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Lattice structure in C∗-algebras?

Theorem. (Kakutani- Gelfand-Naimark, 1941/ 1943) The
self-adjoint part of a unital commutative C∗-algebra A is precisely
an AM-space upto a unital order isomorphism.

Theorem. (Sherman, 1951). Let A be a C∗-algebra. Then Asa is
a vector lattice if and only if A is commutative.

Kadison’s Anti-lattice Theorem (1951). Let H be a complex
Hilbert space and consider the real ordered vector space B(H)sa.
For S ,T ∈ B(H)sa, we have S ∧ T exists in B(H)sa if and only if
S and T are comparable.

Shouldn’t we expect any lattice-like structure in non-commutative
C∗-algebras?
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Orthogonality in C ∗-algebras

Let A be a C ∗-algebra. We shall say that a, b ∈ A are algebraically
orthogonal (a ⊥a b), if a∗b = 0 = ab∗. In particular, when a and b
are self-adjoint, then a ⊥a b, if and only if ab = 0.

Presence of algebraic and norm orthogonality in C ∗-algebras.
Let A be a C ∗-algebra. Then for each a ∈ Asa, there exists a
unique pair a+, a− ∈ A+ such that

a = a+ − a−; and

a+a− = 0.
For x ∈ A, we define |x | := (x∗x)

1
2 . In particular, for x ∈ Asa,

|x | = (x2)
1
2 and for x ∈ A+, |x | = x .

|a| = a+ + a−; and

‖a‖ = max{‖a+‖, ‖a−‖}.
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Orthogonality in C ∗-algebras

Properties of algebraic orthogonality in a C∗-algebra:
Let A be a C∗-algebra and let a, b, c ∈ Asa. Then

1 a ⊥a 0;

2 a ⊥a b implies b ⊥a a;

3 a ⊥a b and a ⊥a c imply a ⊥a (kb + c) for all k ∈ R;

4 If a ⊥a b and if |c | ≤ |b|, then a ⊥a c;

5 For each a ∈ Asa, there exist unique a+, a− ∈ A+ with
a+ ⊥a a− such that a = a+ − a−.
(We also have |a| = a+ + a−.)
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Orthogonality in vector lattices

Let (L, L+) be a vector lattice. We write u ∧ v for inf{u, v} and
u ∨ v for sup{u, v}. We define u+ := u ∨ 0, u− := (−u) ∨ 0 and
|u| := u ∨ (−u) for all u ∈ L. Then u = u+ − u− and
|u| = u+ + u−. For u, v ∈ L, we say that u is orthogonal to v if
|u| ∧ |v | = 0. In this case, we write u ⊥` v .
Recall that |u + v | ≤ |u|+ |v | and that

u ∧ v =
1

2
{u + v − |u − v |}

and

u ∨ v =
1

2
{u + v + |u − v |}

for all u, v ∈ L.

Anil K. Karn Orthogonality in ordered vector spaces



The preamble
Algebraic orthogonality in C∗-algebras

(Order theoretic) orthogonality in vector lattices
Generalizing order theoretic orthogonality

Orthogonality and norm
References

Orthogonality in vector lattices

Properties of orthogonality in a vector lattice:
Let L be a vector lattice and let u, v ,w ∈ L. Then

1 u ⊥` 0;

2 u ⊥` v implies v ⊥` u;

3 u ⊥` v and u ⊥` w imply u ⊥` (kv + w) for all k ∈ R;

4 If u ⊥` v and if |w | ≤ |v |, then u ⊥` w ;

5 For each u ∈ L, there exist unique u+, u− ∈ L+ with
u+ ⊥` u− such that u = u+ − u−.
(We also have |u| = u+ + u−.)
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Orthogonality in ordered vector spaces

Definition. Let (V ,V+) be a real ordered vector space. Assume
that ⊥ is a binary relation in V such that for u, v ,w ∈ V , we have

1 u ⊥ 0;

2 u ⊥ v implies v ⊥ u;

3 u ⊥ v and u ⊥ w imply u ⊥ (kv + w) for all k ∈ R;

4 For each u ∈ L, there exist unique u+, u− ∈ L+ with u+ ⊥ u−

such that u = u+ − u−.
Let us put u+ + u− := |u|.

5 If u ⊥ v and if |w | ≤ |v |, then u ⊥ w .

Then V is called an absolutely ordered vector space.
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Orthogonality in ordered vector spaces

Proposition. Let V be an absolutely ordered space and let
u, v ∈ V .

1 |u − v | = u + v if and only if u, v ∈ V+ with u ⊥ v .

2 u ⊥ v if and only if |u ± v | = |u|+ |v |.

Theorem. Let V be an absolutely ordered space and let
u, v ,w ∈ V .

1 |u| = u if and only if u ∈ V+.

2 |u| ± u ∈ V+.

3 |ku| = |k||u| for all k ∈ R.

4 If |u − v | = u + v and if 0 ≤ w ≤ v , then |u − w | = u + w .

5 If |u − v | = u + v and |u − w | = u + w , then
|u − |v ± w || = u + |v ± w |.
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A substitute

Theorem. Let V be an absolutely ordered space. Then the
following statements are equivalent:

1 |u + v | ≤ |u|+ |v | for all u, v ∈ V ;

2 V is a vector lattice.

Definition. Let V be an absolutely ordered vector space. Then
w ∈ V is said to be an ortho-infimum of u, v ∈ V if

1 w ≤ u and w ≤ v ; and

2 (u − w) ⊥ (v − w).

Similarly, x ∈ V is said to be an ortho-supremum of u and v , if

1 u ≤ x and v ≤ x ; and

2 (x − u) ⊥ (x − v).
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Orthogonality in ordered vector spaces

Theorem. Let V be an absolutely ordered vector space. For
u, v ∈ V we set

u∧̇v :=
1

2
{u + v − |u − v |}

and

u∨̇v :=
1

2
{u + v + |u − v |}.

Then the ortho-infimum of u, v ∈ V is uniquely determined as
u∧̇v and the ortho-supremum of u, v ∈ V is uniquely determined
as u∨̇v .

Theorem. In a vector lattice, the ortho-infimum is the infimum
and the ortho-supremum is the supremum.
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Orthogonality and norm

Definition. Let V be a real normed linear space and let u, v ∈ V .
For 1 ≤ p ≤ ∞, we say that u is p-orthogonal to v , (u ⊥p v), if
for all k ∈ R, we have

‖u + kv‖ =

{
(‖u‖p + ‖kv‖p)

1
p , if 1 ≤ p <∞

max (‖u‖, ‖kv‖) , if p =∞.

Definition Let 1 ≤ p ≤ ∞ and S ⊂ V . We say that ⊥p is additive
in S , if for u, v ,w ∈ S with u ⊥p v and u ⊥p w , we have
u ⊥p (v + w).
We say that S is a p-orthogonal set in V , if u ⊥p v whenever
u, v ∈ S and u 6= v .
We say that S is total in V , if the linear span of S is dense in V .

Anil K. Karn Orthogonality in ordered vector spaces



The preamble
Algebraic orthogonality in C∗-algebras

(Order theoretic) orthogonality in vector lattices
Generalizing order theoretic orthogonality

Orthogonality and norm
References

Orthogonality and norm

Definition. Let V be a real normed linear space and let u, v ∈ V .
For 1 ≤ p ≤ ∞, we say that u is p-orthogonal to v , (u ⊥p v), if
for all k ∈ R, we have

‖u + kv‖ =

{
(‖u‖p + ‖kv‖p)

1
p , if 1 ≤ p <∞

max (‖u‖, ‖kv‖) , if p =∞.

Definition Let 1 ≤ p ≤ ∞ and S ⊂ V . We say that ⊥p is additive
in S , if for u, v ,w ∈ S with u ⊥p v and u ⊥p w , we have
u ⊥p (v + w).
We say that S is a p-orthogonal set in V , if u ⊥p v whenever
u, v ∈ S and u 6= v .
We say that S is total in V , if the linear span of S is dense in V .

Anil K. Karn Orthogonality in ordered vector spaces



The preamble
Algebraic orthogonality in C∗-algebras

(Order theoretic) orthogonality in vector lattices
Generalizing order theoretic orthogonality

Orthogonality and norm
References

Orthogonality and norm

Definition. Let V be a real normed linear space and let u, v ∈ V .
For 1 ≤ p ≤ ∞, we say that u is p-orthogonal to v , (u ⊥p v), if
for all k ∈ R, we have

‖u + kv‖ =

{
(‖u‖p + ‖kv‖p)

1
p , if 1 ≤ p <∞

max (‖u‖, ‖kv‖) , if p =∞.

Definition Let 1 ≤ p ≤ ∞ and S ⊂ V . We say that ⊥p is additive
in S , if for u, v ,w ∈ S with u ⊥p v and u ⊥p w , we have
u ⊥p (v + w).

We say that S is a p-orthogonal set in V , if u ⊥p v whenever
u, v ∈ S and u 6= v .
We say that S is total in V , if the linear span of S is dense in V .

Anil K. Karn Orthogonality in ordered vector spaces



The preamble
Algebraic orthogonality in C∗-algebras

(Order theoretic) orthogonality in vector lattices
Generalizing order theoretic orthogonality

Orthogonality and norm
References

Orthogonality and norm

Definition. Let V be a real normed linear space and let u, v ∈ V .
For 1 ≤ p ≤ ∞, we say that u is p-orthogonal to v , (u ⊥p v), if
for all k ∈ R, we have

‖u + kv‖ =

{
(‖u‖p + ‖kv‖p)

1
p , if 1 ≤ p <∞

max (‖u‖, ‖kv‖) , if p =∞.

Definition Let 1 ≤ p ≤ ∞ and S ⊂ V . We say that ⊥p is additive
in S , if for u, v ,w ∈ S with u ⊥p v and u ⊥p w , we have
u ⊥p (v + w).
We say that S is a p-orthogonal set in V , if u ⊥p v whenever
u, v ∈ S and u 6= v .

We say that S is total in V , if the linear span of S is dense in V .

Anil K. Karn Orthogonality in ordered vector spaces



The preamble
Algebraic orthogonality in C∗-algebras

(Order theoretic) orthogonality in vector lattices
Generalizing order theoretic orthogonality

Orthogonality and norm
References

Orthogonality and norm

Definition. Let V be a real normed linear space and let u, v ∈ V .
For 1 ≤ p ≤ ∞, we say that u is p-orthogonal to v , (u ⊥p v), if
for all k ∈ R, we have

‖u + kv‖ =

{
(‖u‖p + ‖kv‖p)

1
p , if 1 ≤ p <∞

max (‖u‖, ‖kv‖) , if p =∞.

Definition Let 1 ≤ p ≤ ∞ and S ⊂ V . We say that ⊥p is additive
in S , if for u, v ,w ∈ S with u ⊥p v and u ⊥p w , we have
u ⊥p (v + w).
We say that S is a p-orthogonal set in V , if u ⊥p v whenever
u, v ∈ S and u 6= v .
We say that S is total in V , if the linear span of S is dense in V .

Anil K. Karn Orthogonality in ordered vector spaces



The preamble
Algebraic orthogonality in C∗-algebras

(Order theoretic) orthogonality in vector lattices
Generalizing order theoretic orthogonality

Orthogonality and norm
References

Geometric orthogonality in `p-spaces

Theorem. Let 1 ≤ p <∞. A Banach space V is isometrically
isomorphic to `p(I ), if and only if ⊥p is additive in V and there
exists a subset U of V of cardinality I such that U is p-orthonormal
and is total in V . For p =∞, we need to replace `∞(I ) by c0(I ).
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Geometric orthogonality in `p-spaces

Definition Let (V ,V+, | · |) be a real ordered space and let ‖ · ‖ be
a norm on V . Then (V ,V+, ‖ · ‖) is said to be an order smooth
p-normed space, for 1 ≤ p ≤ ∞, if it satisfies the following
conditions:

(O.p.1): For u ≤ v ≤ w in U, we have

‖v‖ ≤

{
(‖u‖p + ‖w‖p)

1
p if 1 ≤ p <∞,

max (‖u‖, ‖w‖) if p =∞;

(O.p.2): if v ∈ V and ε > 0, then there exist v1, v2 ∈ V+ with
v = v1 − v2 such that

‖v‖+ ε ≥

{
(‖v1‖p + ‖v2‖p)

1
p if 1 ≤ p <∞,

max (‖v1‖, ‖V2‖) if p =∞;

Note that an order unit space is an order smooth ∞-normed space.
Anil K. Karn Orthogonality in ordered vector spaces
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Geometric orthogonality in `p-spaces

Theorem. Let 1 ≤ p <∞ and assume that (V ,V+, ‖ · ‖) be a
norm complete order smooth p-normed space. If ⊥p is additive in
V+ and if U is a total p-orthonormal set in V+, then V is
isometrically order isomorphic to `p(I ) where I is the cardinality of
U. For p =∞ we need to replace `∞(I ) by c0(I ).
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Orthogonality in C∗-algebras

Example Consider the 3-dimensional real sequence space V = `3∞.
We have u = 〈1, 12 , 0〉 and v = 〈0, 13 , 1〉 in V such that u ⊥∞ v .
However, uv 6= 0 in the coordinate-wise multiplication.

Definition. Let A be a C∗-algebra. For a, b ∈ A+, we say that a is
absolutely ∞-orthogonal to b (a ⊥a

∞ b), if [0, a] ⊥∞ [0, b].
More generally, if (V ,V+, ‖ · ‖) is an order smooth p-normed space
for 1 ≤ p ≤ ∞, then for u, v ∈ V+, we say that u is absolutely
p-orthogonal to v (u ⊥a

p v), if [0, u] ⊥p [0, v ].

Theorem. Let a and b be any two positive elements of a
C ∗-algebra A. Then a ⊥a b if and only if a ⊥a

∞ b.

Anil K. Karn Orthogonality in ordered vector spaces
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Orthogonality in C∗-algebras

Example Consider the 3-dimensional real sequence space V = `3∞.
We have u = 〈1, 12 , 0〉 and v = 〈0, 13 , 1〉 in V such that u ⊥∞ v .
However, uv 6= 0 in the coordinate-wise multiplication.

Definition. Let A be a C∗-algebra. For a, b ∈ A+, we say that a is
absolutely ∞-orthogonal to b (a ⊥a
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Geometric orthogonality in ordered vector spaces

Let (V ,V+, | · |) be an absolutely ordered space and let ‖ · ‖ be a
norm on V . Then (V ,V+, | · |, ‖ · ‖) is said to be an absolute order
smooth p-normed space, for 1 ≤ p ≤ ∞, if it satisfies the following
conditions:

(O.p.1): For u ≤ v ≤ w in V , we have

‖v‖ ≤

{
(‖u‖p + ‖w‖p)

1
p if 1 ≤ p <∞,

max (‖u‖, ‖w‖) if p =∞;

(O. ⊥p .1): if u, v ∈ V+ with u ⊥ v , then u ⊥a
p v ; and

(O. ⊥p .2): if u, v ∈ V+ with u ⊥a
p v , then u ⊥ v .

Theorem. Let (V ,V+, | · |, ‖ · ‖) be a norm complete absolute
order smooth ∞-normed space. If U is a total ∞-orthonormal set
in V+, then V is isometrically order isomorphic to c0(I ) where I is
the cardinality of U.
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Geometric orthogonality in ordered vector spaces

Theorem. Let (V , e) be an order unit space. The following two
sets of conditions are equivalent:

1 V is an absolutely ordered vector space in which ⊥=⊥a
∞ on

V+.
2 V satisfies the following conditions:

1 For each u ∈ V , the exists a unique pair u+, u− ∈ V+ with
u+ ⊥a

∞ u− such that u = u+ − u−;
Set |u| := u+ + u−.

2 If u, v ,w ∈ V+ with u ⊥a
∞ v and u ⊥a

∞ w , then we have
u ⊥a

∞ |v ± w |.
In this case, (V , | · |, e) is called an absolute order unit space.
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A counter example

Theorem. Let V be a real normed linear space. Consider
V (·) := V × R and put V (·)+ := {(v , α) : ‖v‖ ≤ α}. Then
(V (·),V (·)+) becomes a real ordered space. For (v , α) ∈ V (·), we
define

|(v , α)| =


(v , α), if (v , α) ∈ V (·)+

−(v , α), if (v , α) ∈ −V (·)+(
α
‖v‖v , ‖v‖

)
, if (v , α) /∈ V (·)+⋃−V (·)+.

Then (V (·),V (·)+, | · |) is an absolutely ordered space if and only if
V is strictly convex.
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1 |u| = u if and only if u ∈ V+.

2 |u| ± u ∈ V+.

3 |ku| = |k||u| for all k ∈ R.

4 If |u − v | = u + v and |u − w | = u + w , then
|u − |v ± w || = u + |v ± w |.

5 If |u − v | = u + v and if 0 ≤ w ≤ v , then |u − w | = u + w .
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A counter example

Let V be a strictly convex normed linear space and consider the
corresponding absolutely ordered space (V (·),V (·)+, | · |) is
obtained by adjoining an order unit to V . We denote it by V (∞).

For (u, α), (v , β) ∈ V (∞), we define

(u, α) ◦ (v , β) :=

(
αv + βu, αβ +

1

4
(‖u + v‖2 − ‖u − v‖2)

)
.

Theorem. The binary operation ◦ is bilinear in V (∞) if and only
if V is a Hilbert space. In this case, V (∞) is unitally Jordan
isomorphic to a unital JC -algebra.

What is in the future?
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Thank you very much for your attention!
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