique lattice homomorphism $\hat{T} : \text{FBL}^{(p)}[E] \to X$ such that $\hat{T} \circ \phi_E = T$, and $\|\hat{T}\| \le M^{(p)}(X)\|T\|$.



Observation

$\operatorname{FBL}^{(p)}[E]$ exists and is unique!

Enrique García-Sánchez (ICMAT)

Let $H[E] := \{f : E^* \to \mathbb{R} : f(\lambda x^*) = \lambda f(x^*) \ \forall x^* \in E^*, \lambda \ge 0\}$ be the set of positively homogeneous functions over E^* .

12/24

Image: A matrix and a matrix

Explicit construction of $FBL^{(p)}[E]$

Let $H[E] := \{f : E^* \to \mathbb{R} : f(\lambda x^*) = \lambda f(x^*) \ \forall x^* \in E^*, \lambda \ge 0\}$ be the set of positively homogeneous functions over E^* . For every $f \in H[E]$ we define

$$\|f\|_{p} = \sup\left\{\left(\sum_{k=1}^{n} |f(x_{k}^{*})|^{p}\right)^{\frac{1}{p}} : (x_{k}^{*}) \subset E^{*}, \sup_{x \in B_{E}} \left(\sum_{k=1}^{n} |x_{k}^{*}(x)|^{p}\right)^{\frac{1}{p}} \leq 1\right\}.$$

12/24

Image: A matrix and a matrix

Let $H[E] := \{f : E^* \to \mathbb{R} : f(\lambda x^*) = \lambda f(x^*) \ \forall x^* \in E^*, \lambda \ge 0\}$ be the set of positively homogeneous functions over E^* . For every $f \in H[E]$ we define

$$\|f\|_{p} = \sup\left\{\left(\sum_{k=1}^{n} |f(x_{k}^{*})|^{p}\right)^{\frac{1}{p}} : (x_{k}^{*}) \subset E^{*}, \sup_{x \in B_{E}} \left(\sum_{k=1}^{n} |x_{k}^{*}(x)|^{p}\right)^{\frac{1}{p}} \leq 1\right\}.$$

The set $H_p[E] := \{f \in H[E] : ||f||_p < \infty\}$ is a Banach lattice when endowed with the pointwise ordering and lattice operations.

Let $H[E] := \{f : E^* \to \mathbb{R} : f(\lambda x^*) = \lambda f(x^*) \ \forall x^* \in E^*, \lambda \ge 0\}$ be the set of positively homogeneous functions over E^* . For every $f \in H[E]$ we define

$$\|f\|_{p} = \sup\left\{\left(\sum_{k=1}^{n} |f(x_{k}^{*})|^{p}\right)^{\frac{1}{p}} : (x_{k}^{*}) \subset E^{*}, \sup_{x \in B_{E}} \left(\sum_{k=1}^{n} |x_{k}^{*}(x)|^{p}\right)^{\frac{1}{p}} \leq 1\right\}.$$

The set $H_p[E] := \{f \in H[E] : ||f||_p < \infty\}$ is a Banach lattice when endowed with the pointwise ordering and lattice operations.

We define $\phi_E : E \to H_p[E]$ as $x \mapsto \delta_x(x^*) = x^*(x)$, $x^* \in E^*$.

Let $H[E] := \{f : E^* \to \mathbb{R} : f(\lambda x^*) = \lambda f(x^*) \ \forall x^* \in E^*, \lambda \ge 0\}$ be the set of positively homogeneous functions over E^* . For every $f \in H[E]$ we define

$$\|f\|_{p} = \sup\left\{\left(\sum_{k=1}^{n} |f(x_{k}^{*})|^{p}\right)^{\frac{1}{p}} : (x_{k}^{*}) \subset E^{*}, \sup_{x \in B_{E}} \left(\sum_{k=1}^{n} |x_{k}^{*}(x)|^{p}\right)^{\frac{1}{p}} \leq 1\right\}.$$

The set $H_p[E] := \{f \in H[E] : ||f||_p < \infty\}$ is a Banach lattice when endowed with the pointwise ordering and lattice operations.

We define $\phi_E : E \to H_p[E]$ as $x \mapsto \delta_x(x^*) = x^*(x)$, $x^* \in E^*$.

The space $\operatorname{FBL}^{(p)}[E] := \operatorname{\overline{lat}}(\phi_E(E)) \subset H_p[E]$ is a representation of the free *p*-convex Banach lattice over *E*.

Image: A matrix and a matrix

æ

Duality behaves well with Banach lattices:

Image: A matrix

э

Duality behaves well with Banach lattices:

If X is a Banach lattice, X^* (and thus X^{**}) is again a Banach lattice.

э

Duality behaves well with Banach lattices:

If X is a Banach lattice, X^* (and thus X^{**}) is again a Banach lattice.

Moreover, if X is p-convex, so is X^{**} , and $M^{(p)}(X) = M^{(p)}(X^{**})$.

э

Duality behaves well with Banach lattices:

If X is a Banach lattice, X^* (and thus X^{**}) is again a Banach lattice.

Moreover, if X is p-convex, so is X^{**} , and $M^{(p)}(X) = M^{(p)}(X^{**})$.

Nevertheless, it remains open whether every dual Banach lattice admits a predual Banach lattice.

Duality behaves well with Banach lattices:

If X is a Banach lattice, X^* (and thus X^{**}) is again a Banach lattice.

Moreover, if X is p-convex, so is X^{**} , and $M^{(p)}(X) = M^{(p)}(X^{**})$.

Nevertheless, it remains open whether every dual Banach lattice admits a predual Banach lattice.

Given a Banach space E, the aim of this work is to study the interplay between the operations of taking the free (*p*-convex) Banach lattice and the free dual

3

Duality behaves well with Banach lattices:

If X is a Banach lattice, X^* (and thus X^{**}) is again a Banach lattice.

Moreover, if X is p-convex, so is X^{**} , and $M^{(p)}(X) = M^{(p)}(X^{**})$.

Nevertheless, it remains open whether every dual Banach lattice admits a predual Banach lattice.

Given a Banach space E, the aim of this work is to study the interplay between the operations of taking the free (*p*-convex) Banach lattice and the free dual, and to define a free object over E in the category of dual Banach lattices with adjoint lattice homomorphisms.

イロト イヨト イヨト ・

3

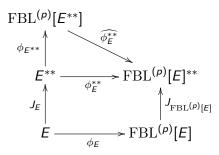
2 FBL^(*p*)[*E*^{**}] vs FBL^(*p*)[*E*]^{**}

3 Free dual Banach lattices

Image: A matrix and a matrix

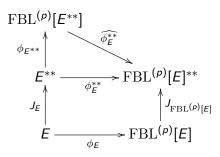
æ

$\operatorname{FBL}^{(p)}[E^{**}]$ vs $\operatorname{FBL}^{(p)}[E]^{**}$



æ

$\operatorname{FBL}^{(p)}[E^{**}]$ vs $\operatorname{FBL}^{(p)}[E]^{**}$



Theorem (GS-Tradacete)

The operator $\widehat{\phi_E^{**}}$: $\operatorname{FBL}^{(p)}[E^{**}] \to \operatorname{FBL}^{(p)}[E]^{**}$ is an isometric lattice embedding.

Key tool

Theorem (Principle of Local Reflexivity)

Let *F* be a Banach space. For any finite-dimensional subspaces $U \subset F^{**}$ and $V \subset F^{*}$ and $\epsilon > 0$, there exists a linear isomorphism *S* of *U* onto $S(U) \subset F$ such that $||S|| ||S^{-1}|| \le 1 + \epsilon$, $x^{*}(Sx^{**}) = x^{**}(x^{*})$ for every $x^{*} \in V$ and $x^{**} \in U$, and *S* is the identity on $U \cap J_{F}(F)$.

Theorem (Principle of Local Reflexivity)

Let F be a Banach space. For any finite-dimensional subspaces $U \subset F^{**}$ and $V \subset F^*$ and $\epsilon > 0$, there exists a linear isomorphism S of U onto $S(U) \subset F$ such that $||S|| ||S^{-1}|| \le 1 + \epsilon$, $x^*(Sx^{**}) = x^{**}(x^*)$ for every $x^* \in V$ and $x^{**} \in U$, and S is the identity on $U \cap J_F(F)$.

Using this result, we can show that for every $f \in FBL^{(p)}[E^*]$

$$\sup\left\{ \left(\sum_{k=1}^{n} |f(x_{k}^{**})|^{p}\right)^{\frac{1}{p}} : (x_{k}^{**})_{k} \subset E^{**}, \sup_{x^{*} \in B_{E^{*}}} \left(\sum_{k=1}^{n} |x_{k}^{**}(x^{*})|^{p}\right)^{\frac{1}{p}} \le 1 \right\} = \\ \sup\left\{ \left(\sum_{k=1}^{n} |f \circ J_{E}(x_{k})|^{p}\right)^{\frac{1}{p}} : (x_{k})_{k} \subset E, \sup_{x^{*} \in B_{E^{*}}} \left(\sum_{k=1}^{n} |x^{*}(x_{k})|^{p}\right)^{\frac{1}{p}} \le 1 \right\}.$$

Theorem (Principle of Local Reflexivity)

Let F be a Banach space. For any finite-dimensional subspaces $U \subset F^{**}$ and $V \subset F^*$ and $\epsilon > 0$, there exists a linear isomorphism S of U onto $S(U) \subset F$ such that $||S|| ||S^{-1}|| \le 1 + \epsilon$, $x^*(Sx^{**}) = x^{**}(x^*)$ for every $x^* \in V$ and $x^{**} \in U$, and S is the identity on $U \cap J_F(F)$.

Using this result, we can show that for every $f \in FBL^{(p)}[E^*]$

$$\sup\left\{ \left(\sum_{k=1}^{n} |f(x_{k}^{**})|^{p}\right)^{\frac{1}{p}} : (x_{k}^{**})_{k} \subset E^{**}, \sup_{x^{*} \in B_{E^{*}}} \left(\sum_{k=1}^{n} |x_{k}^{**}(x^{*})|^{p}\right)^{\frac{1}{p}} \leq 1 \right\} = \\ \sup\left\{ \left(\sum_{k=1}^{n} |f \circ J_{E}(x_{k})|^{p}\right)^{\frac{1}{p}} : (x_{k})_{k} \subset E, \sup_{x^{*} \in B_{E^{*}}} \left(\sum_{k=1}^{n} |x^{*}(x_{k})|^{p}\right)^{\frac{1}{p}} \leq 1 \right\}.$$

This provides an alternative representation for the norm in $FBL^{(p)}[E^*]$ for any dual Banach space E^* .

Enrique García-Sánchez (ICMAT)

Theorem (GS-Tradacete)

The operator $\widehat{\phi_E^{**}}$: $\operatorname{FBL}^{(p)}[E^{**}] \to \operatorname{FBL}^{(p)}[E]^{**}$ is an isometric lattice embedding.

æ

17 / 24

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (GS-Tradacete)

The operator $\widehat{\phi_E^{**}}$: $\operatorname{FBL}^{(p)}[E^{**}] \to \operatorname{FBL}^{(p)}[E]^{**}$ is an isometric lattice embedding.

In other words:

æ

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (GS-Tradacete)

The operator $\widehat{\phi_E^{**}}$: $\operatorname{FBL}^{(p)}[E^{**}] \to \operatorname{FBL}^{(p)}[E]^{**}$ is an isometric lattice embedding.

In other words:

The free *p*-convex Banach lattice generated by the free dual over the Banach space E (FBL^(*p*)[E^{**}]) embeds lattice isometrically into the free dual over the free *p*-convex Banach lattice generated by E (FBL^(*p*)[E]^{**}).

Preliminaries

2 FBL^(*p*)[*E***] vs FBL^(*p*)[*E*]**

Image: A matrix and a matrix

æ

More specifically, we are looking for a free object over a Banach space E in the subcategory $\mathcal{BL}^{*(p)}$ of *p*-convex Banach lattices which are duals of some Banach lattice.

More specifically, we are looking for a free object over a Banach space E in the subcategory $\mathcal{BL}^{*(p)}$ of *p*-convex Banach lattices which are duals of some Banach lattice.

Two main questions arise:

More specifically, we are looking for a free object over a Banach space E in the subcategory $\mathcal{BL}^{*(p)}$ of *p*-convex Banach lattices which are duals of some Banach lattice.

Two main questions arise:

• Does such a free object exists for every Banach space?

More specifically, we are looking for a free object over a Banach space E in the subcategory $\mathcal{BL}^{*(p)}$ of *p*-convex Banach lattices which are duals of some Banach lattice.

Two main questions arise:

- Does such a free object exists for every Banach space?
- If so, can we find an explicit construction?

Free *p*-convex dual Banach lattice

Definition

Let *E* be a Banach space and $1 \le p \le \infty$.

Envious	García-Sánchez	(ICMAT)
Liinque	Garcia-Sanchez	(ICIVIAT)

э

Free *p*-convex dual Banach lattice

Definition

Let *E* be a Banach space and $1 \le p \le \infty$. The free *p*-convex dual Banach lattice over *E*

Enrique García-Sánchez (ICMAT)

Image: A matrix and a matrix

э

Let *E* be a Banach space and $1 \le p \le \infty$. The **free** *p*-convex dual Banach **lattice over** *E* is a *p*-convex Banach lattice FBL^{*(*p*)}[*E*] with *p*-convexity constant 1, which is the dual of some other Banach lattice $Z_F^{(p)}$,

Image: A matrix

Let *E* be a Banach space and $1 \le p \le \infty$. The **free** *p*-**convex dual Banach lattice over** *E* is a *p*-convex Banach lattice $\text{FBL}^{*(p)}[E]$ with *p*-convexity constant 1, which is the dual of some other Banach lattice $Z_E^{(p)}$, along with a linear isometrical embedding $\iota_E : E \to \text{FBL}^{*(p)}[E]$,

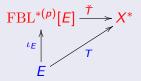
Let *E* be a Banach space and $1 \le p \le \infty$. The **free** *p*-convex dual Banach lattice over *E* is a *p*-convex Banach lattice $FBL^{*(p)}[E]$ with *p*-convexity constant 1, which is the dual of some other Banach lattice $Z_E^{(p)}$, along with a linear isometrical embedding $\iota_E : E \to FBL^{*(p)}[E]$, satisfying that for every bounded and linear operator $T : E \to X^*$,

Image: A matrix

Let *E* be a Banach space and $1 \le p \le \infty$. The **free** *p*-convex dual Banach lattice over *E* is a *p*-convex Banach lattice FBL^{*(*p*)}[*E*] with *p*-convexity constant 1, which is the dual of some other Banach lattice $Z_E^{(p)}$, along with a linear isometrical embedding $\iota_E : E \to \text{FBL}^{*(p)}[E]$, satisfying that for every bounded and linear operator $T : E \to X^*$, X^* being the dual of a Banach lattice *X* and *p*-convex,

Let *E* be a Banach space and $1 \le p \le \infty$. The **free** *p*-convex dual Banach lattice over *E* is a *p*-convex Banach lattice $\operatorname{FBL}^{*(p)}[E]$ with *p*-convexity constant 1, which is the dual of some other Banach lattice $Z_E^{(p)}$, along with a linear isometrical embedding $\iota_E : E \to \operatorname{FBL}^{*(p)}[E]$, satisfying that for every bounded and linear operator $T : E \to X^*$, X^* being the dual of a Banach lattice *X* and *p*-convex, there exists a unique weak* to weak* continuous lattice homomorphism $\check{T} : \operatorname{FBL}^{*(p)}[E] \to X^*$,

Let *E* be a Banach space and $1 \le p \le \infty$. The free *p*-convex dual Banach lattice over *E* is a *p*-convex Banach lattice FBL^{*(*p*)}[*E*] with *p*-convexity constant 1, which is the dual of some other Banach lattice $Z_E^{(p)}$, along with a linear isometrical embedding $\iota_E : E \to FBL^{*(p)}[E]$, satisfying that for every bounded and linear operator $T : E \to X^*$, X^* being the dual of a Banach lattice *X* and *p*-convex, there exists a unique weak* to weak* continuous lattice homomorphism $\check{T} : FBL^{*(p)}[E] \to X^*$, such that $\check{T} \circ \iota_E = T$, and moreover, $\|\check{T}\| \le M^{(p)}(X)\|T\|$.



< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (GS-Tradacete)

The space $\operatorname{FBL}^{(p)}[E]^{**}$ satisfies the definition of $\operatorname{FBL}^{*(p)}[E]$ for every p > 1.

æ

21/24

イロト 不得 トイヨト イヨト

Theorem (GS-Tradacete)

The space $\operatorname{FBL}^{(p)}[E]^{**}$ satisfies the definition of $\operatorname{FBL}^{*(p)}[E]$ for every p > 1.

Sketch of the proof.

 X^* *p*-convex, X Banach lattice

Theorem (GS-Tradacete)

The space $\operatorname{FBL}^{(p)}[E]^{**}$ satisfies the definition of $\operatorname{FBL}^{*(p)}[E]$ for every p > 1.

Sketch of the proof.

X* p-convex, X Banach lattice \Rightarrow X p*-concave, p* < ∞

Theorem (GS-Tradacete)

The space $\operatorname{FBL}^{(p)}[E]^{**}$ satisfies the definition of $\operatorname{FBL}^{*(p)}[E]$ for every p > 1.

Sketch of the proof.

 X^* p-convex,~X Banach lattice \Rightarrow X $p^*\text{-concave},~p^*<\infty$ \Rightarrow X order continuous

Theorem (GS-Tradacete)

The space $\operatorname{FBL}^{(p)}[E]^{**}$ satisfies the definition of $\operatorname{FBL}^{*(p)}[E]$ for every p > 1.

Sketch of the proof.

 X^* *p*-convex, X Banach lattice $\Rightarrow X p^*$ -concave, $p^* < \infty \Rightarrow X$ order continuous $\Rightarrow J_X$ interval preserving

Theorem (GS-Tradacete)

The space $\operatorname{FBL}^{(p)}[E]^{**}$ satisfies the definition of $\operatorname{FBL}^{*(p)}[E]$ for every p > 1.

Sketch of the proof.

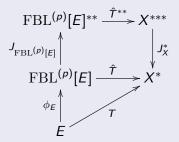
 X^* *p*-convex, *X* Banach lattice $\Rightarrow X p^*$ -concave, $p^* < \infty \Rightarrow X$ order continuous $\Rightarrow J_X$ interval preserving $\Rightarrow J_X^*$ lattice homomorphism.

Theorem (GS-Tradacete)

The space $\operatorname{FBL}^{(p)}[E]^{**}$ satisfies the definition of $\operatorname{FBL}^{*(p)}[E]$ for every p > 1.

Sketch of the proof.

 X^* *p*-convex, X Banach lattice $\Rightarrow X p^*$ -concave, $p^* < \infty \Rightarrow X$ order continuous $\Rightarrow J_X$ interval preserving $\Rightarrow J_X^*$ lattice homomorphism.



The previous argument fails for p = 1, since we need to be able to extend to the duals of Banach lattices which are not order continuous, such as C[0, 1].

22 / 24

The previous argument fails for p = 1, since we need to be able to extend to the duals of Banach lattices which are not order continuous, such as C[0, 1].

In fact, $FBL[E]^{**}$ fails to be the free dual Banach lattice over E as long as E contains a complemented copy of ℓ_1 .

Theorem (GS-Tradacete)

Let E be a Banach space. The following are equivalent:

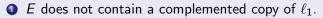
- E does not contain a complemented copy of ℓ_1 .
- **2** The space $FBL[E]^{**}$ satisfies the definition of $FBL^{*}[E]$.

The previous argument fails for p = 1, since we need to be able to extend to the duals of Banach lattices which are not order continuous, such as C[0, 1].

In fact, $FBL[E]^{**}$ fails to be the free dual Banach lattice over E as long as E contains a complemented copy of ℓ_1 .

Theorem (GS-Tradacete)

Let E be a Banach space. The following are equivalent:



② The space $FBL[E]^{**}$ satisfies the definition of $FBL^{*}[E]$.

We do not know yet if $FBL^*[E]$ exists when E contains a complemented copy of ℓ_1 .

Thank you for your attention!

Main references

- A. Avilés, J. Rodríguez, P. Tradacete, *The free Banach lattice generated by a Banach space*. J. Funct. Anal. **274** (10) (2018), 2955–2977.
- M. Fabian, P. Habala, P. Hájek, V. Montesinos, V. Zizler, Banach Space Theory. The Basis for Linear and Nonlinear Analysis. Springer, New York, 2011.
- N. Ghoussoub, W. B. Johnson, *Factoring operators through Banach lattices not containing* C(0,1). Math. Z. **194** (1987), 153–171.
- H. Jardón-Sánchez, N. J. Laustsen, M. A. Taylor, P. Tradacete, V. G. Troitsky, Free Banach lattices under convexity conditions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 (15) (2022).
- T. Oikhberg, M. A. Taylor, P. Tradacete, V. G. Troitsky, *Free Banach lattices*. Preprint (2022).

э

(日) (四) (日) (日) (日)