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Classical Perron-Frobenius theorem

Theorem (Perron-Frobenius)

If A € R™" js nonnegative and irreducible, then A has a unique eigenvector

(up to scaling) with all positive entries and the corresponding eigenvalue is
the spectral radius of A.

A matrix is irreducible if its associated directed graph is strongly connected.
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Notation

e [n]=1{1,...,n}.

@ x >y in R" when x; > y; for all i € [n].

@ The standard cone in R" is RZ; = {x € R" : x > 0}.

o The interior of R2, is R?y = {x € R": x; > 0 for all j € [n]}.
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Notation

e [n]=1{1,...,n}.

@ x >y in R" when x; > y; for all i € [n].

@ The standard cone in R" is RZ; = {x € R" : x > 0}.

o The interior of R2, is R?y = {x € R": x; > 0 for all j € [n]}.

A function f is

@ Order-preserving when x > y implies that f(x) > f(y) for all x,y in
the domain.

@ (Multiplicatively) homogeneous if f(tx) = tf(x) for all t > 0.
© Additively homogeneous if f(x 4+ t1) = f(x) + t1 for all t € R.
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Topical functions

A function f : RZ;, — RZ, that is order-preserving and homogeneous is
multiplicatively topical.

A function T : R" — R" is (additively) topical if T is order-preserving and
additively homogeneous.

Any topical T : R” — R" corresponds to a multiplicatively topical function

f =expoT olog.

Brian Lins (Hampden-Sydney College) Nonlinear Perron-Frobenius theory Positivity, July 10-14, 2023 5/27



Examples of topical functions

Additively topical examples

@ Max-plus linear maps
@ Min-max-plus operators (e.g., Shapley operators from stochastic game
theory)

V.

Multiplicatively topical examples

@ The homogeneous eigenvalue problem for nonnegative tensors
@ Examples from economics and population biology
@ The arithmetic-geometric mean function

()= P97
X2 X1X2
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The geothmetic meandian
XKCD #2435 by Randall Munroe

F(x,, %y, ... Xn) = (5'-2(-%——&‘) X% X, Xn;)

——— e —~—
ARITHMETIC GEOMETRIC MEDIAN
MEAN MEAN

GMon(x, Xy, ... %) = E(F(F(F& Xz, - Xﬂ)_)}))

GEOTHMETIC MEANDIAN

Gron(1,1,2,3,5) = 2.089

STATS TiP: IF YOU ARENT SURE WHETHER TO USE THE
MEAN, MEDIAN, OR GEOMETRIC MEAN, JUST CALCULATE
ALL THREE, THEN REPEAT UNTIL IT CONVERGES
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Eigenvectors of topical functions

For f : RZ, — RZ,, the eigenspace of f is

E(f) :={x € RLy: x is an eigenvector of f}.

Note that E(f) only includes eigenvectors with all positive entries.

There might also be eigenvectors on the boundary of the cone RZ,, but
that is not our focus.
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Hilbert's projective metric

Hilbert's projective metric on RZ is defined by
du(x,y) = log max <M> .

ij€ln] \ Xi yj

It is a metric on the rays from the origin in RZ,. Points in the boundary of
RZ, (i.e., that have zero entries) are infinitely far away.
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Hilbert's projective metric

Hilbert's projective metric on RZ is defined by

du(x,y) = log max Yig )
ij€ln] \ Xi yj

It is a metric on the rays from the origin in RZ,. Points in the boundary of
RZ, (i.e., that have zero entries) are infinitely far away.

If f:RZ2y — RZ, is order-preserving and homogeneous, then f is
nonexpansive with respect to dy, i.e.,

du(f(x), f(y)) < du(x,y) for all x,y € RZ,.
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The hypergraphs Hy () and H. (f)

For a multiplicatively topical function f, Hy (f) and HZ (f) are directed
hypergraphs with nodes [n] that were introduced by Akian, Gaubert, and
Hochart.

The hyperarcs of H, (f) are the pairs (/,{j}) such that / C [n], j € [n] \ ],
and
Jim_ f(exp(—ter)); =0

where exp is the entrywise natural exponential function and ¢; € R” has

entries
1 ifiel
e =
(er)i {0 otherwise.

The hyperarcs of H1_ () are (/,{j}) such that / C [n], j € [n] \ | and

tll[go f(exp(tey)); = oo.
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Example

10+ x2 + x3)
The geothmetic meandian function F(x) = IX1X0X3 has
median(x1, x2, x3)

Ho (F) HI(F)

RN

These show the minimal hyperarcs of Hg (F) and HI (F).
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Invariant nodes and reach

A subset | C [n] is invariant in Hy () or HI () if there are no hyperarcs
(1,{j}) that originate from / in the hypergraph.

The reach of J C [n] in a hypergraph H, denoted reach(J, H), is the
smallest invariant subset of the nodes of H containing J.
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Example

10+ x2 + x3)
The geothmetic meandian function F(x) = IX1X0X3 has
median(x1, x2, x3)

Ho (F) HL(F)

RN

I = {2,3} is invariant in Hg (F), but HZ (F) has no invariant subsets.

Brian Lins (Hampden-Sydney College) Nonlinear Perron-Frobenius theory Positivity, July 10-14, 2023 13 /27



Super & sub-eigenspaces

For any a, 8 > 0, the sub-eigenspace corresponding to « is the set
Sa(f) ={x e Ry : ax < f(x)}

and the super-eigenspace corresponding to [ is
SP(f) = {x € R, : f(x) < Bx}.

The intersection S?(f) := S,(f) N SP(f) is called a slice space.
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Super & sub-eigenspaces

For any a, 8 > 0, the sub-eigenspace corresponding to « is the set
Sa(f) ={x e Ry : ax < f(x)}

and the super-eigenspace corresponding to [ is
SP(f) = {x € R, : f(x) < Bx}.

The intersection S?(f) := S,(f) N SP(f) is called a slice space.

Idea: These sets are all invariant under f. If any of these sets is nonempty
and bounded in Hilbert's projective metric, then f has a positive eigenvector.
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An irreducibility condition

Theorem (Gaubert-Gunawardena, 2004)

Let f : RZy — R, be order-preserving and homogeneous. Then all
super-eigenspaces S°(f) are bounded in (RZ, dy) if and only if
reach(J, HX (f)) = [n] for every nonempty J  [n].

A corresponding condition involving the hypergraph H, (f) is equivalent to
all sub-eigenspaces of f being dy-bounded.
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Bounded slice spaces

Theorem (Akian-Gaubert-Hochart, 2020)

Let f : RTy — RZ, be order-preserving and homogeneous. All slice spaces
SB(f) are bounded in (R%, dy) if and only if

reach(J, H1 (f)) = [n] or reach(J¢,Hy (f)) = [n]

for every nonempty J C [n].
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Nonempty & bounded eigenspace

Theorem (Lemmens-L-Nussbaum, 2018)

Let f : RZy — RZ, be order-preserving and homogeneous. The eigenspace
E(f) is nonempty and bounded in (RZ, dy) if and only if for every
nonempty J C [n], there exists x € R" such that

F<) _ . F(x)i

max —— < min ——.
jed  Xj i€Je X

In general the conditions of these three theorems are progressively more
difficult to check.
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Upper & lower Collatz-Wielandt numbers

The upper Collatz-Wielandt number for f is

r(f) :=inf{B > 0: SP(f) is nonempty},

and the lower Collatz-Wielandt number for f is

A(f) :=sup{a > 0: S,(f) is nonempty}.

Alternatively, r(f) is the infimum of the super-eigenvalues and A(f) is the
supremum of the sub-eigenvalues.

If E(f) is nonempty, then A(f) = r(f), but the converse is not always true.

The upper Collatz-Wielandt number r(f) is equal to the cone spectral
radius, i.e., the largest eigenvalue of f as a map on RZ,,.
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Boundary projections

For a € [0,00] and J C [n], let P be the projection

Py = {Xf fjed

«  otherwise.

For any order-preserving homogeneous function f : RZ; — RZ,, we define

fil == P3fPg and £ = PLfP.

Both f3 : 20 = R%4 and £ :(0,00]" — (0, 00]" are order-preserving and
homogeneous functions.
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Bounded nonempty eigenspaces - revisited
Theorem (L, 2023)

Let f : RZy — R, be order-preserving and homogeneous. The eigenspace
E(f) is nonempty and bounded in (RZ, dy) if and only if

r(fy) < MflN)

for every nonempty J C [n].
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Bounded nonempty eigenspaces - revisited
Theorem (L, 2023)

Let f : RZy — R, be order-preserving and homogeneous. The eigenspace
E(f) is nonempty and bounded in (RZ, dy) if and only if

r(fy) < MflN)

for every nonempty J C [n].

Lemma

For f : RZy — R, be order-preserving and homogeneous,
e reach(JS,Hy (f)) = [n] <= r(f5) = 0.

o reach(J, HL (f)) = [n] <= M) = .

So you can check the hypergraphs first, and only check the
Collatz-Wielandt numbers for J where the reach condition fails.
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Example

%(Xl + xo + X3)
For geothmetic meandian function F(x) = X1 Xox3
median(x1, x2, X3)

00
o FEM(x) = PEIFPEI(x) = | oo |,
max(x2, x3)

AF2¥) = .
%(Xl -+ X3)

o 15— g~ | |
min(x1, x3)

r(FMh = L1+ V13)
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Convex maps

@ Checking that E(f) is nonempty and bounded requires checking an
exponential number of subsets J C [n]. This can be reduced
dramatically if the additively topical map logof o exp is convex.

@ In addition, if log of o exp is convex and real analytic, or convex and
piecewise affine, then we can give complete necessary and sufficient
conditions for E(f) to be nonempty.
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Unique fixed points of real analytic nonexpansive maps

Theorem (L, 2023)

Let X be a real Banach space with the fixed point property. Let f : X — X
be nonexpansive and real analytic. If f has more than one fixed point, then
the set of fixed points of f is unbounded.

Corollary

If f: Ry — RZq is order-preserving, homogeneous, and real analytic, then
f has a unique eigenvector (up to scaling) if and only if

r(ff) < MflN)

for every nonempty J C [n].
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Intuition for uniqueness

Let x,y € X be distinct fixed points.
Draw a line through x and y.
The line defines a horofunction h.
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Intuition for uniqueness

The sublevel sets of h are horoballs.
Real analyticity of f implies that

these horoballs are invariant.
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Intuition for uniqueness

X

1
1
1
1
1
1
1
]

1
Since horoballs are convex and the balls
around x are also invariant, you get
fixed points arbitrarily far from x.
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Thanks & references

Thanks for your attention!
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