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Hilbert's metric
In a letter to Klein in 1894, Hilbert generalised Klein's model of

hyperbolic space.
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If Q is a disk, then Q is isometric to the hyperbolic plane.



Bonsall's M(-, -) function

Let (V, C, u) be an order-unit space.
Definition

M(x,y) :=inf{A > 0| x < Ay}, for x,y € int C.

Proposition
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Example
For the positive cone R,

M(x,y) = max ﬁ

o Yi



The Hilbert pseudo-metric on the cone

The Hilbert (pseudo-)metric is defined to be, for x, y € int C,

() = 5 log M(x, y)M(y, )

Hilbert's metric satisfies
> (positivity) dy(x,y) > 0;
> (pseudo-definiteness) dy(x,y) = 0 iff x = Ay for some A > 0;
> (symmetry) du(x,y) = duly, x);
» (triangle inequality) dy(x, z) < dy(x,y) + du(y, 2).

Proposition For x and y in a cross-section 2 of the cone,

du(x,y) = JH(x,y).



The case of simplices
Proposition (Nussbaum, de la Harpe)

Q is an n-simplex => (R, dy) is isometric to a normed space

The unit ball of the normed space:

dim =2

hexagon rhombic dodecahedron

Theorem (Foertsch—Karlsson)

Q is an n-simplex <= (2, dy) is isometric to a finite-dimensional
normed space



Infinite-dimensional “simplices”

Definition
» C(K) the continuous functions on a compact Hausdorff
space K;
» CT(K) the positive continuous real-valued functions on K;
» clCT(K) the non-negative continuous functions on K;
» u the function on K that is identically 1.

(C(K),clCT(K), u) is an order-unit space.

i) = 5 log s S

This is isometric to (C(K), || - ||1), where

for x,y € CT(K).
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Generalisation of the Foertsch—Karlsson result to infinite
dimension

Theorem (W.)

The Hilbert geometry on a cone C of an order-unit space is
isometric to a Banach space <= C is linearly isomorphic to
clC*(K), for some compact Hausdorff space K.



Main tool in proof: the Horofunction Boundary

Let (X, d) be a metric space.

Denote by C(X) the space of continuous real-valued functions on
X, with the topology of uniform convergence on compact sets.

Definition (Horofunction boundary [Gromov 1978])

Choose a base point b.
To each x € X, associate the function

Ox(+) == d(-, x) — d(b, x).

The map
e: X — C(X): x— éx

is a continuous injection.
The horofunction compactification is cllm X. The horofunction
boundary is cllm X\ Im X. lts elements are called horofunctions.



Busemann points in the boundary

Let v be a function Ry — X.

Definition
v is a almost-geodesic ray if, for every € > 0,

|d(7(0),7(s)) + d(7(s),7(t)) — t] <€
for s,t € T large enough with s < t.

Proposition

Every almost-geodesic converges to a point in the compactifiaction.
Definition

A horofunction is a Busemann point if there exists an
almost-geodesic converging to it.



The detour metric
[Akian—Gaubert-W.]

For two horofunctions £ and 7, define the detour cost:

H(¢,n) = lim irgfyl@77 (d(b,x) 4+ d(x,y) — d(b,y)),

X—r

Define the detour metric:

6(&,m) == H(&,n) + H(n, ).

Proposition
0 is a metric on the set of Busemann points (but might take the
value 4+00).

We can partition the set of Busemann points so that ¢ is finite
when restricted to each subset.

We call these subsets the parts of the horofunction boundary.
d is a genuine metric on each part.



Singleton horofunctions

Definition
A Busemann point ¢ is a singleton if §(&,n) = oo, for all other
Busemann points 7.

Lemma (Singletons of a Banach space)

The singletons of a Banach space are exactly the extreme points of
the dual ball.



Singletons of a Hilbert geometry

Idea — split the Hilbert metric into two pieces:

1 1
d(X7y) = ElogM(va)—i_ EIOgM(yax)

Funk metric:
dF(Xay) = |Og M(X’y)

Every Hilbert horofunction is the sum (divided by 2) of a Funk
horofunction and a reverse-Funk horofunction.

Work out the singletons of the Funk geometry and the
reverse-Funk geometry seperately, and combine the results.

Lemma

Every singleton s of a Hilbert geometry can be written

st = (1/2)(se + sr), where sg and sg are singletons of the Funk
and reverse-Funk geometries, respecively.



Singletons of Hilbert geometries that are isometric to
Banach spaces
Assume there is an isometry ®: X — P(C).

Observation: If s is a singleton of the Banach space X, then so is
—s.

Lemma
If s is a singleton of the Banach space, and

1 1
S:E(SF-FSR)O(D and —SZE(SIIE"‘SI,?)O(D’

then sp = —sg and s = —sF.

Lemma

If a Hilbert geometry is isometric to a Banach space, then the
singleton Busemann points of the Hilbert geometry are exactly the
functions of the form (1/2)(fy — f;), with fy and f, distinct Funk
singletons.



Sketch of proof of main theorem

Let : X — P(C) be the isometry between the Banach space and
Hilbert geometry.

Add a dimension X’ := X x R.

Want to show that X’ looks like C(K) with the seminorm || - ||4.
Take K := cl{Funk singletons}.

Extend ® to a map ®’: X’ — C such that the pullback satisfies
fo o ®'(x, ) = a, for some Funk singleton fy.

For all Funk singletons f, we have f — fy is a Hilbert singleton
— (f — fy) o ¥’ is a Banach space singleton, and hence linear
= fo®d is linear.

So, each element of K gives a linear functional on X’'.



Sketch of proof of main theorem, continued
In the Banach space (X, || - ||), we have

[Ix][ = sup s(x).
seSx

(5x := {singletons of X})

Extend each s € Sx to X': let s(x,a) := s(x). Extend || - || to X’
by ignoring the second coordinate.
So,
O, )l = [lx]] = sup s(x)
sESx
= sup (1/2)(1‘1 — f2) o®
fi,LESE
1 1.
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