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Hilbert’s metric

In a letter to Klein in 1894, Hilbert generalised Klein’s model of
hyperbolic space.
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Definition
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If Ω is a disk, then Ω is isometric to the hyperbolic plane.



Bonsall’s M(·, ·) function
Let (V ,C , u) be an order-unit space.

Definition

M(x , y) := inf{λ > 0 | x ≤ λy}, for x , y ∈ intC .

Proposition

M(x , y) = sup
z∈C∗

⟨z , x⟩
⟨z , y⟩

Example

For the positive cone Rn
+,

M(x , y) = max
i

xi
yi
.



The Hilbert pseudo-metric on the cone

The Hilbert (pseudo-)metric is defined to be, for x , y ∈ intC ,

d̃H(x , y) :=
1

2
logM(x , y)M(y , x).

Hilbert’s metric satisfies

▶ (positivity) d̃H(x , y) ≥ 0;

▶ (pseudo-definiteness) d̃H(x , y) = 0 iff x = λy for some λ > 0;

▶ (symmetry) d̃H(x , y) = d̃H(y , x);

▶ (triangle inequality) d̃H(x , z) ≤ d̃H(x , y) + d̃H(y , z).

Proposition For x and y in a cross-section Ω of the cone,

dH(x , y) = d̃H(x , y).



The case of simplices

Proposition (Nussbaum, de la Harpe)

Ω is an n-simplex =⇒ (Ω, dH) is isometric to a normed space

The unit ball of the normed space:

dim = 2 dim = 3

hexagon rhombic dodecahedron

Theorem (Foertsch–Karlsson)

Ω is an n-simplex ⇐⇒ (Ω, dH) is isometric to a finite-dimensional
normed space



Infinite-dimensional “simplices”

Definition
▶ C(K ) the continuous functions on a compact Hausdorff

space K ;

▶ C+(K ) the positive continuous real-valued functions on K ;

▶ cl C+(K ) the non-negative continuous functions on K ;

▶ u the function on K that is identically 1.

(C(K ), cl C+(K ), u) is an order-unit space.

dH(x , y) =
1

2
log sup

j ,k∈K

x(j) y(k)

y(j) x(k)
, for x , y ∈ C+(K ).

This is isometric to (C (K ), || · ||H), where

||x ||H :=
1

2
sup
j∈K

x(j)− 1

2
inf
j∈K

x(j).



Generalisation of the Foertsch–Karlsson result to infinite
dimension

Theorem (W.)

The Hilbert geometry on a cone C of an order-unit space is
isometric to a Banach space ⇐⇒ C is linearly isomorphic to
cl C+(K ), for some compact Hausdorff space K.



Main tool in proof: the Horofunction Boundary

Let (X , d) be a metric space.

Denote by C (X ) the space of continuous real-valued functions on
X , with the topology of uniform convergence on compact sets.

Definition (Horofunction boundary [Gromov 1978])

Choose a base point b.
To each x ∈ X , associate the function

ϕx(·) := d(·, x)− d(b, x).

The map
Φ: X → C (X ) : x 7→ ϕx

is a continuous injection.
The horofunction compactification is cl ImX . The horofunction
boundary is cl ImX\ ImX . Its elements are called horofunctions.



Busemann points in the boundary

Let γ be a function R+ → X .

Definition
γ is a almost-geodesic ray if, for every ϵ > 0,

|d(γ(0), γ(s)) + d(γ(s), γ(t))− t| < ϵ

for s, t ∈ T large enough with s ≤ t.

Proposition

Every almost-geodesic converges to a point in the compactifiaction.

Definition
A horofunction is a Busemann point if there exists an
almost-geodesic converging to it.



The detour metric
[Akian–Gaubert-W.]

For two horofunctions ξ and η, define the detour cost:

H(ξ, η) = lim inf
x→ξ

lim
y→η

(
d(b, x) + d(x , y)− d(b, y)

)
,

Define the detour metric:

δ(ξ, η) := H(ξ, η) + H(η, ξ).

Proposition

δ is a metric on the set of Busemann points (but might take the
value +∞).

We can partition the set of Busemann points so that δ is finite
when restricted to each subset.

We call these subsets the parts of the horofunction boundary.
δ is a genuine metric on each part.



Singleton horofunctions

Definition
A Busemann point ξ is a singleton if δ(ξ, η) = ∞, for all other
Busemann points η.

Lemma (Singletons of a Banach space)

The singletons of a Banach space are exactly the extreme points of
the dual ball.



Singletons of a Hilbert geometry

Idea — split the Hilbert metric into two pieces:

d(x , y) =
1

2
logM(x , y) +

1

2
logM(y , x)

Funk metric:
dF (x , y) := logM(x , y)

Every Hilbert horofunction is the sum (divided by 2) of a Funk
horofunction and a reverse-Funk horofunction.

Work out the singletons of the Funk geometry and the
reverse-Funk geometry seperately, and combine the results.

Lemma
Every singleton s of a Hilbert geometry can be written
sH = (1/2)(sF + sR), where sF and sR are singletons of the Funk
and reverse-Funk geometries, respecively.



Singletons of Hilbert geometries that are isometric to
Banach spaces

Assume there is an isometry Φ: X → P(C ).

Observation: If s is a singleton of the Banach space X , then so is
−s.

Lemma
If s is a singleton of the Banach space, and

s =
1

2
(sF + sR) ◦ Φ and − s =

1

2
(s ′F + s ′R) ◦ Φ,

then sF = −sR and sR = −sF .

Lemma
If a Hilbert geometry is isometric to a Banach space, then the
singleton Busemann points of the Hilbert geometry are exactly the
functions of the form (1/2)(f1 − f2), with f1 and f2 distinct Funk
singletons.



Sketch of proof of main theorem

Let Φ: X → P(C ) be the isometry between the Banach space and
Hilbert geometry.

Add a dimension X ′ := X × R.

Want to show that X ′ looks like C (K ) with the seminorm || · ||H .
Take K := cl{Funk singletons}.

Extend Φ to a map Φ′ : X ′ → C such that the pullback satisfies
f0 ◦ Φ′(x , α) = α, for some Funk singleton f0.

For all Funk singletons f , we have f − f0 is a Hilbert singleton
=⇒ (f − f0) ◦ Φ′ is a Banach space singleton, and hence linear
=⇒ f ◦ Φ′ is linear.

So, each element of K gives a linear functional on X ′.



Sketch of proof of main theorem, continued
In the Banach space (X , || · ||), we have

||x || = sup
s∈SX

s(x).

(SX := {singletons of X})
Extend each s ∈ SX to X ′: let s(x , α) := s(x). Extend || · || to X ′

by ignoring the second coordinate.

So,

||(x , α)|| = ||x || = sup
s∈SX

s(x)

= sup
f1,f2∈SF

(1/2)
(
f1 − f2

)
◦ Φ

=
1

2
sup
f1∈SF

f1 ◦ Φ− 1

2
inf

f2∈SF
f2 ◦ Φ

= ||x ||H .


