Orthogonality in ordered vector spaces

Anil Kumar Karn
National Institute of Science Education and Research Bhubaneswar, India

(1) The preamble
(2) Algebraic orthogonality in C*-algebras

3 (Order theoretic) orthogonality in vector lattices
(4) Generalizing order theoretic orthogonality
(5) Orthogonality and norm
(6) References

Lattice structure in C*-algebras?

Theorem. (Kakutani- Gelfand-Naimark, 1941/ 1943) The self-adjoint part of a unital commutative C^{*}-algebra A is precisely an $A M$-space upto a unital order isomorphism.

Lattice structure in C*-algebras?

Theorem. (Kakutani- Gelfand-Naimark, 1941/ 1943) The self-adjoint part of a unital commutative C^{*}-algebra A is precisely an $A M$-space upto a unital order isomorphism.

Theorem. (Sherman, 1951). Let A be a C*-algebra. Then $A_{\text {sa }}$ is a vector lattice if and only if A is commutative.

Lattice structure in C*-algebras?

Theorem. (Kakutani- Gelfand-Naimark, 1941/ 1943) The self-adjoint part of a unital commutative C^{*}-algebra A is precisely an $A M$-space upto a unital order isomorphism.

Theorem. (Sherman, 1951). Let A be a C*-algebra. Then $A_{\text {sa }}$ is a vector lattice if and only if A is commutative.

Kadison's Anti-lattice Theorem (1951). Let H be a complex Hilbert space and consider the real ordered vector space $B(H)_{\text {sa }}$. For $S, T \in B(H)_{s a}$, we have $S \wedge T$ exists in $B(H)_{s a}$ if and only if S and T are comparable.

Lattice structure in C*-algebras?

Theorem. (Kakutani- Gelfand-Naimark, 1941/ 1943) The self-adjoint part of a unital commutative C^{*}-algebra A is precisely an $A M$-space upto a unital order isomorphism.

Theorem. (Sherman, 1951). Let A be a C^{*}-algebra. Then $A_{\text {sa }}$ is a vector lattice if and only if A is commutative.

Kadison's Anti-lattice Theorem (1951). Let H be a complex Hilbert space and consider the real ordered vector space $B(H)_{\text {sa }}$. For $S, T \in B(H)_{s a}$, we have $S \wedge T$ exists in $B(H)_{s a}$ if and only if S and T are comparable.

Shouldn't we expect any lattice-like structure in non-commutative C^{*}-algebras?

Orthogonality in C^{*}-algebras

Let A be a C^{*}-algebra. We shall say that $a, b \in A$ are algebraically orthogonal $\left(a \perp^{a} b\right)$, if $a^{*} b=0=a b^{*}$. In particular, when a and b are self-adjoint, then $a \perp^{a} b$, if and only if $a b=0$.

Orthogonality in C^{*}-algebras

Let A be a C^{*}-algebra. We shall say that $a, b \in A$ are algebraically orthogonal $\left(a \perp^{a} b\right)$, if $a^{*} b=0=a b^{*}$. In particular, when a and b are self-adjoint, then $a \perp^{a} b$, if and only if $a b=0$.

Presence of algebraic and norm orthogonality in C^{*}-algebras. Let A be a C^{*}-algebra. Then for each $a \in A_{\text {sa }}$, there exists a unique pair $a^{+}, a^{-} \in A^{+}$such that

- $a=a^{+}-a^{-}$; and
- $a^{+} a^{-}=0$.

Orthogonality in C*-algebras

Let A be a C^{*}-algebra. We shall say that $a, b \in A$ are algebraically orthogonal $\left(a \perp^{a} b\right)$, if $a^{*} b=0=a b^{*}$. In particular, when a and b are self-adjoint, then $a \perp^{a} b$, if and only if $a b=0$.

Presence of algebraic and norm orthogonality in C^{*}-algebras. Let A be a C^{*}-algebra. Then for each $a \in A_{\text {sa }}$, there exists a unique pair $a^{+}, a^{-} \in A^{+}$such that

- $a=a^{+}-a^{-}$; and
- $a^{+} a^{-}=0$.

For $x \in A$, we define $|x|:=\left(x^{*} x\right)^{\frac{1}{2}}$. In particular, for $x \in A_{s a}$, $|x|=\left(x^{2}\right)^{\frac{1}{2}}$ and for $x \in A^{+},|x|=x$.

- $|a|=a^{+}+a^{-}$; and
- $\|a\|=\max \left\{\left\|a^{+}\right\|,\left\|a^{-}\right\|\right\}$.

Orthogonality in C^{*}-algebras

Properties of algebraic orthogonality in a C*-algebra:
Let A be a C^{*}-algebra and let $a, b, c \in A_{\text {sa }}$. Then
(1) $a \perp{ }^{a} 0$;
(2) $a \perp^{a} b$ implies $b \perp^{a} a$;
(3) $a \perp^{a} b$ and $a \perp^{a} c$ imply $a \perp^{a}(k b+c)$ for all $k \in \mathbb{R}$;
(4) If $a \perp^{a} b$ and if $|c| \leq|b|$, then $a \perp^{a} c$;
(0) For each $a \in A_{s a}$, there exist unique $a^{+}, a^{-} \in A^{+}$with $a^{+} \perp^{a} a^{-}$such that $a=a^{+}-a^{-}$.
(We also have $|a|=a^{+}+a^{-}$.)

Orthogonality in vector lattices

Let $\left(L, L^{+}\right)$be a vector lattice. We write $u \wedge v$ for $\inf \{u, v\}$ and $u \vee v$ for $\sup \{u, v\}$. We define $u^{+}:=u \vee 0, u^{-}:=(-u) \vee 0$ and $|u|:=u \vee(-u)$ for all $u \in L$. Then $u=u^{+}-u^{-}$and $|u|=u^{+}+u^{-}$. For $u, v \in L$, we say that u is orthogonal to v if $|u| \wedge|v|=0$. In this case, we write $u \perp^{\ell} v$.
Recall that $|u+v| \leq|u|+|v|$ and that

$$
u \wedge v=\frac{1}{2}\{u+v-|u-v|\}
$$

and

$$
u \vee v=\frac{1}{2}\{u+v+|u-v|\}
$$

for all $u, v \in L$.

Orthogonality in vector lattices

Properties of orthogonality in a vector lattice:
Let L be a vector lattice and let $u, v, w \in L$. Then
(1) $u \perp^{\ell} 0$;
(2) $u \perp^{\ell} v$ implies $v \perp^{\ell} u$;
(3) $u \perp^{\ell} v$ and $u \perp^{\ell} w$ imply $u \perp^{\ell}(k v+w)$ for all $k \in \mathbb{R}$;
(9) If $u \perp^{\ell} v$ and if $|w| \leq|v|$, then $u \perp^{\ell} w$;
(5) For each $u \in L$, there exist unique $u^{+}, u^{-} \in L^{+}$with $u^{+} \perp^{\ell} u^{-}$such that $u=u^{+}-u^{-}$.
(We also have $|u|=u^{+}+u^{-}$.)

Orthogonality in ordered vector spaces

Definition. Let $\left(V, V^{+}\right)$be a real ordered vector space. Assume that \perp is a binary relation in V such that for $u, v, w \in V$, we have
(1) $u \perp 0$;
(2) $u \perp v$ implies $v \perp u$;
(3) $u \perp v$ and $u \perp w$ imply $u \perp(k v+w)$ for all $k \in \mathbb{R}$;
(9) For each $u \in L$, there exist unique $u^{+}, u^{-} \in L^{+}$with $u^{+} \perp u^{-}$ such that $u=u^{+}-u^{-}$.
Let us put $u^{+}+u^{-}:=|u|$.
(5) If $u \perp v$ and if $|w| \leq|v|$, then $u \perp w$.

Then V is called an absolutely ordered vector space.

Orthogonality in ordered vector spaces

Proposition. Let V be an absolutely ordered space and let $u, v \in V$.
(1) $|u-v|=u+v$ if and only if $u, v \in V^{+}$with $u \perp v$.
(2) $u \perp v$ if and only if $|u \pm v|=|u|+|v|$.

Orthogonality in ordered vector spaces

Proposition. Let V be an absolutely ordered space and let $u, v \in V$.
(1) $|u-v|=u+v$ if and only if $u, v \in V^{+}$with $u \perp v$.
(2) $u \perp v$ if and only if $|u \pm v|=|u|+|v|$.

Theorem. Let V be an absolutely ordered space and let $u, v, w \in V$.
(1) $|u|=u$ if and only if $u \in V^{+}$.
(2) $|u| \pm u \in V^{+}$.
(3) $|k u|=|k||u|$ for all $k \in \mathbb{R}$.
(9) If $|u-v|=u+v$ and if $0 \leq w \leq v$, then $|u-w|=u+w$.
(5) If $|u-v|=u+v$ and $|u-w|=u+w$, then

$$
|u-|v \pm w||=u+|v \pm w|
$$

A substitute

Theorem. Let V be an absolutely ordered space. Then the following statements are equivalent:
(1) $|u+v| \leq|u|+|v|$ for all $u, v \in V$;
(2) V is a vector lattice.

A substitute

Theorem. Let V be an absolutely ordered space. Then the following statements are equivalent:
(1) $|u+v| \leq|u|+|v|$ for all $u, v \in V$;
(2) V is a vector lattice.

Definition. Let V be an absolutely ordered vector space. Then $w \in V$ is said to be an ortho-infimum of $u, v \in V$ if
(1) $w \leq u$ and $w \leq v$; and
(2) $(u-w) \perp(v-w)$.

A substitute

Theorem. Let V be an absolutely ordered space. Then the following statements are equivalent:
(1) $|u+v| \leq|u|+|v|$ for all $u, v \in V$;
(2) V is a vector lattice.

Definition. Let V be an absolutely ordered vector space. Then $w \in V$ is said to be an ortho-infimum of $u, v \in V$ if
(1) $w \leq u$ and $w \leq v$; and
(2) $(u-w) \perp(v-w)$.

Similarly, $x \in V$ is said to be an ortho-supremum of u and v, if
(1) $u \leq x$ and $v \leq x$; and
(2) $(x-u) \perp(x-v)$.

Orthogonality in ordered vector spaces

Theorem. Let V be an absolutely ordered vector space. For $u, v \in V$ we set

$$
u \dot{\wedge} v:=\frac{1}{2}\{u+v-|u-v|\}
$$

and

$$
u \dot{v} v:=\frac{1}{2}\{u+v+|u-v|\} .
$$

Then the ortho-infimum of $u, v \in V$ is uniquely determined as $u \dot{\wedge} v$ and the ortho-supremum of $u, v \in V$ is uniquely determined as $u \dot{\vee} v$.

Orthogonality in ordered vector spaces

Theorem. Let V be an absolutely ordered vector space. For $u, v \in V$ we set

$$
u \dot{\wedge} v:=\frac{1}{2}\{u+v-|u-v|\}
$$

and

$$
u \dot{\vee} v:=\frac{1}{2}\{u+v+|u-v|\} .
$$

Then the ortho-infimum of $u, v \in V$ is uniquely determined as $u \dot{\wedge} v$ and the ortho-supremum of $u, v \in V$ is uniquely determined as $u \dot{\vee} v$.

Theorem. In a vector lattice, the ortho-infimum is the infimum and the ortho-supremum is the supremum.

The preamble
Algebraic orthogonality in C*-algebras
(Order theoretic) orthogonality in vector lattices
Generalizing order theoretic orthogonality
Orthogonality and norm
References

Orthogonality and norm

Orthogonality and norm

Definition. Let V be a real normed linear space and let $u, v \in V$. For $1 \leq p \leq \infty$, we say that u is p-orthogonal to $v,\left(u \perp_{p} v\right)$, if for all $k \in \mathbb{R}$, we have

$$
\|u+k v\|= \begin{cases}\left(\|u\|^{p}+\|k v\|^{p}\right)^{\frac{1}{p}}, & \text { if } 1 \leq p<\infty \\ \max (\|u\|,\|k v\|), & \text { if } p=\infty\end{cases}
$$

Orthogonality and norm

Definition. Let V be a real normed linear space and let $u, v \in V$.
For $1 \leq p \leq \infty$, we say that u is p-orthogonal to $v,\left(u \perp_{p} v\right)$, if for all $k \in \mathbb{R}$, we have

$$
\|u+k v\|= \begin{cases}\left(\|u\|^{p}+\|k v\|^{p}\right)^{\frac{1}{p}}, & \text { if } 1 \leq p<\infty \\ \max (\|u\|,\|k v\|), & \text { if } p=\infty\end{cases}
$$

Definition Let $1 \leq p \leq \infty$ and $S \subset V$. We say that \perp_{p} is additive in S, if for $u, v, w \in S$ with $u \perp_{p} v$ and $u \perp_{p} w$, we have $u \perp_{p}(v+w)$.

Orthogonality and norm

Definition. Let V be a real normed linear space and let $u, v \in V$.
For $1 \leq p \leq \infty$, we say that u is p-orthogonal to $v,\left(u \perp_{p} v\right)$, if for all $k \in \mathbb{R}$, we have

$$
\|u+k v\|= \begin{cases}\left(\|u\|^{p}+\|k v\|^{p}\right)^{\frac{1}{p}}, & \text { if } 1 \leq p<\infty \\ \max (\|u\|,\|k v\|), & \text { if } p=\infty\end{cases}
$$

Definition Let $1 \leq p \leq \infty$ and $S \subset V$. We say that \perp_{p} is additive in S, if for $u, v, w \in S$ with $u \perp_{p} v$ and $u \perp_{p} w$, we have $u \perp_{p}(v+w)$.
We say that S is a p-orthogonal set in V, if $u \perp_{p} v$ whenever $u, v \in S$ and $u \neq v$.

Orthogonality and norm

Definition. Let V be a real normed linear space and let $u, v \in V$.
For $1 \leq p \leq \infty$, we say that u is p-orthogonal to $v,\left(u \perp_{p} v\right)$, if for all $k \in \mathbb{R}$, we have

$$
\|u+k v\|= \begin{cases}\left(\|u\|^{p}+\|k v\|^{p}\right)^{\frac{1}{p}}, & \text { if } 1 \leq p<\infty \\ \max (\|u\|,\|k v\|), & \text { if } p=\infty\end{cases}
$$

Definition Let $1 \leq p \leq \infty$ and $S \subset V$. We say that \perp_{p} is additive in S, if for $u, v, w \in S$ with $u \perp_{p} v$ and $u \perp_{p} w$, we have $u \perp_{p}(v+w)$.
We say that S is a p-orthogonal set in V, if $u \perp_{p} v$ whenever $u, v \in S$ and $u \neq v$.
We say that S is total in V, if the linear span of S is dense in V.

Geometric orthogonality in ℓ_{p}-spaces

Theorem. Let $1 \leq p<\infty$. A Banach space V is isometrically isomorphic to $\ell_{p}(I)$, if and only if ${L_{p}}$ is additive in V and there exists a subset U of V of cardinality I such that U is p-orthonormal and is total in V. For $p=\infty$, we need to replace $\ell_{\infty}(I)$ by $c_{0}(I)$.

Geometric orthogonality in ℓ_{p}-spaces

Definition Let $\left(V, V^{+},|\cdot|\right)$ be a real ordered space and let $\|\cdot\|$ be a norm on V. Then $\left(V, V^{+},\|\cdot\|\right)$ is said to be an order smooth p-normed space, for $1 \leq p \leq \infty$, if it satisfies the following conditions:
(O.p.1): For $u \leq v \leq w$ in U, we have

$$
\|v\| \leq \begin{cases}\left(\|u\|^{p}+\|w\|^{p}\right)^{\frac{1}{p}} & \text { if } 1 \leq p<\infty \\ \max (\|u\|,\|w\|) & \text { if } p=\infty\end{cases}
$$

(O.p.2): if $v \in V$ and $\epsilon>0$, then there exist $v_{1}, v_{2} \in V^{+}$with $v=v_{1}-v_{2}$ such that

$$
\|v\|+\epsilon \geq \begin{cases}\left(\left\|v_{1}\right\|^{p}+\left\|v_{2}\right\|^{p}\right)^{\frac{1}{p}} & \text { if } 1 \leq p<\infty \\ \max \left(\left\|v_{1}\right\|,\left\|V_{2}\right\|\right) & \text { if } p=\infty\end{cases}
$$

Note that an order unit space is an order smooth ∞-normed space.

Geometric orthogonality in ℓ_{p}-spaces

Theorem. Let $1 \leq p<\infty$ and assume that $\left(V, V^{+},\|\cdot\|\right)$ be a norm complete order smooth p-normed space. If \perp_{p} is additive in V^{+}and if U is a total p-orthonormal set in V^{+}, then V is isometrically order isomorphic to $\ell_{p}(I)$ where I is the cardinality of U. For $p=\infty$ we need to replace $\ell_{\infty}(I)$ by $c_{0}(I)$.

Orthogonality in C*-algebras

Example Consider the 3-dimensional real sequence space $V=\ell_{\infty}^{3}$. We have $u=\left\langle 1, \frac{1}{2}, 0\right\rangle$ and $v=\left\langle 0, \frac{1}{3}, 1\right\rangle$ in V such that $u \perp_{\infty} v$. However, $u v \neq 0$ in the coordinate-wise multiplication.

Orthogonality in C*-algebras

Example Consider the 3-dimensional real sequence space $V=\ell_{\infty}^{3}$. We have $u=\left\langle 1, \frac{1}{2}, 0\right\rangle$ and $v=\left\langle 0, \frac{1}{3}, 1\right\rangle$ in V such that $u \perp_{\infty} v$. However, $u v \neq 0$ in the coordinate-wise multiplication.
Definition. Let A be a C^{*}-algebra. For $a, b \in A^{+}$, we say that a is absolutely ∞-orthogonal to $b\left(a \perp_{\infty}^{a} b\right)$, if $[0, a] \perp_{\infty}[0, b]$.

Orthogonality in C*-algebras

Example Consider the 3-dimensional real sequence space $V=\ell_{\infty}^{3}$. We have $u=\left\langle 1, \frac{1}{2}, 0\right\rangle$ and $v=\left\langle 0, \frac{1}{3}, 1\right\rangle$ in V such that $u \perp_{\infty} v$. However, $u v \neq 0$ in the coordinate-wise multiplication.
Definition. Let A be a C^{*}-algebra. For $a, b \in A^{+}$, we say that a is absolutely ∞-orthogonal to $b\left(a \perp_{\infty}^{a} b\right)$, if $[0, a] \perp_{\infty}[0, b]$. More generally, if $\left(V, V^{+},\|\cdot\|\right)$ is an order smooth p-normed space for $1 \leq p \leq \infty$, then for $u, v \in V^{+}$, we say that u is absolutely p-orthogonal to $v\left(u \perp_{p}^{a} v\right)$, if $[0, u] \perp_{p}[0, v]$.

Orthogonality in C*-algebras

Example Consider the 3-dimensional real sequence space $V=\ell_{\infty}^{3}$. We have $u=\left\langle 1, \frac{1}{2}, 0\right\rangle$ and $v=\left\langle 0, \frac{1}{3}, 1\right\rangle$ in V such that $u \perp_{\infty} v$. However, $u v \neq 0$ in the coordinate-wise multiplication.
Definition. Let A be a C^{*}-algebra. For $a, b \in A^{+}$, we say that a is absolutely ∞-orthogonal to $b\left(a \perp_{\infty}^{a} b\right)$, if $[0, a] \perp_{\infty}[0, b]$. More generally, if $\left(V, V^{+},\|\cdot\|\right)$ is an order smooth p-normed space for $1 \leq p \leq \infty$, then for $u, v \in V^{+}$, we say that u is absolutely p-orthogonal to $v\left(u \perp_{p}^{a} v\right)$, if $[0, u] \perp_{p}[0, v]$.

Theorem. Let a and b be any two positive elements of a C^{*}-algebra A. Then $a \perp^{a} b$ if and only if $a \perp_{\infty}^{a} b$.

Geometric orthogonality in ordered vector spaces

Let $\left(V, V^{+},|\cdot|\right)$ be an absolutely ordered space and let $\|\cdot\|$ be a norm on V. Then $\left(V, V^{+},|\cdot|,\|\cdot\|\right)$ is said to be an absolute order smooth p-normed space, for $1 \leq p \leq \infty$, if it satisfies the following conditions:
(O.p.1): For $u \leq v \leq w$ in V, we have

$$
\|v\| \leq \begin{cases}\left(\|u\|^{p}+\|w\|^{p}\right)^{\frac{1}{p}} & \text { if } 1 \leq p<\infty \\ \max (\|u\|,\|w\|) & \text { if } p=\infty\end{cases}
$$

0. \perp_{p}.1): if $u, v \in V^{+}$with $u \perp v$, then $u \perp_{p}^{a} v$; and
O. \perp_{p}.2): if $u, v \in V^{+}$with $u \perp_{p}^{a} v$, then $u \perp v$.

Geometric orthogonality in ordered vector spaces

Let $\left(V, V^{+},|\cdot|\right)$ be an absolutely ordered space and let $\|\cdot\|$ be a norm on V. Then $\left(V, V^{+},|\cdot|,\|\cdot\|\right)$ is said to be an absolute order smooth p-normed space, for $1 \leq p \leq \infty$, if it satisfies the following conditions:
(O.p.1): For $u \leq v \leq w$ in V, we have

$$
\|v\| \leq \begin{cases}\left(\|u\|^{p}+\|w\|^{p}\right)^{\frac{1}{p}} & \text { if } 1 \leq p<\infty \\ \max (\|u\|,\|w\|) & \text { if } p=\infty\end{cases}
$$

0. \perp_{p}.1): if $u, v \in V^{+}$with $u \perp v$, then $u \perp_{p}^{a} v$; and
O. \perp_{p}.2): if $u, v \in V^{+}$with $u \perp_{p}^{a} v$, then $u \perp v$.

Theorem. Let $\left(V, V^{+},|\cdot|,\|\cdot\|\right)$ be a norm complete absolute order smooth ∞-normed space. If U is a total ∞-orthonormal set in V^{+}, then V is isometrically order isomorphic to $c_{0}(I)$ where I is the cardinality of U.

Geometric orthogonality in ordered vector spaces

Theorem. Let (V, e) be an order unit space. The following two sets of conditions are equivalent:
(1) V is an absolutely ordered vector space in which $\perp=\perp_{\infty}^{a}$ on V^{+}.
(2) V satisfies the following conditions:
(1) For each $u \in V$, the exists a unique pair $u^{+}, u^{-} \in V^{+}$with $u^{+} \perp_{\infty}^{a} u^{-}$such that $u=u^{+}-u^{-}$; Set $|u|:=u^{+}+u^{-}$.
(2) If $u, v, w \in V^{+}$with $u \perp_{\infty}^{a} v$ and $u \perp_{\infty}^{a} w$, then we have $u \perp_{\infty}^{a}|v \pm w|$.
In this case, $(V,|\cdot|, e)$ is called an absolute order unit space.

The preamble
Algebraic orthogonality in C*-algebras
(Order theoretic) orthogonality in vector lattices
Generalizing order theoretic orthogonality
Orthogonality and norm
References

A counter example

Anil K. Karn

A counter example

Theorem. Let V be a real normed linear space. Consider $V^{(\cdot)}:=V \times \mathbb{R}$ and put $V^{(\cdot)+}:=\{(v, \alpha):\|v\| \leq \alpha\}$. Then $\left(V^{(\cdot)}, V^{(\cdot)+}\right)$ becomes a real ordered space. For $(v, \alpha) \in V^{(\cdot)}$, we define

$$
|(v, \alpha)|= \begin{cases}(v, \alpha), & \text { if }(v, \alpha) \in V^{(\cdot)+} \\ -(v, \alpha), & \text { if }(v, \alpha) \in-V^{(\cdot)+} \\ \left(\frac{\alpha}{\|v\|} v,\|v\|\right), & \text { if }(v, \alpha) \notin V^{(\cdot)+} \cup-V^{(\cdot)+}\end{cases}
$$

Then $\left(V^{(\cdot)}, V^{(\cdot)+},|\cdot|\right)$ is an absolutely ordered space if and only if V is strictly convex.
(1) $|u|=u$ if and only if $u \in V^{+}$.
(2) $|u| \pm u \in V^{+}$.
(3) $|k u|=|k||u|$ for all $k \in \mathbb{R}$.
(9) If $|u-v|=u+v$ and $|u-w|=u+w$, then $|u-|v \pm w||=u+|v \pm w|$.
(1) $|u|=u$ if and only if $u \in V^{+}$.
(2) $|u| \pm u \in V^{+}$.
(3) $|k u|=|k||u|$ for all $k \in \mathbb{R}$.
(9) If $|u-v|=u+v$ and $|u-w|=u+w$, then $|u-|v \pm w||=u+|v \pm w|$.
(6) If $|u-v|=u+v$ and if $0 \leq w \leq v$, then $|u-w|=u+w$.

A counter example

Let V be a strictly convex normed linear space and consider the corresponding absolutely ordered space $\left(V^{(\cdot)}, V^{(\cdot)+},|\cdot|\right)$ is obtained by adjoining an order unit to V. We denote it by $V^{(\infty)}$.

For $(u, \alpha),(v, \beta) \in V^{(\infty)}$, we define

$$
(u, \alpha) \circ(v, \beta):=\left(\alpha v+\beta u, \alpha \beta+\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}\right)\right) .
$$

Theorem. The binary operation \circ is bilinear in $V(\infty)$ if and only if V is a Hilbert space. In this case, $V^{(\infty)}$ is unitally Jordan isomorphic to a unital JC-algebra.

A counter example

Let V be a strictly convex normed linear space and consider the corresponding absolutely ordered space $\left(V^{(\cdot)}, V^{(\cdot)+},|\cdot|\right)$ is obtained by adjoining an order unit to V. We denote it by $V^{(\infty)}$.

For $(u, \alpha),(v, \beta) \in V^{(\infty)}$, we define

$$
(u, \alpha) \circ(v, \beta):=\left(\alpha v+\beta u, \alpha \beta+\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}\right)\right) .
$$

Theorem. The binary operation \circ is bilinear in $V(\infty)$ if and only if V is a Hilbert space. In this case, $V^{(\infty)}$ is unitally Jordan isomorphic to a unital JC-algebra.

What is in the future?

Thank you very much for your attention!

References

(RK51) R. V. Kadison, Order Properties of Bounded Self-Adjoint Operators, Proc. A. M. S., 2(3) (1951), 505-510.
(AK14) A. K. Karn, Orthogonality in ℓ_{p}-spaces and its bearing on ordered normed spaces, Positivity 18 (2014), 223-234.
(AK16) A. K. Karn, Orthogonality in C^{*}-algebras. Positivity 20 (2016), 607-620.
(AK18) A. K. Karn, Algebraic orthogonality and commuting projections in operator algebras. Acta. Sci. Math. (Szeged), 84 (2018), 323-353.
(AK21) A. K. Karn, A generalization of spin factors, Acta. Sci. Math. (Szeged), 87 (2021) 551-569.
(SS51) S. Sherman, Order in operator algebras, Amer. J. Math., 73(1) (1951), 227-232.

