Dorsaf Cheri Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterizatior of a conditional expectation operator (CEO)

Projection

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

University of Ljubljana, July 2023

<□ > < □ > < □ > < Ξ > < Ξ > Ξ のQ @ 1/22

Joke

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

Why does a random variable go to therapy? Because "she" has too many unrealistic conditional expectations.

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

What is a conditional indicator and what for ?

<□ > < @ > < E > < E > E の Q @ 3/22

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

We consider

• \mathcal{F} a complete σ - algebra

<□> < @> < E> < E> E の Q @ 4/22

Conditional indicators

Dorsaf Cherit Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterizatior of a conditional expectation operator (CEO)

Projection

We consider

- \mathcal{F} a complete $\sigma-$ algebra
- $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space.

<□> < @> < E> < E> E の Q @ 4/22

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

We consider

- \mathcal{F} a complete $\sigma-$ algebra
- $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space.
- $\mathbb{L}^{0}(\mathbf{R}, \mathcal{F})$ the set of \mathcal{F} -measurable functions taking values in \mathbf{R} .

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

We consider

- \mathcal{F} a complete $\sigma-$ algebra
- $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space.
- $\mathbb{L}^0(\mathbf{R}, \mathcal{F})$ the set of \mathcal{F} -measurable functions taking values in \mathbf{R} .

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

• \mathcal{H} a sub σ -algebra of \mathcal{F} .

The most famous example: The conditional expectation

Conditional indicators

Dorsaf Cheri Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterizatior of a conditional expectation operator (CEO)

Projection

Let $X \in \mathbb{L}^1(\mathbf{R}, \mathcal{F})$. There exists a unique almost surely random variable in $\mathbb{L}^1(\mathbf{R}, \mathcal{H})$, denoted by $\mathbb{E}[X|\mathcal{H}]$ and called **the** conditional expectation, such that

 $\forall B \in \mathcal{H}, \ \mathbb{E}[X1_B] = \mathbb{E}[\mathbb{E}[X|\mathcal{H}]1_B].$

<□ ▶ < @ ▶ < E ▶ < E ▶ E の < ⊙ 5/22</p>

The most famous example: The conditional expectation

Conditional indicators

Dorsaf Cheri Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterizatior of a conditional expectation operator (CEO)

Projection

Let $X \in \mathbb{L}^1(\mathbf{R}, \mathcal{F})$. There exists a unique almost surely random variable in $\mathbb{L}^1(\mathbf{R}, \mathcal{H})$, denoted by $\mathbb{E}[X|\mathcal{H}]$ and called **the** conditional expectation, such that

 $\forall B \in \mathcal{H}, \ \mathbb{E}[X1_B] = \mathbb{E}[\mathbb{E}[X|\mathcal{H}]1_B].$

<□ ▶ < @ ▶ < E ▶ < E ▶ E の < ⊙ 5/22</p>

If $\mathcal{H}_0 = \{\emptyset, \Omega\}$ then $E[.|\mathcal{H}_0] = E[.]$.

Conditional supremum

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

Another less famous typical example : The conditional supremum.

The **conditional essentiel supremum** of a random variable $X \in \mathbb{L}^0(\mathbf{R}, \mathcal{F})$ given \mathcal{H} is the unique \mathcal{H} measurable random variable denoted by ess $\sup_{\mathcal{H}}(X)$ which satisfies

ess sup_{\mathcal{H}}(X) = inf{Y $\in \mathbb{L}^{0}(\mathcal{H}, \mathbb{R})$ such that X \leq Y}.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Conditional supremum

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

Another less famous typical example : The conditional supremum.

The **conditional essentiel supremum** of a random variable $X \in \mathbb{L}^0(\mathbf{R}, \mathcal{F})$ given \mathcal{H} is the unique \mathcal{H} measurable random variable denoted by ess $\sup_{\mathcal{H}}(X)$ which satisfies

ess sup_{$$\mathcal{H}$$}(X) = inf{Y $\in \mathbb{L}^{0}(\mathcal{H},\mathbb{R})$ such that X \leq Y}.

Analogously we define the conditional essentiel infimum as,

ess
$$\inf_{\mathcal{H}}(X) = -\operatorname{ess\,sup}_{\mathcal{H}}(-X).$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Conditional supremum

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

Another less famous typical example : The conditional supremum.

The **conditional essentiel supremum** of a random variable $X \in \mathbb{L}^0(\mathbf{R}, \mathcal{F})$ given \mathcal{H} is the unique \mathcal{H} measurable random variable denoted by ess $\sup_{\mathcal{H}}(X)$ which satisfies

ess sup_{$$\mathcal{H}$$}(X) = inf{Y $\in \mathbb{L}^{0}(\mathcal{H}, \mathbb{R})$ such that X \leq Y}.

Analogously we define the conditional essentiel infimum as,

ess
$$\inf_{\mathcal{H}}(X) = - \operatorname{ess} \sup_{\mathcal{H}}(-X).$$

If $\mathcal{H}_0 = \{\emptyset, \Omega\}$ then ess $\sup_{\mathcal{H}} = ess \sup_{\mathcal{H}} \mathbb{A}$, we have $\mathfrak{H}_0 = \{\emptyset, \Omega\}$ then $\mathfrak{H}_0 = \{\emptyset, \Omega\}$ then $\mathfrak{H}_0 = \mathfrak{H}_0$.

Definition of a conditional indicator

ŀ

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

We introduce a conditional indicator in our work $\left[1\right]$ in the following way:

Definition

Let \mathbb{D}_I be a subset of $\mathbb{L}^0(R,\mathcal{F})$ containing 0. We say that a mapping

$$egin{array}{rcl} {}_{\mathcal{H}}: \mathbb{D}_I & \longrightarrow & \mathbb{L}^0(\overline{\mathbf{R}}, \mathcal{H}). \ X & \longmapsto & I_{\mathcal{H}}(X) \end{array}$$

is a Conditional Indicator (C.I.) if the following properties hold: (P1) ess $\inf_{\mathcal{H}}(X) \leq I_{\mathcal{H}}(X) \leq \operatorname{ess\,sup}_{\mathcal{H}}(X)$ a.s. (P2) $\mathbb{D}_{I} + \mathbb{L}^{0}(\mathbf{R}, \mathcal{H}) \subset \mathbb{D}_{I}$.

Properties

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

- Let $I_{\mathcal{H}}$ be a C.I. w.r.t a sub- σ -algebra \mathcal{H} . Then,
 - 1) $I_{\mathcal{H}}$ is said \mathcal{H} -translation invariant if for all $X \in D_I$ and $Y_{\mathcal{H}} \in L^0(\mathbf{R}, \mathcal{H})$ we have

 $I_{\mathcal{H}}(X+Y_{\mathcal{H}})=I_{\mathcal{H}}(X)+Y_{\mathcal{H}}.$

<□> < @> < E> < E> E の Q @ 8/22

Properties

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

- Let $I_{\mathcal{H}}$ be a C.I. w.r.t a sub- σ -algebra \mathcal{H} . Then,
 - 1) $I_{\mathcal{H}}$ is said \mathcal{H} -translation invariant if for all $X \in D_I$ and $Y_{\mathcal{H}} \in L^0(\mathbf{R}, \mathcal{H})$ we have

$$I_{\mathcal{H}}(X+Y_{\mathcal{H}})=I_{\mathcal{H}}(X)+Y_{\mathcal{H}}.$$

2) $I_{\mathcal{H}}$ is said \mathcal{H} -positively-homogeneous if, for every $\alpha_{\mathcal{H}} \in L^0(\mathbf{R}^+, \mathcal{H})$, we have $\alpha_{\mathcal{H}} D_I \subset D_I$ and for any $X \in D_I$,

 $I_{\mathcal{H}}(\alpha_{\mathcal{H}}X) = \alpha_{\mathcal{H}}I_{\mathcal{H}}(X).$

Properties

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

- Let $I_{\mathcal{H}}$ be a C.I. w.r.t a sub- σ -algebra \mathcal{H} . Then,
 - 1) $I_{\mathcal{H}}$ is said \mathcal{H} -translation invariant if for all $X \in D_I$ and $Y_{\mathcal{H}} \in L^0(\mathbf{R}, \mathcal{H})$ we have

$$I_{\mathcal{H}}(X+Y_{\mathcal{H}})=I_{\mathcal{H}}(X)+Y_{\mathcal{H}}.$$

2) $I_{\mathcal{H}}$ is said \mathcal{H} -positively-homogeneous if, for every $\alpha_{\mathcal{H}} \in L^{0}(\mathbb{R}^{+}, \mathcal{H})$, we have $\alpha_{\mathcal{H}}D_{I} \subset D_{I}$ and for any $X \in D_{I}$, $I_{\mathcal{H}}(\alpha_{\mathcal{H}}X) = \alpha_{\mathcal{H}}I_{\mathcal{H}}(X)$.

3) $I_{\mathcal{H}}$ is said \mathcal{H} -linear if, for all $\alpha_{\mathcal{H}} \in L^0(\mathbf{R}, \mathcal{H})$, $\alpha_{\mathcal{H}} D_I + D_I \subset D_I$, and for every $X, Y \in D_I$,

 $I_{\mathcal{H}}(\alpha_{\mathcal{H}}X+Y)=\alpha_{\mathcal{H}}I_{\mathcal{H}}(X)+I_{\mathcal{H}}(Y).$

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

Let $(\mathcal{F}_t)_{t \in [0,T]}$ be a complete filtration, i.e. a sequence of complete σ -algebras such that $\mathcal{F}_s \subset \mathcal{F}_t$ for any $s \leq t$.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ のQ @ 9/22

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterizatior of a conditional expectation operator (CEO)

Projection

Let $(\mathcal{F}_t)_{t \in [0,T]}$ be a complete filtration, i.e. a sequence of complete σ -algebras such that $\mathcal{F}_s \subset \mathcal{F}_t$ for any $s \leq t$.

Consider a family $(I_t)_{t \in [0,T]}$ of adapted conditional indicators in the sense that I_t is a conditional indicator w.r.t. \mathcal{F}_t , for every $t \in [0,T]$. We say that $(I_t)_{t \in [0,T]}$ satisfies:

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

Let $(\mathcal{F}_t)_{t \in [0,T]}$ be a complete filtration, i.e. a sequence of complete σ -algebras such that $\mathcal{F}_s \subset \mathcal{F}_t$ for any $s \leq t$.

Consider a family $(I_t)_{t \in [0,T]}$ of adapted conditional indicators in the sense that I_t is a conditional indicator w.r.t. \mathcal{F}_t , for every $t \in [0,T]$. We say that $(I_t)_{t \in [0,T]}$ satisfies:

1) the tower property if, for any $s \leq t$, $l_t(\mathbb{D}_{I_s}) \subseteq \mathbb{D}_{I_s} \subseteq \mathbb{D}_{I_t}$ and

 $I_s(I_t(X)) = I_s(X)$, for all $X \in \mathbb{D}_{I_s}$.

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

Let $(\mathcal{F}_t)_{t \in [0,T]}$ be a complete filtration, i.e. a sequence of complete σ -algebras such that $\mathcal{F}_s \subset \mathcal{F}_t$ for any $s \leq t$.

Consider a family $(I_t)_{t \in [0, T]}$ of adapted conditional indicators in the sense that I_t is a conditional indicator w.r.t. \mathcal{F}_t , for every $t \in [0, T]$. We say that $(I_t)_{t \in [0, T]}$ satisfies:

1) the tower property if, for any $s \leq t$, $I_t(\mathbb{D}_{I_s}) \subseteq \mathbb{D}_{I_s} \subseteq \mathbb{D}_{I_t}$ and

 $I_s(I_t(X)) = I_s(X)$, for all $X \in \mathbb{D}_{I_s}$.

2) the projection property if \mathbb{D}_{l_0} is \mathcal{F}_t -decomposable for every $t \ge 0$ and the following condition holds:

 $\Pr: I_0(X1_{F_t}) = I_0(I_t(X)1_{F_t}), \text{ for all } F_t \in \mathcal{F}_t.$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○ 9/22

Questions

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

Important questions arise here:

- What do we need for a conditional indicator to be linear?
- What are the optimal conditions for a CI to be a conditional expectation ?
- Ooes the conditional supremum satisfy the projection property ?
- Ooes the stopping theorem work for the conditional supremum?

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ の Q ○ 10/22

Linearity

Conditional indicators

Dorsaf Cherit Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

Theorem

Let $I_{\mathcal{H}}$ be a C.I. w.r.t. a sub- σ -algebra \mathcal{H} , defined on a vector sub-space \mathbb{D}_{I} of $L^{0}(\mathbf{R}, \mathcal{F})$. Then,

 $I_{\mathcal{H}}$ is additive $\iff I_{\mathcal{H}}$ is \mathcal{H} -linear.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ⑦ Q ◎ 11/22

History

Conditional indicators

Dorsaf Cherit Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

• Moy, in 1954 , has characterized in [5] conditional expectations as additive and positively homogeneous maps on $(L^0)^+$, satisfying the monotone convergence and the averaging propertie, mapping bounded functions into bounded functions.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ の Q ○ 12/22

History

Conditional indicators

- Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University
- Introduction
- Settings
- Definition of a conditional indicator
- Linearity
- Characterization of a conditional expectation operator (CEO)

Projection

- Moy, in 1954 , has characterized in [5] conditional expectations as additive and positively homogeneous maps on $(L^0)^+$, satisfying the monotone convergence and the averaging propertie, mapping bounded functions into bounded functions.
- Douglas, in 1965, has shown in [4] that the conditional expectations are the only contractive projections on L¹ that leaves the constant functions invariant. Ando generalized this characterization to L^p spaces.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ 12/22

History

Conditional indicators

- Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University
- Introduction
- Settings
- Definition of a conditional indicator
- Linearity
- Characterization of a conditional expectation operator (CEO)

Projection

- Moy, in 1954 , has characterized in [5] conditional expectations as additive and positively homogeneous maps on $(L^0)^+$, satisfying the monotone convergence and the averaging propertie, mapping bounded functions into bounded functions.
- Douglas, in 1965, has shown in [4] that the conditional expectations are the only contractive projections on L¹ that leaves the constant functions invariant. Ando generalized this characterization to L^p spaces.
- De Pagter, Dodds and Huijsmans, in 1990, have proved in [6] that each strictly positive order continuous projection for which the constant functions are invariant is of conditional expectation type.

Characterization of a CEO

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

Theorem

Suppose that $I_{\mathcal{H}}$ is a conditional indicator with reference to a sub- σ -algebra \mathcal{H} defined on $\mathbb{L}^1(\mathbf{R}, \mathcal{F})$ and satisfies the following properties:

1)
$$I_{\mathcal{H}}(X+Y) = I_{\mathcal{H}}(X) + I_{\mathcal{H}}(Y)$$
 for all $X, Y \in \mathbb{L}^1(\mathbb{R}, \mathcal{F})$.

2) the Fatou property i.e., for any sequence $(X_n)_n$ of $\mathbb{L}^1(\mathbf{R}, \mathcal{F})$, we have $l_{\mathcal{H}}(\liminf_n X_n) \leq \liminf_{\mathcal{H}} l_{\mathcal{H}}(X_n)$.

Then, there exists a probability measure $\mu \ll \mathbb{P}$, with $\rho = d\mu/d\mathbb{P} \in \mathbb{L}^1(\mathbb{R}_+, \mathcal{F})$ such that , for all $X \in \mathbb{L}^1(\mathbb{R}, \mathcal{H})$,

 $I_{\mathcal{H}}(X) = E_{\mu}(X|\mathcal{H}) = \mathbb{E}(\rho X|\mathcal{H})$

Projection property for the conditional supremum (CS)

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterizatior of a conditional expectation operator (CEO)

Projection

Consider $\mathcal{H}_0 = \{\emptyset, \Omega\}$. Then ess sup_{\mathcal{H}_0} = ess sup, By the tower property we obtain

ess sup(ess sup_{\mathcal{H}}(X)1_A) = ess sup(X1_A), $\forall A \in \mathcal{H}$.

We recall that:

 $\forall B \in \mathcal{H}, \ \mathbb{E}[\mathbb{E}[X|\mathcal{H}]\mathbf{1}_B] = \mathbb{E}[X\mathbf{1}_B].$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Projection property for the conditional supremum (CS)

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

Consider $\mathcal{H}_0 = \{\emptyset, \Omega\}$. Then ess sup_{\mathcal{H}_0} = ess sup, By the tower property we obtain

ess sup(ess sup_{\mathcal{H}}(X)1_A) = ess sup(X1_A), $\forall A \in \mathcal{H}$.

We recall that:

 $\forall B \in \mathcal{H}, \ \mathbb{E}[\mathbb{E}[X|\mathcal{H}]\mathbf{1}_B] = \mathbb{E}[X\mathbf{1}_B].$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ の Q ○ 14/22

Here we aim to see under which conditions we have the uniqueness.

Dorsaf Cheri Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Theorem

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

Let $\mathcal{H}_0 = \{\emptyset, \Omega\}$ and \mathcal{H} a sub- σ -algebras of \mathcal{F} . Let $X \in \mathbb{L}^0(\mathbb{R}^+, \mathcal{F})$ such that ess $\sup_{\mathcal{H}_0}(X) \in \mathbb{R}$. Then there exists a unique $Z \in \mathbb{L}^0(\mathbb{R}^+, \mathcal{H})$ such that ess $\sup_{\mathcal{H}_0}(Z) \in \mathbb{R}$, satisfying

ess sup_{$$\mathcal{H}_0$$}(*Z*1_{*A*}) = ess sup _{\mathcal{H}_0} (*X*1_{*A*}), $\forall A \in \mathcal{H}$.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ 15/22

More precisely
$$Z = \operatorname{ess\,sup}_{\mathcal{H}}(X)$$

Consequence

Proposition

Conditional indicators

Dorsaf Cherit Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

Let $X \in \mathbb{L}^0(\mathbf{R}, \mathcal{H})$ such that X > 0 and ess $\sup_{\mathcal{H}_0}(X) \in \mathbf{R}$. Then there exists a unique $Z \in \mathbb{L}^0(\mathbf{R}, \mathcal{H})$ such that ess $\sup_{\mathcal{H}_0}(Z) \in \mathbf{R}$, satisfying

$$\operatorname{ess\,sup}_{\mathcal{H}_0}(Z1_{\mathcal{A}}) = \operatorname{ess\,sup}_{\mathcal{H}_0}(X1_{\mathcal{A}}), \forall \mathcal{A} \in \mathcal{H}.$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ の Q ○ 16/22

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

Counter Examples :

- Take Ω = R, F = B(R) and P the probability mesure such that dP = 1/(1 + x²)dµ with µ the Lebesgue measure. Let F₀ = {Ø, Ω}.
- Let X = 0 almost surely and Z(ω) = -exp(ω) for all ω ∈ Ω.
- Let $A = \{Z \leq -1\}$ and $\mathcal{F}_1 = \sigma(1_A)$. So $\mathcal{F}_1 = \{A, A^c, \Omega, \emptyset\}.$
- Now consider Z₁ = ess sup_{F1}(Z). Then Z₁ = −1 on A and Z₁ = 0 on A^c. So Z₁ ≠ 0 = ess sup_{F1}(X). However

$$\mathsf{ess} \ \mathsf{sup}_{\mathcal{F}_0}(Z_1 1_B) = 0 = \mathsf{ess} \ \mathsf{sup}_{\mathcal{F}_0}(X 1_B) \ \ \forall B \in \mathcal{F}_1.$$

Martingales for the CS indicator

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

Definition

Let $(M_t)_t$ be an adapted process to the filtration $(\mathcal{F}_t)_t$. We say that $(M_t)_t$ is a martingale for the CS indicator if for any $s \le t \le T$,

ess sup_{$$\mathcal{F}_s$$} $(M_t) = M_s$.

We call it a supermartingale if for any $s \leq t \leq T$,

$$\operatorname{ess\,sup}_{\mathcal{F}_s}(M_t) \geq M_s$$

and a submartingale

$$\operatorname{ess\,sup}_{\mathcal{F}_s}(M_t) \leq M_s.$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ の Q ○ 18/22

Stopping theorem for the CS indicator

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

We recall that for a martingale $(X_n)_{n\geq 0}$ and two bounded stopping times τ and S such that $\tau\leq S$ almost surely, we obtain

$$\mathbb{E}[X_{\mathcal{S}}|\mathcal{F}_{\tau}]=X_{\tau}.$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ♪ ○ Q ○ 19/22

Stopping theorem for the CS indicator

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterizatic of a conditional expectation operator (CEO)

Projection

We recall that for a martingale $(X_n)_{n\geq 0}$ and two bounded stopping times τ and S such that $\tau \leq S$ almost surely, we obtain

$$\mathbb{E}[X_S|\mathcal{F}_{\tau}]=X_{\tau}.$$

Theorem

Let $(M_t)_t$ be a martingales for the CS indicator . Let τ , s be two stopping times such that $s \leq \tau \leq T$. Then

ess sup_{\mathcal{F}_s} $(M_\tau) = M_s$.

(for supermartingale or submartingale we replace the equality by inequalities).

References

Conditional indicators

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introductior

Settings

Definition of conditional indicator

Linearity

Characterizatio of a conditional expectation operator (CEO)

Projection

Conditional indicators. Cherif Dorsaf, Emmanuel Lepinette.

No-arbitrage conditions and pricing from discrete-time to continuous-time strategies. D.Cherif, E.Lepinette.

Kabanov, Y. and Safarian, M., Markets with transaction costs. Mathematical Theory. Springer-Verlag, 2009.

Contractive projections on an L1 space. R. G. DOUGLAS ,Pacific Journal of Mathematics Vol. 15, No. 2, 1965

Shu-Teh Chen Moy, Characterizations of conditional expectations as a transformation on function spaces, Pacific J. Math., 4 (1954), 47-64.

Characterizations of conditional expctation-type operators. Peter Gerard Dodds, C.B.Huijsmans and Bernardus De Pagter. November 1990.

Dorsaf Cheri Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterizatior of a conditional expectation operator (CEO)

Projection

Thank you for your attention.

◆□▶ ◆ □▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○ 21/22

Dorsaf Cherif Carthage University Joint-work with Emmanuel Lepinette Paris Dauphine University

Introduction

Settings

Definition of a conditional indicator

Linearity

Characterization of a conditional expectation operator (CEO)

Projection

WEN-CHI KUO
JAWAD H'MICHANE

JAWAD H'MICHANE
OTHMAN ABOUTAFAIL

MOHAMED AMINE BEN AMOR