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Why does a random variable go to therapy?
Because "she" has too many unrealistic conditional
expectations.
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What is a conditional indicator and what for ?

Introduction
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We consider
@ F a complete o— algebra

ey e (9, F,P) a probability space.

o LO(R, F) the set of F-measurable functions taking values

Settings in R.

@ H a sub o-algebra of F.
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Let X € LY(R,F). There exists a unique almost surely random
variable in L}(R,#), denoted by E[X|#] and called the
conditional expectation, such that

VB e H, E[X].B] = E[E[X|H]1B]
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Let X € LY(R,F). There exists a unique almost surely random
variable in L}(R,#), denoted by E[X|#] and called the
conditional expectation, such that

VB e H, E[X].B] = E[E[X|H]1B]

Settings

If Ho = {0, Q} then E[|Ho] = EL].
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ndi I
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The conditional essentiel supremum of a random variable
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Analogously we define the conditional essentiel infimum as ,

ess infy(X) = — ess supy (—X).
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ess supy (X) = inf{Y € LO(H,R) such that X < Y}.
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Analogously we define the conditional essentiel infimum as ,

ess infy(X) = — ess supy (—X).

If Ho = {0,Q} then ess sup,, = ess sup.
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We introduce a conditional indicator in our work [1] in the
following way:

Definition

Em

e Let D, be a subset of L°(R, F) containing 0. We say that a
P mapping
by D — LOYR,H).
X s hy(X)

Definition of a
conditional
indicator

is a Conditional Indicator (C.1.) if the following properties hold:
(P1) essinfy(X) < hy(X) < ess supy(X) a.s.

(P2) D; +L%(R,H) C Dy.
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Let /yy be a C.I. w.r.t a sub-o-algebra H. Then,
1) hy is said H-translation invariant if for all X € D; and

Yy € L°(R,H) we have
(X + Yn) = h(X) + Y.
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2) by is said H-positively-homogeneous if, for every
ay € L°(RT,H), we have ayD; C Dy and for any
X e D/,
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3) Iy is said H-linear if, for all ay € L°(R, H),
ay D)+ D) C Dy, and for every X, Y € Dy,

hy(an X +Y) = aphy(X) + (Y).
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Let (Ft)¢e[o,7] be a complete filtration, i.e. a sequence of
complete g-algebras such that Fs C F; for any s < t.
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Let (Ft)¢e[o,7] be a complete filtration, i.e. a sequence of
complete g-algebras such that Fs C F; for any s < t.

Consider a family (/¢).c[o, 7] of adapted conditional indicators in
the sense that I; is a conditional indicator w.r.t. F;, for every
t € [0, T]. We say that (/t).c[o, 7] satisfies:
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Consider a family (/¢).c[o, 7] of adapted conditional indicators in
the sense that I; is a conditional indicator w.r.t. F;, for every

Let (Ft)¢e[o,7] be a complete filtration, i.e. a sequence of
complete g-algebras such that Fs C F; for any s < t.

t € [0, T]. We say that (/t).c[o, 7] satisfies:

1) the tower property if, for any s < t, I(D,) C D, C Dy,

and

Is(1:(X)) = Is(X), forall X € Dy,.
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Let (Ft)¢e[o,7] be a complete filtration, i.e. a sequence of
complete g-algebras such that Fs C F; for any s < t.

Consider a family (/¢).c[o, 7] of adapted conditional indicators in
the sense that I; is a conditional indicator w.r.t. F;, for every
t € [0, T]. We say that (/t).c[o, 7] satisfies:

1) the tower property if, for any s < t, I(D,) C D, C Dy,
and
Is(1:(X)) = Is(X), forall X € Dy,.

2) the projection property if D, is F;-decomposable for every
t > 0 and the following condition holds:

Pr: IO(X]-Ft) = IO(It(X)]-Ft)7 forall F; € F;.
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Important questions arise here:

Eiostiued @ What do we need for a conditional indicator to be linear?

Lepinette
Paris

Demsiite @ What are the optimal conditions for a Cl to be a
s conditional expectation ?

© Does the conditional supremum satisfy the projection
property ?

Definition of a

el @ Does the stopping theorem work for the conditional
indicator
supremum?
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T Let Iy be a C.I. w.r.t. a sub-c-algebra H, defined on a vector
sub-space D; of LO(R, F). Then,

ly is additive <= |y is H-linear.

Linearity
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e e Douglas, in 1965, has shown in [4] that the conditional
expectations are the only contractive projections on L!
that leaves the constant functions invariant. Ando

generalized this characterization to LP spaces.

@ De Pagter, Dodds and Huijsmans, in 1990, have proved in
[6] that each strictly positive order continuous projection

Characterizatio . . . . B
e for which the constant functions are invariant is of
conditional . .

expectation conditional expectation type.

operator

(CEO)
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Characterization of a CEO

Theorem

Suppose that |y is a conditional indicator with reference to a
sub-c-algebra H defined on L}(R, F) and satisfies the
following properties:
1) (X +Y) = ly(X) + Iy (Y) for all X, Y € LY(R, F).
2) the Fatou property i.e., for any sequence (X,), of
LY(R, F), we have ly(liminf, X,) < liminf fy(X,).
Then, there exists a probability measure p << P, with
p=du/dP € LY(R,,F) such that , for all X € L}(R,H),

h(X) = Eu(X|H) = E(pX|H)
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Consider Ho = {0,Q2}. Then ess supy, = ess sup,
By the tower property we obtain

ess sup(ess supy(X)1a) = ess sup(X1a), VA € H.

We recall that:

VB € H, E[E[X|H]1lg] = E[X1g].

Projection
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Consider Ho = {0,Q2}. Then ess supy, = ess sup,
By the tower property we obtain

ess sup(ess supy(X)1a) = ess sup(X1a), VA € H.

We recall that:
VB € H, E[E[X|H]1g] = E[X1g].
Here we aim to see under which conditions we have the

uniqueness.

Projection
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Theorem

Let Ho = {0,Q} and H a sub-o-algebras of F. Let
X € LY(R™, F) such that ess supy, (X) € R. Then there exists
a unique Z € LO(R™, 1) such that ess supy, (Z) € R,
satisfying

ess supy, (Z14) = ess supy, (X14),VA € H.

More precisely Z = ess supy,(X)
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e Then there exists a unique Z € L°(R,H) such that
ess supy, (Z) € R, satisfying

ess supy,(Z1a) = ess supy, (X14),VA € H.

Projection
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Counter Examples :

e Take 2 = R, F = B(R) and P the probability mesure such
that dP = 1/(1 + x?)du with u the Lebesgue measure.

S Let Fo = {0,9}.
: @ Let X = 0 almost surely and Z(w) = —exp(w) for all
w e Q.

o Let A={Z < —1} and F1 = 0(14). So
]:1 — {AaAC7Q7@}-

@ Now consider Z; = ess supz (Z). Then Z3 = —1on A
and Z; = 0 on A°. So Z; # 0 = ess supz (X). However

ess supr,(Z11g) = 0 = ess supx (X1g) VB € F1.

Projection



Martingales for the CS indicator

Conditional
indicators

Definition
Let (M;): be an adapted process to the filtration (F;)¢. We

say that (M;); is a martingale for the CS indicator if for any
Lepinette
Paris S S t S T '

Dauphine

Uiy ess supz, (M) = M.

We call it a supermartingale if for any s <t < T,
ess supy, (M) > M,

and a submartingale

ess supz, (M) < M.
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We recall that for a martingale (Xj),~, and two bounded
stopping times 7 and S such that 7 < S almost surely, we
obtain

E[Xs|F-] = X-.
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We recall that for a martingale (X;),~, and two bounded
stopping times 7 and S such that 7 < S almost surely, we
obtain

E[Xs|F-] = X-.
e

Dauphine
University

Let (M;); be a martingales for the CS indicator . Let T , s be
two stopping times such that s < 7 < T. Then

ess supr,(M;) = Ms.

( for supermartingale or submartingale we replace the equality
by inequalities).
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