Hilbert geometries isometric to Banach spaces

Cormac Walsh

Inria and Ecole Polytechnique, Paris, France

Positivity XI, Ljubljana, Slovenia, 12 July 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Hilbert's metric

In a letter to Klein in 1894, Hilbert generalised Klein's model of hyperbolic space.

Definition Hilbert metric

$$d_F(x,y) := \frac{1}{2} \log \frac{|ay||bx|}{|ax||by|}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If Ω is a disk, then Ω is isometric to the hyperbolic plane.

Bonsall's $M(\cdot, \cdot)$ function

Let (V, C, u) be an order-unit space.

Definition

$$M(x, y) := \inf\{\lambda > 0 \mid x \le \lambda y\}, \quad \text{for } x, y \in \text{int } C.$$

Proposition

$$M(x,y) = \sup_{z \in C^*} \frac{\langle z, x \rangle}{\langle z, y \rangle}$$

Example

For the positive cone \mathbb{R}^n_+ ,

$$M(x,y)=\max_i\frac{x_i}{y_i}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Hilbert pseudo-metric on the cone

The Hilbert (pseudo-)metric is defined to be, for $x, y \in int C$,

$$\widetilde{d}_H(x,y) := \frac{1}{2} \log M(x,y) M(y,x).$$

Hilbert's metric satisfies

• (positivity) $\tilde{d}_H(x, y) \ge 0$;

- (pseudo-definiteness) $\tilde{d}_H(x, y) = 0$ iff $x = \lambda y$ for some $\lambda > 0$;
- (symmetry) $\tilde{d}_H(x, y) = \tilde{d}_H(y, x);$
- (triangle inequality) $\tilde{d}_H(x,z) \leq \tilde{d}_H(x,y) + \tilde{d}_H(y,z)$.

Proposition For x and y in a cross-section Ω of the cone,

$$d_H(x,y) = \tilde{d}_H(x,y).$$

The case of simplices

Proposition (Nussbaum, de la Harpe) Ω is an n-simplex $\implies (\Omega, d_H)$ is isometric to a normed space

The unit ball of the normed space:

Theorem (Foertsch-Karlsson)

 Ω is an n-simplex $\iff (\Omega, d_H)$ is isometric to a finite-dimensional normed space

Infinite-dimensional "simplices"

Definition

- C(K) the continuous functions on a compact Hausdorff space K;
- $C^+(K)$ the positive continuous real-valued functions on K;
- cl $C^+(K)$ the non-negative continuous functions on K;
- u the function on K that is identically 1.

 $(\mathcal{C}(K), \operatorname{cl} \mathcal{C}^+(K), u)$ is an order-unit space.

$$d_{\mathcal{H}}(x,y) = \frac{1}{2} \log \sup_{j,k \in \mathcal{K}} \frac{x(j) y(k)}{y(j) x(k)}, \quad \text{for } x, y \in \mathcal{C}^+(\mathcal{K}).$$

This is isometric to $(C(K), || \cdot ||_H)$, where

$$||x||_{H} := \frac{1}{2} \sup_{j \in K} x(j) - \frac{1}{2} \inf_{j \in K} x(j).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Generalisation of the Foertsch–Karlsson result to infinite dimension

Theorem (W.)

The Hilbert geometry on a cone C of an order-unit space is isometric to a Banach space $\iff C$ is linearly isomorphic to $cl C^+(K)$, for some compact Hausdorff space K.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Main tool in proof: the Horofunction Boundary

Let (X, d) be a metric space.

Denote by C(X) the space of continuous real-valued functions on X, with the topology of uniform convergence on compact sets.

Definition (Horofunction boundary [Gromov 1978])

Choose a base point *b*. To each $x \in X$, associate the function

$$\phi_x(\cdot) := d(\cdot, x) - d(b, x).$$

The map

$$\Phi\colon X\to C(X)\colon x\mapsto \phi_x$$

is a continuous injection.

The horofunction compactification is cl Im X. The horofunction boundary is $cl Im X \setminus Im X$. Its elements are called horofunctions.

Busemann points in the boundary

```
Let \gamma be a function \mathbb{R}_+ \to X.
```

Definition

 γ is a *almost-geodesic ray* if, for every $\epsilon > 0$,

$$|d(\gamma(0),\gamma(s))+d(\gamma(s),\gamma(t))-t|<\epsilon$$

for $s, t \in T$ large enough with $s \leq t$.

Proposition

Every almost-geodesic converges to a point in the compactifiaction.

Definition

A horofunction is a *Busemann point* if there exists an almost-geodesic converging to it.

The detour metric

[Akian-Gaubert-W.]

For two horofunctions ξ and η , define the *detour cost*:

$$H(\xi,\eta) = \liminf_{x\to\xi} \lim_{y\to\eta} (d(b,x) + d(x,y) - d(b,y)),$$

Define the *detour metric*:

$$\delta(\xi,\eta) := H(\xi,\eta) + H(\eta,\xi).$$

Proposition

 δ is a metric on the set of Busemann points (but might take the value $+\infty$).

We can partition the set of Busemann points so that δ is finite when restricted to each subset.

We call these subsets the *parts* of the horofunction boundary. δ is a genuine metric on each part.

Singleton horofunctions

Definition

A Busemann point ξ is a *singleton* if $\delta(\xi, \eta) = \infty$, for all other Busemann points η .

Lemma (Singletons of a Banach space)

The singletons of a Banach space are exactly the extreme points of the dual ball.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Singletons of a Hilbert geometry

Idea — split the Hilbert metric into two pieces:

$$d(x,y) = \frac{1}{2} \log M(x,y) + \frac{1}{2} \log M(y,x)$$

Funk metric:

$$d_F(x,y) := \log M(x,y)$$

Every Hilbert horofunction is the sum (divided by 2) of a Funk horofunction and a reverse-Funk horofunction.

Work out the singletons of the Funk geometry and the reverse-Funk geometry seperately, and combine the results.

Lemma

Every singleton s of a Hilbert geometry can be written $s_H = (1/2)(s_F + s_R)$, where s_F and s_R are singletons of the Funk and reverse-Funk geometries, respectively.

Singletons of Hilbert geometries that are isometric to Banach spaces

Assume there is an isometry $\Phi: X \to P(C)$.

Observation: If s is a singleton of the Banach space X, then so is -s.

Lemma

If s is a singleton of the Banach space, and

$$s=rac{1}{2}(s_F+s_R)\circ\Phi \qquad ext{and} \quad -s=rac{1}{2}(s_F'+s_R')\circ\Phi,$$

then $s_F = -s_R$ and $s_R = -s_F$.

Lemma

If a Hilbert geometry is isometric to a Banach space, then the singleton Busemann points of the Hilbert geometry are exactly the functions of the form $(1/2)(f_1 - f_2)$, with f_1 and f_2 distinct Funk singletons.

Sketch of proof of main theorem

Let $\Phi \colon X \to P(C)$ be the isometry between the Banach space and Hilbert geometry.

Add a dimension $X' := X \times \mathbb{R}$.

Want to show that X' looks like C(K) with the seminorm $|| \cdot ||_{H}$. Take $K := cl{Funk singletons}$.

Extend Φ to a map $\Phi' \colon X' \to C$ such that the pullback satisfies $f_0 \circ \Phi'(x, \alpha) = \alpha$, for some Funk singleton f_0 .

For all Funk singletons f, we have $f - f_0$ is a Hilbert singleton $\implies (f - f_0) \circ \Phi'$ is a Banach space singleton, and hence linear $\implies f \circ \Phi'$ is linear.

So, each element of K gives a linear functional on X'.

Sketch of proof of main theorem, continued In the Banach space $(X, || \cdot ||)$, we have

$$||x|| = \sup_{s \in S_X} s(x).$$

 $(S_X := \{ \text{singletons of } X \})$ Extend each $s \in S_X$ to X': let $s(x, \alpha) := s(x)$. Extend $|| \cdot ||$ to X' by ignoring the second coordinate.

So,

$$|(x, \alpha)|| = ||x|| = \sup_{s \in S_X} s(x)$$

= $\sup_{f_1, f_2 \in S_F} (1/2)(f_1 - f_2) \circ \Phi$
= $\frac{1}{2} \sup_{f_1 \in S_F} f_1 \circ \Phi - \frac{1}{2} \inf_{f_2 \in S_F} f_2 \circ \Phi$
= $||x||_{H}.$