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The problem of hedging (or super-hedging) a European
claim

In discrete time t = 0, · · · ,T , let (Ω, (Ft)t=0,··· ,T ,P) be a
discrete-time complete stochastic basis. Consider a FT -measurable
random variable ξT we interpret as the payoff of some European
option, i.e. a financial contract delivering the wealth ξT at time T .

The general problem is to solve the following : find a self-financing
portfolio process (Vt)t=0,··· ,T such that VT ≥ ξT (or VT = ξT for
an exact replication). We say that the initial value V0 is a
super-hedging price.

We are interested in the infimum of the super-hedging prices.
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Portfolio processes and self-financing condition

Suppose that the financial market is composed of one bond of
(discounted) price S1 = 1 and d − 1 ≥ 1 risky assets of prices
(S i )i=2,··· ,d .

A financial strategy θ ∈ Rd is a stochastic process where θit is the
number of assets number i = 1, · · · , d held by a portfolio manager.
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Portfolio processes and self-financing condition : without
transaction costs

The liquidation value of the financial strategy θ ∈ Rd at time t is
given by

Lt = Lθt = θtSt =
d∑

i=1

θitS
i
t .

The portfolio-process is said self-financing if, for all t = 1, · · · ,T ,

θt−1St = θtSt

or equivalently ∆Lt = Lt − Lt−1 satisfies :

∆Lt = θt−1∆St , t = 1, · · · ,T .
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Portfolio processes and self-financing condition : with
transaction costs

A portfolio process is expressed in physical units, i.e. Vt = θt and
the liquidation value Lt = LVt

t is not always simple to express.
We consider the associated set-valued stochastic process
(Gt)t=0,··· ,T in Rd defined as

Gt := {x ∈ Rd : Lt(x) ≥ 0}.

If ω 7→ Lt(ω, x) is Ft-measurable and x 7→ Lt(ω, x) is upper
semi-continuous, we may show that Gt(ω) is closed a.s.(ω) and
measurable, where the measurability is understood in the graph
sense :

graph(Gt) := {(ω, x) : x ∈ Gt(ω)} ∈ Ft × B(Rd), t = 1, · · · ,T .
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Portfolio processes and self-financing condition : with
transaction costs

Moreover, with e1 = (1, 0 · · · , 0) ∈ Rd , we have

Lt(z) := sup {α ∈ R : z − αe1 ∈ Gt} = max {α ∈ R : z − αe1 ∈ Gt} ,

i.e. Lt(z) is the largest amount of cash α we may obtain when we
change z = (z − αe1) + αe1 into αe1.

Similarly, if we define Ct(z) = −Lt(−z), we obtain that

Ct(z) = inf{α ∈ R : αe1−z ∈ Gt} = min{α ∈ R : αe1−z ∈ Gt}, z ∈ Rd ,

i.e. Ct(z) is the smallest cost α expressed in cash we need to buy
the financial position z ∈ Rd . Indeed, we write
αe1 = z + (αe1 − z).
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Portfolio processes and self-financing condition : with
transaction costs

Naturally, Ct(z) = Ct(St , z) depends on the available quantities
and prices for the risky assets, described by an exogenous
vector-valued Ft-measurable random variable St of Rm

+, m ≥ d ,
and on the quantities z ∈ Rd to be traded.

In the following, we suppose that m ≥ d as an asset may be
described by several prices and quantities offered by the market,
e.g. bid and ask prices, or several pair of bid and ask prices of an
order book and the associated quantities offered by the market.
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Portfolio processes and self-financing condition : with
transaction costs

The self-financing condition is :

∆Vt ∈ −Gt , t = 0, · · · ,T , (∆Vt = Vt − Vt−1)

i.e. Vt−1 = Vt + (−∆Vt) is such that Ct(∆Vt) ≤ 0 so that we
may cancel the position −∆Vt and change Vt−1 into Vt for free.

We have random preorders Vt−1 ≥Gt Vt defined by Gt , e.g. when
Gt is a random convex closed cone.
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Portfolio processes and self-financing condition : with
transaction costs-Example

Suppose that the financial market is defined by an order book. In
that case, we define St , at any time t, as

St = ((Sb,i ,j
t ,Sa,i ,j

t ), (Nb,i ,j
t ,Na,i ,j

t ))i=1,··· ,d ,j=1,··· ,k ,

where k is the order book’s depth and, for each i = 1, · · · , d ,
Sb,i ,j
t ,Sa,i ,j

t are the bid and ask prices for asset i in the j-th line of
the order book and (Nb,i ,j

t ,Na,i ,j
t ) ∈ (0,∞]2 are the available

quantities for these bid and ask prices. We suppose that
Nb,i ,k
t = Na,i ,k

t = +∞ so that the market is liquid. By definition of
the order book, we have Sb,i ,1

t > Sb,i ,2
t > · · · > Sb,i ,k

t and
Sa,i ,1
t < Sa,i ,2

t < · · · < Sa,i ,k
t .
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Portfolio processes and self-financing condition : with
transaction costs-Example

We then define the cost function as

Ct(x) = x1 +
d∑

i=2

C i
t (x i ), x = (x1, · · · , xd) ∈ Rd .

With the convention
∑j

r=1 = 0 if j = 0, we consider the cumulated

quantities Qa,i ,j
t :=

∑j
r=1 Na,i ,r

t , j = 0, · · · , k, the same for Qb,i ,j
t .
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Portfolio processes and self-financing condition : with
transaction costs-Example

We have :

C i
t (y) =

j∑
r=1

Na,i,r
t Sa,i,r

t + (y − Qa,i,j
t )Sa,i,j+1

t , if Qa,i,j
t < y ≤ Qa,i,j+1

t ,

C i
t (y) = −

j∑
r=1

Nb,i,r
t Sb,i,r

t + (y + Qb,i,j
t )Sb,i,j+1

t , if − Qb,i,j+1
t < y ≤ −Qb,i,j

t .

Note that the first expression of C i
t (z) above corresponds to the

case where we buy y > 0 units of asset i . The second expression is
C i
t (y) = −Li

t(−y) when y < 0 so that −C i
t (y) is the liquidation

value of the position −y , i.e. by selling the quantity −y > 0 at the
bid prices.
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The super-hedging problem without transaction costs

To solve the super-hedging problem on [0,T ], we suppose the
no-arbitrage condition

NA : if L = Lθ is self-financing and satisfies L0 = 0 and LT ≥ 0
a.s., then LT = 0.

Theorem ( Dalang–Morton–Willinger)

With S1 = 1, NA is equivalent to the existence of a risk-neutral
probability measure Q ∼ P such that S is a Q-martingale.

Let M(P) be the set of all risk-neutral probability measures
Q ∼ P with dQ/dP ∈ L∞.
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The super-hedging problem without transaction costs

Theorem

Suppose that NA holds and let ξT be a payoff integrable under P .
There exists a minimal super-hedging price for ξT given by

sup
Q∈M(P)

EQ(ξT ).

This is dificult to compute for many reasons : identifying the set
M(P) and computing the supremum is not trivial !
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The super-hedging problem with proportional transaction
costs

Some no-arbitrage conditions are introduced for physical
self-financing portfolio processes in the spirit of NA, e.g. the robust
NAr condition, see the Kabanov model, and we have :

NAr holds if and only if there exists strictly consistent price
systems (SCPS), i.e. martingales Z of Rd such that, for all

t = 0, · · · , d , Zt ∈ G ∗t = {y ∈ Rd : xy ≥ 0, ∀x ∈ Gt}.

Then, there exists a minimal price in cash for the European claim
ξT ∈ Rd given by

sup
Z∈SCPS,Z0e1=1

EZT ξT
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The super-hedging problem for general transaction costs

In practice, the transaction costs are not necessary linear, see the
case of order books or fixed costs.

The model is not linear so that we cannot expect dual elements
characterizing a no-arbitrage condition that allow us to dually
characterize the super-hedging prices.

Moreover, the no-arbitrage conditions we can imagine seem to be
rather artificial, see the case of the Kabanov model where several
distinct no-arbitrage exist and are difficult to compare.
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The one period problem in general between time T − 1
and T

As we suppose that Lt(x) = x1 + Lt((0, x (2))) where
x (2) = (x2, · · · , xd) ∈ Rd , we have for some terminal wealth ξT
such that VT = ξ : VT−1 ≥GT

VT ≥ ξT is equivalent to

LT (VT−1 − ξ) ≥ 0 ⇐⇒ V 1
T−1 ≥ ξ1 − LT ((0,V

(2)
T−1 − ξ

(2))),

⇐⇒ V 1
T−1 ≥ ess supFT−1

(
ξ1 − LT ((0,V

(2)
T−1 − ξ

(2)))
)
,

⇐⇒ V 1
T−1 ≥ ess supFT−1

(
ξ1 + CT ((0, ξ(2) − V

(2)
T−1))

)
,

⇐⇒ V 1
T−1 ≥ F ξT−1(V

(2)
T−1),

where

F ξ
T−1(y) := ess supFT−1

(
ξ1 + CT ((0, ξ(2) − y))

)
. (0.1)
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The multi-step hedging problem

We denote by PT−1(ξ) the set of all initial portfolio process values
VT−1 at time T − 1 that replicates ξ = ξT at the terminal date T .

The infimum replicating cost is then defined as :

cT−1(ξ) := ess infFT−1
{CT−1(VT−1), VT−1 ∈ PT−1(ξ)} .
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The multi-step hedging problem

For 0 ≤ t ≤ T and Vt−1 ∈ L0(Rd ,Ft), we define γξt (Vt−1) as :

γξt (Vt−1) := ess infFt

V (2)∈ΠT
t (Vt−1,ξ)

ess supFt

(
ξ1 +

T∑
s=t

Cs(0,V
(2)
s − V

(2)
s−1)

)
.

Note that γξt (Vt−1) is the infimum cost (cash) to replicate the

payoff ξ when starting from the initial risky position (0,V
(2)
t−1) at

time t.

We observe that c0(ξ) = γξ0(0) is the infimum cost to super-hedge
ξ at time 0.
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The multi-step hedging problem

Theorem (Dynamic Programming Principle)

For any 0 ≤ t ≤ T − 1 and Vt−1 ∈ L0(Rd ,Ft−1), we have

γξt (Vt−1) = ess infFt

Vt∈L0(Rd ,Ft)

ess supFt

(
Ct(0,V

(2)
t − V

(2)
t−1) + γξt+1(Vt)

)
.

(0.2)

The natural question is : how to compute the essential supremum
and infimum above ?
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The tools we use

Proposition

Let h : Ω×Rk → R be a Ft ⊗B(Rk)-measurable function which is
l.s.c. in x. Then, for all X ∈ L0(Rk ,FT ),

ess supFt
h(X ) = sup

x∈suppFtX
h(x) a.s.

Lemma

For any F normal integrand f : Ω× Rd → R and any non-empty
F-measurable closed set A, we have :

essinfF
{

f (a), a ∈ L0(A,F)
}

= inf
a∈A

f (a) a.s.
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Pricing under SAIP

Theorem

Assume some technical conditions... Then,
γξt (Vt−1) = γξt (St ,Vt−1) is a Ft-normal integrand of St and Vt−1

and we have

γξt (St ,Vt−1) = inf
y∈R

(
Ct(St , (0, y (2) − V

(2)
t−1)) + sup

s∈φt(St)
γξt+1(s, y)

)
,

where φt(St) = suppFt
St+1.

Also, the infimum hedging cost of ξ at any time t is reached, i.e.
γξt (Vt−1) is a mimimal cost.
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Conclusion

In discrete-time, it is possible to compute backwardly the infimum
super-hedging prices in a large variety of models with transaction
costs even if they are not linear.

To do so, it suffices to find some conditions under which the
essential supremum and infimum of the dynamic programming
principle are actually ω pointwise supremum and infimum
respectively.

A weak no-arbitrage condition must ensure the finiteness of the
infimum price to be computed. Without dual elements, we need to
know the conditional supports of the process S that are a priori
estimated directly from historical observations. A simple typical
case is to suppose that suppFt

S j
t+1 = [kd ,j

t S j
t , k

u,j
t S j

t ] as it is easy

to calibrate kd ,j
t and ku,j

t as minimum and maximum of the ratios
S j
t+1/S j

t .
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