Linear operators on Banach function spaces on groups which commute with translations

Chun Ding

Leiden University

POSI+IVITY XI, Ljubljana, July 13, 2023

Outline

- Review of Brainerd and Edwards's results on linear operators that commute with translations.
- The relationship between density of C_c(G) in a translation invariant Banach function space E on a locally compact group G and order continuity of the norm of E.
- Generalization of the Brainerd and Edwards's result on L^p spaces to translation invariant Banach function spaces on locally compact groups.

Notations

- G: a locally compact group with a left Haar measure
- $C_c(G)$: the space of compactly supported continuous functions on G
- $C_c(G)^{\sim}$: the order dual of $C_c(G)$
- (right) translation $R_x(x \in G)$ for a function f on G:

$$R_x f(y) = f(yx) \quad (y \in G)$$

• (right) translation $R_x(x \in G)$ for $\mu \in C_c(G)^{\sim}$:

$$\langle f, R_x \mu \rangle = \langle R_{x^{-1}} f, \mu \rangle \quad (f \in C_c(G))$$

Convolutions

Let f be a locally integrable function on G and $\mu \in C_c(G)^{\sim}$. The *convolution* $\mu * f$ of μ with f is defined as the $C_c(G)^{\sim}$ -valued integral

$$\mu * f := \int_G f(x^{-1})(R_x\mu) \,\mathrm{d}x$$

if it exists with respect to the weak* topology on $C_c(G)^{\sim}$, i.e., $\mu * f$ is a unique element in $C_c(G)^{\sim}$ such that $\langle h, \mu * f \rangle = \int_G f(x^{-1}) \langle h, R_x \mu \rangle \, dx \quad (h \in C_c(G)).$ When μ is identified with a function $g \in C_c(G)$, g * f coincides with the pointwise defined function on G:

$$x\mapsto \int_G f(y)g(xy)\,\mathrm{d} y.$$

Brainerd and Edwards's results

Theorem

Suppose $T: C_c(G) \to C_c(G)^{\sim}$ is a positive operator that commutes with right translations. Then T is of the form $f \mapsto \mu * f$ for some positive element $\mu \in C_c(G)^{\sim}$.

Let $C_R(G)$ denote the set of regular operators from $C_c(G)$ to $C_c(G)^{\sim}$ that commute with right translations. The above theorem gives a one-to-one correspondence between $C_c(G)^{\sim}$ and $C_R(G)$.

Theorem

There exists an order isomorphism between $C_c(G)^{\sim}$ and $C_R(G)$. Furthermore, the isomorphism is also a topological isomorphism if $C_c(G)^{\sim}$ and $C_R(G)$ are equipped with the following topologies: On $C_c(G)^{\sim}$: the coarsest topology such that all functionals of the form $\mu \mapsto \langle |f|, \mu \rangle$ for $f \in C_c(G)$ are continuous. On $C_R(G)$: the coarsest topology such that all functionals of the form $T \mapsto \langle g, |T|f \rangle$ for $f, g \in C_c(G)$ are continuous.

Brainerd and Edwards's results

Theorem

If $T : L^{p}(G) \to C_{c}(G)^{\sim}$ is a positive operator that commutes with right translations, then T is of the form $f \mapsto \mu * f$ for some positive $\mu \in C_{c}(G)^{\sim}$ for $1 \le p < \infty$.

The differences between $L^{p}(G)$ spaces when p is finite and when p is infinite:

(a) the L^p norm is order continuous when $1 \le p < \infty$ but generally not when $p = \infty$.

(b) $L^{p}(G)$ is contains $C_{c}(G)$ as a dense subspace when $1 \leq p < \infty$ but generally not when $p = \infty$.

Density of $C_c(G)$ and order continuity of the norm

A Banach function space on G is an order ideal of the space $L^0(G)$ of all measurable functions (modulo equality almost everwhere) equipped with a Banach lattice norm.

Theorem

Suppose E is a translation invariant Banach function space on G, and that the maps $x \mapsto ||R_x||$ are bounded on compact subsets of G. The density of $C_c(G)$ in E implies that the norm on E is order continuous.

The reverse implication holds if every element of E has a σ -finite support.

Density of $C_c(G)$ and order continuity of the norm Sketch of proof.

(Inspired by Ben de Pagter and Werner J. Ricker)

- 1. Every locally compact group contains a σ -compact clopen subgroup \implies reduce to the case that G is σ -compact and clopen.
- 2. For any σ -compact locally compact group G and every countable family $\{U_n\}_{n\in\mathbb{N}}$ of open neighborhoods of the group identity, there is a compact normal subgroup N of G such that $N \subset \bigcap_{n\in\mathbb{N}} U_n$ and G/N is metrizable \Longrightarrow reduce to the case that G is metrizable.
- An inductive limit of order continuous Banach lattices is order continuous ⇒ reduce to the case that E_K := {f χ_K : f ∈ E} (K ⊂ G) compact.
- 4. Since C(K) is separable when K is metrizable, E_K is separable and hence order continuous.

Generalization of Brainerd and Edwards's result

Theorem

Let E be a translation invariant Banach function space on G and $T: E \to C_c(G)^{\sim}$ a positive operator that commutes with right translations. If translations are bounded on compact subsets of G and $C_c(G)$ is dense in E, then there exists a positive element $\mu \in C_c(G)^{\sim}$ such that

$$Tf = \mu * f$$

for all $f \in E$.

Sketch of proof.

- 1. The restriction of T to $C_c(G)$ is of the form $f \mapsto \mu * f$ for some positive μ in $C_c(G)^{\sim}$ by Theorem 1.
- 2. The density of $C_c(G)$ implies that E is order continuous by Theorem 4. So the map $f \mapsto \mu * f$ can be extended to E.

イロト 不得 トイヨト イヨト

Thank you for your attention!