Totally bounded sets in locally convex cones

Asghar Ranjbari Saeed Vazifeh

University of Tabriz

Positivity XI: 10-14 July 2023, Ljubljana

A **cone** is a set \mathcal{P} endowed with an addition

$$(a,b) \rightarrow a+b$$

and a scalar multiplication

$$(\alpha, \mathbf{a}) \rightarrow \alpha \mathbf{a}$$

for $a, b \in \mathcal{P}$ and real numbers $\alpha \geq 0$. The addition is supposed to be associative and commutative, and there is a neutral element $0 \in \mathcal{P}$.

For the scalar multiplication the usual associative and distributive properties hold, that is

$$\alpha(\beta a) = (\alpha \beta)a,$$
$$(\alpha + \beta)a = \alpha + \beta a$$

and

$$\alpha(\boldsymbol{a} + \boldsymbol{b}) = \alpha \boldsymbol{a} + \alpha \boldsymbol{b}$$

for all $a, b \in \mathcal{P}$ and $\alpha, \beta \ge 0$. We have 1a = a and 0a = 0 for all $a \in \mathcal{P}$. The *cancelation law*, stating that

$$a + c = b + c$$
 implies $a = b$

however, is not required in general. It holds if and only if the cone \mathcal{P} may be embedded into a real vector space.

A subset $\mathcal Q$ of a cone $\mathcal P$ is called a subcone if

$$a+b\in \mathcal{Q}$$
 and $\alpha a\in \mathcal{Q}$

for all $a, b \in Q$ and $\alpha \ge 0$. We note that each subcone of P contains 0.

- Every vector space is a cone.
- The cones $\mathbb{\bar{R}} = \mathbb{R} \cup \{+\infty\}$ and $\mathbb{\bar{R}}_+ = \mathbb{R}_+ \cup \{+\infty\}$, with the usual algebraic operations (especially $0 \cdot (+\infty) = 0$), are cones that are not embeddable in vector spaces.

A preordered cone (ordered cone) is a cone \mathcal{P} endowed with a preorder (reflexive transitive relation) \leq such that addition and multiplication by fixed scalars $r \in \mathbb{R}_+$ are order preserving, that is $x \leq y$ implies $x + z \leq y + z$ and $r \cdot x \leq r \cdot y$ for all $x, y, z \in \mathcal{P}$ and $r \in \mathbb{R}_+$.

A subset \mathcal{V} of the preordered cone \mathcal{P} is called an *(abstract) 0-neighborhood system*, if the following properties hold:

(i) 0 < v for all $v \in \mathcal{V}$;

(ii) for all $u, v \in \mathcal{V}$ there is a $w \in \mathcal{V}$ with $w \leq u$ and $w \leq v$;

(iii) $u + v \in \mathcal{V}$ and $\alpha v \in \mathcal{V}$ whenever $u, v \in \mathcal{V}$ and $\alpha > 0$.

The elements v of \mathcal{V} define upper, resp. lower, neighborhoods for the element a of \mathcal{P} by

$$v(a) = \{b \in \mathcal{P} \mid b \le a + v\}, \text{ resp. } (a)v = \{b \in \mathcal{P} \mid a \le b + v\},$$

creating the upper, resp. lower, topologies on \mathcal{P} . Their common refinement is called *symmetric* topology. We denote the neighborhoods of the symmetric topology as $v(a) \cap (a)v$ or $v^{s}(a)$ for $a \in \mathcal{P}$ and $v \in \mathcal{V}$.

For technical reasons we require that the elements of \mathcal{P} to be *bounded below*, i.e. for every $a \in \mathcal{P}$ and $v \in \mathcal{V}$ we have $0 \leq a + \lambda v$ for some $\lambda > 0$. An element *a* of $(\mathcal{P}, \mathcal{V})$ is called bounded if it is also *upper bounded*, i.e. for every $v \in \mathcal{V}$ there is a $\lambda > 0$ such that $a \leq \lambda v$.

A full locally convex cone $(\mathcal{P}, \mathcal{V})$ is an ordered cone \mathcal{P} that contains an abstract neighborhood system \mathcal{V} .

Finally, a **locally convex cone** $(\mathcal{P}, \mathcal{V})$ is a subcone of a full locally convex cone not necessarily containing the abstract neighborhood system \mathcal{V} .

The cones $\overline{\mathbb{R}}$ and $\overline{\mathbb{R}}_+ = \{a \in \overline{\mathbb{R}} : a \ge 0\}$ with (abstract) 0-neighborhood $\mathcal{V} = \{\varepsilon > 0 : \varepsilon \in \mathbb{R}\}$ are locally convex cones.

Example Cone of convex sets.

Let \mathcal{P} be a cone. A subset A of \mathcal{P} is called **convex** if $\alpha a + (1 - \alpha)b \in A$, whenever $a, b \in A$ $0 \le \alpha \le 1$. If we denote by $Conv(\mathcal{P})$ the set of all non-empty convex subsets of the cone \mathcal{P} , with the addition and scalar multiplication defined as:

$$m{A}+m{B}=\{m{a}+m{b}:\ m{a}\inm{A}\,,\ m{b}\inm{B}\},\ m{A},m{B}\inm{Conv}(\mathcal{P})\,,$$

$$\alpha A = \{ \alpha a : a \in A \}, A \in Conv(\mathcal{P}), \alpha \geq 0$$

 $Conv(\mathcal{P})$ is again a cone.

We consider the order on $Conv(\mathcal{P})$ by

$$A \preceq B$$
 if $A \subseteq \downarrow B$,

where $\downarrow B = \{x \in \mathcal{P} | x \leq b \text{ for some } b \in B\}$ is the decreasing hull of the set *B* in \mathcal{P} . Note that $\downarrow B$ is again a convex subset of \mathcal{P} . The requirements for an ordered cone are easily checked.

The neighborhood system in $Conv(\mathcal{P})$ is $\overline{\mathcal{V}} := \{\overline{v} = \{v\} \mid v \in \mathcal{V}\}, \text{ that is}$

$$A \preceq B + \overline{v}$$
 if $A \subseteq \downarrow (B + \{v\})$

for $A, B \in Conv(\mathcal{P})$ and $\overline{v} \in \overline{\mathcal{V}}$. The cone $Conv(\mathcal{P})$ with (abstract) 0-neighborhood system $\overline{\mathcal{V}}$ is a locally convex cone. Let $(\mathcal{P}, \mathcal{V})$ be a locally convex cone. A subset A of \mathcal{P} is called **totally bounded** with respect to the symmetric topology if for every $v \in \mathcal{V}$, there is finite subset Φ of A such that

$$A\subseteq \bigcup_{x\in\Phi}v(x)v.$$

The totally boundedness of a set can be defined similarly under lower and upper topologies.

For every subset *A* of the locally convex cone $(\mathcal{P}, \mathcal{V})$, the following are equivalent:

- (i) A is totally bounded with respect to the symmetric topology.
- (ii) For every $v \in V$, there is finite subset Φ of A such that for every $a \in A$, one can find some $x \in \Phi$ such that $a \le x + v$ and $x \le a + v$.
- (iii) For every $v \in V$, there is finite subset Φ of A such that for each $a \in A$, one can find some $x \in \Phi$ such that $a \le x + 2v$ and $x \le a + 2v$.
- (iv) For every $v \in V$, there is totally bounded subset *B* such that for each $a \in A$, one can find some $b \in B$ such that $a \le b + v$ and $b \le a + v$.

Let $(\mathcal{P}, \mathcal{V})$ be a locally convex cone. If $A \subseteq \mathcal{P}$ and $B \subseteq \mathcal{P}$ are totally bounded subsets with respect to the symmetric topology, then λA and A + B are totally bounded with respect to the symmetric topology for all nonnegative real numbers λ .

Let $(\mathcal{P}, \mathcal{V})$ be a locally convex cone. If $A \subseteq \mathcal{P}$ is totally bounded with respect to the symmetric topology, then \overline{A} the closure of A so is.

We shall say that a locally convex cone $(\mathcal{P}, \mathcal{V})$ is a locally convex \lor - semilattice cone if its order is antisymmetric and if for any two elements $a, b \in \mathcal{P}$, their supremum $a \lor b$ exists in \mathcal{P} and if

 $(\lor 1)$ $(a + c) \lor (b + c) = a \lor b + c$ holds for all $a, b, c \in \mathcal{P}$, $(\lor 2)$ $a \le c + v$ and $b \le c + w$ for $a, b, c \in \mathcal{P}$ and $v, w \in \mathcal{V}$ implies that $a \lor b \le c + (v + w)$. Likewise, $(\mathcal{P}, \mathcal{V})$ is a locally convex \wedge - semilattice cone if its order is antisymmetric and if for any two elements $a, b \in \mathcal{P}$, their infimum $a \wedge b$ exists in \mathcal{P} and if

 $\begin{array}{ll} (\wedge 1) & (a+c) \wedge (b+c) = a \wedge b + c \text{ holds for all } a, b, c \in \mathcal{P}. \\ (\wedge 2) & c \leq a+v \text{ and } c \leq b+w \text{ for } a, b, c \in \mathcal{P} \text{ and } v, w \in \mathcal{V} \\ \text{implies that } c \leq a \wedge b + (v+w). \end{array}$

If both sets of the above conditions i.e. $(\lor 1)$, $(\lor 2)$, $(\land 1)$ and $(\land 2)$) hold, then $(\mathcal{P}, \mathcal{V})$ is called a locally convex lattice cone.

If A and B are subsets of a locally convex \lor - semilattice cone, then we shall employ

$$A \lor B = \{a \lor b : a \in A \text{ and } b \in B\},\$$

and in particular

$$A^+ = A \lor \{0\} = \{a^+ = a \lor 0 : a \in A\}.$$

For the subsets A and B of a locally convex $\wedge\text{-}$ semilattice cone, we denote

$$A \wedge B = \{a \wedge b : a \in A \text{ and } b \in B \}.$$

Let \mathcal{P} be a cone. A subset A of \mathcal{P} is called **balanced** if $b \in A$ whenever $b = \lambda a$ or $b + \lambda a = 0$ for some $a \in A$ and $\lambda \in [0, 1]$. The **convex hull** *coA* is the smallest convex set that includes A. An easy argument shows that *coA* consists of all convex combinations of A. i.e.,

$$coA = \{\sum_{i=1}^n \lambda_i x_i : x_i \in A, \quad \lambda_i \in [0, 1] \text{ and } \sum_{i=1}^n \lambda_i = 1\}.$$

Similarly, it can be seen that the set

 $cob(A) = \{\sum_{i=1}^{i=n} \lambda_i x_i : x_i \in A, \quad \lambda_i \in [0, 1] \text{ and } \sum_{i=1}^{i=n} \lambda_i \leq 1\}$

is **the convex balanced hull** of *A*; i.e., the smallest convex and balanced set that includes *A*.

- (i) If A is a totally bounded subset of a locally convex ∨semilattice cone (P, V) with respect to the upper topology, then co(A) and cob(A) are totally bounded with respect to the upper topology.
- (ii) If A is a totally bounded subset of a locally convex ∧-semilattice cone (P, V) with respect to lower topology, then co(A) and cob(A) are totally bounded with respect to the lower topology.

- (i) Let (P, V) be a locally convex ∨-semilattice cone. If A ⊆ P and B ⊆ P are totally bounded subsets with respect to the upper topology, then A ∨ B is also totally bounded with respect to the upper topology.
- (ii) Let (P, V) be a locally convex ∧-semilattice cone. if A ⊆ P and B ⊆ P are totally bounded subsets with respect to the lower topology, then A ∧ B is also totally bounded with respect to the lower topology.

- (a) If (P, V) is a locally convex ∨ (or ∧)-semilattice cone and A ⊆ P is a totally bounded subset with respect to the upper (or lower) topology, then A⁺ is also totally bounded with respect to the upper (lower) topology.
- (b) If (P, V) is a locally convex lattice cone and A ⊆ P is a totally bounded subset with respect to the symmetric topology then A⁺ is also totally bounded with respect to the symmetric topology (and then with respect to the upper and lower topologies).

- A. Dastouri and A Ranjbari, Some Notes on Barreledness in Locally Convex Cones, Bulletin of the Iranian Mathematical Society 48 (2), (2022)331-341.
- A. Dastouri and A Ranjbari, A duality result in locally convex cones, (2022) Positivity 26 (4), 1-13.
- K. Keimel, W. Roth, Ordered cones and approximation, Lecture Notes in Mathematics 1517, Springer- Verleg, Berlin,1992.
- A. Ranjbari, H. Saiflu, Projective and inductive limits in locally convex cones, J. Math. Anal. Appl, 332 (2) (2007) 1097-1108.
- W. Roth, Operator-valued measures and integrals for cone-valued functions, Lecture Notes in Mathematics 1964, Springer-Verleg, Berlin, 2009.

Thank you for your attentions. Questions?