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Kadison’s anti-lattice theorem

B(H)sa - set of all self-adjoint operators on a complex Hilbert space H
with Jordan product given by

S ◦ T = 1
2(ST + TS). (1)

A := B(H)sa is a Jordan algebra, i.e. a commutative (not necessarily
associative) algebra such that

x ◦ (y ◦ x2) = (x ◦ y) ◦ x2 for all x , y ∈ A

and, moreover, a JB-algebra, i.e. a normed, complete Jordan algebra
over R satisfying

∥x ◦ y∥ ≤ ∥x∥∥y∥, ∥x2∥ = ∥x∥2, ∥x2∥ ≤ ∥x2 + y2∥

for all x , y ∈ A.
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Kadison’s anti-lattice theorem

The identity operator I is an algebraic unit e in A.
The spectrum σ(x) of x ∈ A is defined to be the set of λ ∈ R such
that x − λe is not invertible in JB(x ,e), the JB-subalgebra of A
generated by x and e.
The set A+ of all elements in A that have a non-negative spectrum
is a cone, its interior is the set of all elements with strictly positive
spectrum. Note that A+ = {x2; x ∈ A}.
The relation ≤ defined by x ≤ y whenever y − x ∈ A+ has the
properties
(a) x , y , z ∈ X and x ≤ y imply x + z ≤ y + z,
(b) x ∈ X , 0 ≤ x and λ ∈ [0,∞) imply 0 ≤ λx .
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Kadison’s anti-lattice theorem

A = B(H)sa is a partially ordered vector space.
e is an order unit, i.e. for every x ∈ A there is λ ∈ R such that
−λe ≤ x ≤ λe.
The norm in A is actually the order unit norm

∥x∥ := inf{λ > 0;−λe ≤ x ≤ λe}.

A is an order unit space (and, hence, a pre-Riesz space).

Definition
A partially ordered vector space (X ,K ) is an anti-lattice if the
supremum of two elements exist only if they are comparable.

Theorem (Kadison 1951)

B(H)sa is an anti-lattice.
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Kadison’s anti-lattice theorem

Cones in R3: from lattice to anti-lattice
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Anti-lattices characterized by disjointness

Disjointness

If (X ,X+) is a vector lattice, then x , y ∈ X are called disjoint (x ⊥ y ) if
|x | ∧ |y | = 0, which is equivalent to

|x + y | = |x − y |.

If (X ,X+) is a partially ordered vector space, then x , y ∈ X are called
disjoint (x ⊥ y ) if

{x + y ,−(x + y)}u = {x − y ,−(x − y)}u,

where Mu denotes the set of upper bounds of M ⊆ X .
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Anti-lattices characterized by disjointness

Idea: replace modulus |x | by {x ,−x}u
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Anti-lattices characterized by disjointness

Theorem (K., Lemmens, van Gaans, 2014)
A partially ordered vector space is an anti-lattice if and only if there are
no non-trivial disjoint positive elements.

In the space B(H)sa, it turns out that there are even no disjoint
elements at all. We call such a partially ordered vector space a
disjointness free anti-lattice.
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Atomic JBW algebras and their factors

B(H)sa is a JBW-algebra, i.e. a JB-algebra that is a dual space.
A minimal element in the set of all non-zero projections of a
JBW-algebra is called an atom.
A JBW-algebra in which every non-zero projection dominates an
atom is called atomic.

B(H)sa is an atomic JBW-algebra.
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Atomic JBW algebras and their factors

Examples of atomic JBW-algebras [book of Alfsen, Shultz, 2003]:
(i) the self-adjoint bounded operators B(H)sa on a real or complex

Hilbert space H of dimension d ≥ 3, or B(Hq) where Hq is a
quaternionic Hilbert space of dimension d ≥ 3, endowed with the
product (1),

(ii) the spin factors H ⊕ R, where H is a real Hilbert space of
dimension at least 2, with the multiplication

(x , λ) ◦ (y , µ) := (µx + λy , ⟨x , y⟩+ λµ). (2)

The cone C of squares in H ⊕R equals C = {(x , λ);
√
⟨x , x⟩ ≤ λ}.

(iii) the 3 × 3 self-adjoint matrices M3(O)sa with entries from the
octonions O, endowed with the product (1).
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Atomic JBW algebras and their factors

Theorem

Every atomic JBW-algebra equals the algebraic direct sum of atomic
JBW-algebras that are isomorphic as JBW-algebras to those listed in
(i)–(iii).

Joint work with Mark Roelands and Onno van Gaans:
A order theoretical analysis of all the so-called ’factors’ in (i)–(iii)
B characterization of disjointness, bands, projection bands in atomic

JBW-algebras
idea: investigate order direct sums of order unit spaces

C study of disjointness preserving operators
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Atomic JBW algebras and their factors

A We show that every of the factors (i)-(iii) is a disjointness free
anti-lattice.

Strategy:
Every factor is an order unit space.
(Kadison, 1951): Every order unit space has a functional
representation, i.e. there is a compact Hausdorff space Ω and a
linear bipositive map Φ: X → C(Ω).
Disjointness in the order unit space is equivalent to disjointness in
the functional representation.
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Atomic JBW algebras and their factors

Construction of the functional representation:

Let (X ,K ,u) be an order unit space equipped with the u-norm ∥·∥u.
X ′ denotes the (norm) dual space of X and
K ′ := {φ ∈ X ′; φ[K ] ⊆ [0,∞)} the dual cone. The set

Σ = {φ ∈ K ′; φ(u) = 1}

is a base of K ′ (i.e. Σ is convex and every ψ ∈ K ′ has a unique
representation ψ = λφ with φ ∈ Σ and λ ∈ [0,∞) ).

By the Banach-Alaoglu theorem, the closed unit ball B′ of X ′ is
weakly-∗ compact.
As Σ is a weakly-∗ closed subset of B′, Σ is weakly-∗ compact in
X ′, i.e. Σ equals the weak-∗ closure of the convex hull of the
extreme points of Σ by the Krein-Milman theorem.
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Atomic JBW algebras and their factors

Denote the set of all extreme points of Σ by

Λ := ext(Σ).

(In general, Λ need not be weakly-∗ closed, not even if X is finite
dimensional.)
Denote by Λ the weak-∗ closure of Λ in Σ, hence Λ is a compact
Hausdorff space. Define

Φ: X → C(Λ), x 7→ (φ 7→ φ(x)).

Φ is linear and maps u to the constant-1 function
Let x ∈ X . Then x ∈ K if and only if for every φ ∈ Λ one has
φ(x) ≥ 0.
Consequently, Φ is bipositive.
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Atomic JBW algebras and their factors

A partially ordered vector space X is called a pre-Riesz space if there
exist a Riesz space Y and a bipositive linear map i : X → Y such that
i[X ] is order dense in Y , i.e.,
for every y ∈ Y one has y = inf{z ∈ i[X ]; z ≥ y}.

The pair (Y , i) is then called a vector lattice cover of X .

Proposition (van Gaans, K., 2006)

Let X be a pre-Riesz space with vector lattice cover (Y , i). Then one
has for every x , y ∈ X

x ⊥ y ⇐⇒ i(x) ⊥ i(y).
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Atomic JBW algebras and their factors

The functional representation of an order unit space yields a vector
lattice cover:

Theorem (Lemmens, van Gaans, K., 2014)

If (X ,K ,u) is an order unit space u, then Φ[X ] is order dense in C(Λ),
i.e. (C(Λ),Φ) is a vector lattice cover of X .

Every order unit space is a pre-Riesz space.

Disjointness of x and y in X is equivalent to pointwise disjointness of
Φ(x) and Φ(y) in C(Λ).

Theorem (Roelands, K., van Gaans, 2023)
The factors (i)-(iii) in the factor decomposition of an atomic
JBW-algebras are all disjointness free anti-lattices.
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Disjointness in order direct sums of disjointness free anti-lattices

Let (X ,X+) be a partially ordered vector space.
The following order theoretical notions are of interest:

For M ⊆ X define the disjoint complement as
Md := {x ∈ X ;∀m ∈ M : x ⊥ m}.
M ⊆ X is called a band, if M = Mdd.
A projection P : X → X is called an band projection if the range
and kernel of P are bands.
The range of a band projection is called a projection band.

Proposition (Glück, 2021)
Let X be a pre-Riesz space and P : X → X a linear operator. Then the
following are equivalent:

(i) P is a projection with 0 ≤ P ≤ I.
(ii) There is a band B in X with X = B ⊕ Bd , and P is the band

projection onto B.
Every projection band is directed.
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Disjointness in order direct sums of disjointness free anti-lattices

B Order theoretical notions in direct sums of disjointness free
anti-lattices

Proposition

Let (X1,K1,u1) and (X2,K2,u2) be order unit spaces. Then we have:
(a) (X1 × X2,K1 × K2, (u1,u2)) is an order unit space.
(b) The functional representation

(
C
(
ΛX1×X2

)
,ΦX1×X2

)
of X1 × X2

satisfies

C
(
ΛX1×X2

)
= C

(
ΛX1

)
⊕ C

(
ΛX2

)
,

ΦX1×X2(x1, x2) =
(
ΦX1(x1),ΦX2(x2)

)
for all x1 ∈ X1 and x2 ∈ X2.

(c) X1 × {0} and {0} × X2 are projection bands in X1 × X2.
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Disjointness in order direct sums of disjointness free anti-lattices

Let I be a non-empty set and let ((Vi ,Ci ,ui))i∈I be a collection of order unit
spaces.

We define the order direct sum to be the vector space

⊕
i∈I

Vi :=

{
i 7→ vi : I →

⋃
i∈I

Vi ; vi ∈ Vi for every i ∈ I and sup
i∈I

∥vi∥ui <∞

}
(3)

with the cone {v ∈
⊕

i∈I Vi ; v(i) ∈ Ci for every i ∈ I}.

Then
⊕

i∈I Vi is an order unit space with order unit i 7→ ui , which we denote
by u.

Note that for every v ∈
⊕

i∈I Vi we have that

∥v∥u = sup
i∈I

∥v(i)∥ui . (4)
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Disjointness in order direct sums of disjointness free anti-lattices

Let ((Vi ,Ci ,ui))i∈I be a collection of JBW-algebras.

The algebraic direct sum of (Vi)i∈I is the vector space given by (3)
endowed with the norm given by (4) and componentwise multiplication.⊕

i∈I Vi is then a JBW-algebra.

If the Vi are atomic, then so is
⊕

i∈I Vi .

The algebraic direct sum and the order direct sum of JBW-algebras
coincide.
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Disjointness in order direct sums of disjointness free anti-lattices

Disjointness in order direct sums of order unit spaces:

Lemma
Let ((Vi ,Ci ,ui))i∈I be a collection of order unit spaces with order direct
sum (V ,C,u). Let v ,w ∈ V. Then v and w are disjoint in V if and only
if for every i ∈ I the elements v(i) and w(i) are disjoint in Vi .

One has to show:

The components of an order direct sum of order unit spaces are
projection bands that are pairwise disjoint.
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Disjointness in order direct sums of disjointness free anti-lattices

Theorem (Roelands, K., van Gaans)

Let M =
⊕

i∈I Mi be an atomic JBW-algebra with its factor
decomposition.

(i) B ⊆ M is a band if and only if B =
⊕

j∈J Mj for J ⊆ I, where it is
understood that B = {0} for J = ∅.

(ii) Two non-zero x , y ∈ M are disjoint if and only if there is a J ⊆ I
with J ̸= ∅ and I \ J ≠ ∅ such that x ∈

⊕
i∈J Mi and

y ∈
⊕

i∈I\J Mi .
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Disjointness preserving bijections

If X is a povs, a linear operator T : X → X is called disjointness
preserving if for every x , y ∈ X from x ⊥ y it follows that Tx ⊥ Ty .

C Under which conditions is the inverse of a disjointness preserving
bijection disjointness preserving?

Theorem (Huijsmans, de Pagter, 1994, Koldunov 1995)

If X is a Banach lattice and T : X → X is a disjointness preserving
linear bijection, then T−1 is disjointness preserving.

Theorem (Lemmens, van Gaans, K., 2018)

Let (X ,K ) be a finite-dimensional povs with closed generating cone K .
If T : X → X is a disjointness preserving linear bijection, then T−1 is
disjointness preserving.
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Disjointness preserving bijections

In an atomic JBW-algebra, the inverse of a disjointness preserving
bijection is not disjointness preserving, in general.
[van Gaans, K., Roelands 2023]

To do: If M =
⊕

i∈I Vi is an atomic JBW-algebra with the
corresponding factor decomposition, characterize the disjointness
preserving bijections on M with disjointness preserving inverse.
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Disjointness preserving bijections

If ((Wi ,Ki ,wi))i∈I is another family of order unit spaces and for every
i ∈ I we have a linear map Ti : Vi → Wi such that for every
v ∈

⊕
i∈I Vi the map i 7→ Tiv(i) from I to

⋃
i∈I Wi belongs to

⊕
i∈I Wi ,

then we denote this map by
⊕

i∈I Ti .

Theorem (Roelands,K.,van Gaans)

Let ((Vi ,Ci ,ui))i∈I be a collection of order unit spaces that are
disjointness free anti-lattices with order direct sum (V ,C,u). Let
T : V → V be a disjointness preserving linear bijection. Then T−1 is
disjointness preserving if and only if there is a bijection σ : I → I and
there are linear bijections Ti : Vi → Vσ(i) such that T =

⊕
i∈I Ti .
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Disjointness preserving bijections

Corollary

Let M =
⊕

i∈I Mi be an atomic JBW-algebra with the corresponding
factor decomposition, and T : M → M be a disjointness preserving
linear bijection. Then T−1 is disjointness preserving if and only if there
is a bijection σ : I → I and there are linear bijections Ti : Mi → Mσ(i)
such that T =

⊕
i∈I Ti .
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Disjointness preserving bijections
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Disjointness preserving bijections

Thanks for your attention!
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