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1. Definitions

Surfaces and Embeddings

Surface S: closed, connected 2-manifold;

Classification of Surfaces:
(i) Orientable Surfaces: Sg , g = 0, 1, 2, · · · ,

v + f − e = 2− 2g

(ii) Nonorientable Surfaces: Nk , k = 0, 1, 2, · · · ,
v + f − e = 2− k

Embeddings of a graph X in the surface is a continuous one-to-one
function i : X → S .

2-cell Embeddings: each region is homemorphic to an open disk.



Topological Map M: a 2-cell embedding of a graph into a
surface. The embedded graph X is called the underlying graph of
the map.

Automorphism of a map M : an automorphism of the underlying
graph X which can be extended to self-homeomorphism of the
surface.

Orientation-Preserving Automorphism of an orientably map M :
an automorphism of Preserving Orientation of the map

Automorphism group Aut(M) : all the automorphisms of the map
M.

Orientation-preserving automorphisms group Aut+M of M: all
the oientation-preserving automorphism.



Flag: incident vertex-edge-face triple

Arc: incident vertex-edge pair

Remark: Aut(M) acts semi-regularly on the flags of X .

Remark: Aut+(M) acts semi-regularly on the arcs of X .



Regularity of Maps

Regular Map: Aut(M) acts regularly on the flags.

Orientably Regular Map: Aut+(M) acts regularly on the arcs.

Reflexible Map: Orientably Regular, admiting orientation-reversing
automorphisms

Chiral Map: Orientably Regular, without any orientation-reversing
automorphisms



Regular Map
=Nonorientably Regular Map
∪ Reflexible Orientably Regular Map

Orientably Regular Map
=Reflexible Orientably Regular Map
∪ Chiral Orientably Regular Map



Combinatorial and Algebraic Map

Combinatorial Orientably Map:

graph X = (V ,D), with vertex set V = V (X ), dart (arc) set
D = D(X ).

arc-reversing involution L: interchanging the two arcs underlying
every given edge.

rotation R: cyclically permutes the arcs initiated at v for each
vertex v ∈ V (X ).

Map M with underlying graph X :
the triple M =M(X ; R, L).



Remarks:

Monodromy group Mon(M) := 〈R, L〉 acts transitively on D.

Given two maps

M1 =M(X1; R1, L1), M2 =M(X2; R2 L2),

Map isomorphism: bijection φ : D(X1)→ D(X2) such that

L1φ = φL2,R1φ = φR2

Automorphism φ of M : if M1 =M2 =M;

Automorphism group: Aut(M)



Algebraic Orientably Maps:

Orientably Regular Map:

G = Aut(M) = 〈r , l〉 ∼= Mon(M) = 〈R, L〉

M =M(G ; r , l)

D = G , Mon(M) = L(G ), Aut(M) = R(G )

the orbits of 〈r〉, 〈l〉 and 〈rl〉 are vertices, edges and faces,
with the natural inclusion relation



ORM without multiple edges

A regular map with multiple edges projects onto another one with
a simple underlying graph that has the same set of vertices and the
same adjacency relation.

Regular maps with multiple edges can be described as some
“extensions” of regular embeddings of simple graphs.



G = 〈r , `〉 →

G = G/K , K = 〈r〉G—core of 〈r〉 in G

To determine the ORM with multiple edges from an ORM of a
simple graph is essentially a group cyclic extension problem.

Here we just consider the ORM without multiple edges



2. Regular maps of given order

Set v=order of graphs

ORM with given order v ⇔ ORM with given graphs

because one may pick up the symmetric graphs of order v with a
arc-regular subgroup.



1. v = p =a prime:

G = 〈a, b
∣∣ aq = bs = 1, ab = at〉,

M =M(G ; be , (b
s
2 )a), e ∈ Z∗

s .

S.F. Du, J.H. Kwak and R. Nedela, Regular embeddings of
complete multipartite graphs, EJC 26(2005), 437–452



2. v = pq=a product of two primes

ORM: S.F. Du, J.H. Kwak and R. Nedela, A classification of
regular embeddings of graphs of order a product of two primes,
JAC 19(2004), 123–141.

NORM: S.F.Du, J.H. Kwak and F.R. Wang, published in two
papers: DM and Sciences in China.



3. v = p3:

Motivations:

(a) To understand permutation groups of degree p3 in more details
(subgroup structure) is still a difficult problem.

(b) Classification for symmetric graphs of order p3 is still open.



(c) Complete classification for semi-symmetric symmetric graphs
order 2p3 is still open,

only partial results are given, that is Aut(X ) acts infaithfully on
one bipart, see

(i) L. Wang, S.F. Du, X.W. Li, A Class of Semisymmetric Graphs,
AMC, 7 (2014) 40 C53

(ii) L. Wang , S. F. Du, SEMISYMMETRIC GRAPHS OF ORDER
2p3, EJC, 36 (2014) 393 C405

(iii) S.F. Du, L. Wang, A Classification of Semisymmetric Graphs
of Order 2p3: Unfaithful Case, JAC, DOI 10.1007/s10801
-014-0536-3 (28 pages)

Aut(X ) acts faithfully on each bipart: that is a hard part for this
work.



(d) For ORM of order p3, we may do that, because we do have a
particular subgroup of degree p3, that is Aut(M) = 〈r , `〉, which is
an arc-regular subgroup of the graph.

(e) Many recent results on ORM can help us to do this work.



3. ORM of order p3

Notation:

Γ=a connected simple graph of order p3 where p is prime and of
valency n

M=an ORM of G

G = 〈r , `〉=the orientation preserving group of M

`2 = 1, 〈r〉 = Gv for a vertex v in V (Γ).

P =a Sylow subgroup of G

N=a minimal normal subgroup of G

B= the orbits of N on the vertices

K = be the kernel of G acting on B and G = G/K .



3.1 Group structure for G

Theorem

(1) |P| = p3, p4 or p5.

(2) G = P o 〈rm〉 where m = |〈r〉 ∩ P|.
(3) N = Zk

p , k = 1, 2, 3, and either

(3.1) N is transitive on V and G is a primitive affine group; or
(3.2) N induce a blocks of length p such that N ∼= Zp ≤ Z (P) and

either K ∼= Zp o Zt for some t ∈ Z∗
p ; or K ∼= Z2

p.



Remark: From G = P o 〈rm〉, we need to

study the split cyclic extension of P by Zn1 where n = mn1 for
m = P ∩ 〈r〉 and m = 1, p, p2, (n1, p) = 1.

⇐⇒

to determine the congugacy classes of cyclic subgroups of order
prime to p in Aut(P), noting that |P| = p3, p4 or p5



3.2 |P | = p5

This case is quite complicated. Fortunately, it becames more easy,
because we may employ many known results !

|P| = p5 =⇒ Γ is a p-partite graph such that any two connected
biparts is complete bipartite graph.



Recalling some known results:

Km[nK1] =the complete multipartite graph with m parts, while
each part contains n vertices.

(i) m = 1: Complete graphs:

ORM:

N.L. Biggs, Classification of complete maps on orientable surfaces,
Rend. Mat. (6) 4 (1971), 132-138.
L.D. James and G.A. Jones, Regular orientable imbeddings of
complete graphs, J. Combin. Theory Ser. B 39 (1985), 353–367.

NORM:

S. E. Wilson, Cantankerous maps and rotary embeddings of Kn,
JCTB 47 (1989), 262–273.



(ii) m = 2 : Complete bipartite graphs K2nK1 = Kn,n:

ORM:

Survey paper: G.A. Jones, Maps on surfaces and Galois groups,
Math. Slovaca 47 (1997), 1-33.

n = pk , p is odd prime:
G.A. Jones, R. Nedela and M. Škoviera, Regular embeddings of
Kn,n where n is an odd prime power, EJC 28(2007), 1863-1875.

n = 2k ,
S.F. Du, G.A.Jones, J.H. Kwak, R. Nedela and M. Škoviera,
Regular embeddings of Kn,n where n is a power of 2. I: Metacyclic
case, EJC 28 (2007), 1595-1608.

S.F. Du, G.A.Jones, J.H. Kwak, R. Nedela and M. Škoviera,
Regular embeddings of Kn,n where n is a power of 2. II:
Nonmetacyclic case, EJC 31( 7), 1946-1956. 2010.



Any n:

G.A. Jones, Regular embeddings of complete bipartite graphs:
classification and enumeration,Proc. London Math. Soc.
101(2010), 427-453.



Other partial results:

General approach: R. Nedela, M. Škoviera and A. Zlatoš,
Regular embeddings of complete bipartite graphs, DM 258(2002)
379-381.

n = pq J.H. Kwak and Y.S. Kwon, Regular orientable embeddings
of complete bipartite graphs, JGT 50(2005), 105-122.

Reflexible maps:, J. H. Kwak and Y. S. Kwon, Classification of
reflexible regular embeddings and self-Petrie dual regular
embeddings of complete bipartite graphs, DM 308(2008)
2156-2166.

(n, φ(n)) = 1: G.A. Jones, R. Nedela and M. Škoviera, G. A.
Jones, R. Nedela and M. Škoviera, Complete bipartite graphs with
a unique regular embedding, JCTB 98(2008), 241-248.



NORM:

J.H.Kwak and Y.S.Kwon, Classification of nonorientable regular
embeddings complete bipartite graphs, JCTB 101(2011)
191-205.



(iii). m ≥ 3: Complete multipartite graphs Km[n]:

n = p : S. F. Du, J. H. Kwak, R. Nedela, Regular embeddings of
complete multipartite graphs, EJC 26(2005), 505-519.

m ≥ 3 and n ≥ 2:

S.F.Du and J.Y.Zhang, A Classification of orientably-regular
embeddings of complete multipartite graphs, EJC, 36(2014),
437-452.

J.Y.Zhang and S.F.Du, On the orientable regular embeddings of
complete multipartite graphs, EJC 33(2012), 1303–1312.



General question:

For any connected graph X of order m, let X [nK1] be the
m-partite graph, while each part contains n vertices and the block
graph induced by the partition is isomorphic to X . Suppose that X
has a RM. Classify the RM of X [nK1].



X is of prime order:

Y.H.Zhu and S.F.Du, Orientably-regular embeddings of a class of
multipartite graphs, to appear in Science in China, 2014.

This paper depends heavily on classification of ORM of Km[nK1]
mentioned as above.



Theorem

Suppose that |P| = p5. Then G, M and the genus g are given by

(1) p = 2, n = 4 :

G1
∼= 〈a, b, x |a4 = b4 = x2 = 1, [a, b] = 1, ax = b〉,

M1 =M(G1; a, x), g = 3.

(2) p = 2, n = 4 :

G2
∼= 〈a, b, x |a4 = b4 = x2 = 1, [b, a] = a2b2,

[a2, b] = [b2, a] = 1, ax = b〉,

M2 =M(G2; a, x), g = 1.



(3) p = 3, n = 18 :

G3
∼= 〈a, b|a18 = b2 = c27 = 1, c = a9b, ca = c2〉,

M3(j) =M(G3; aj , b) where j ∈ Z∗
18, g = 397.

(4) p = 3, n = 18 :

G4(i , j) ∼= 〈a, b|a18 = b2 = 1, a2 = x , xb = y , [x , y ] = x3iy−3i ,
ya = x−1y−1, (ab)3 = x3jy−3j〉,

where (i , j) = (0, 0), (0, 1), (1, 0), (1, 1) or (1,−1);

M4(i , j , l) =M(G4(i , j); al , b),

where l = 1 for (i , j) = (0, 0) and l = ±1 for the other cases.
g = 55 for (i , j , l) = (0, 0, 1) and (1, 0,±1);
g =163 for (i , j , l) = (0, 1,±1), and (1,±1,±1).



(5) p ≥ 5, n = p2s, s is a even divisor of p − 1 and e is of order
sp2 in Z∗

p3 :

G5(p, s) ∼= 〈a, x |asp
2

= xp3 = 1, ax = ae〉,

M5(p, s, j) =M(G1; aj , a
p2s
2 c) where j ∈ Z∗

p2s ,

g = 1 + 1
4p3(sp2 − 4) for 4

∣∣ s; g = 1 + 1
4p3(sp2 − 4) for 4 - s.

Moreover, the above groups and maps are uniquely determiend by
the given parameters.



3.3 |P | = p3

Theorem

Suppose that |P| = p3. Then G and M are given by

(1) Define three affine subgroups and the corresponding maps:

(1.1) G11(p, n) = T : 〈x〉,

where x = ||e, dλ, f λ; f , e + dε, f ε+ dλ; d , f , e + dε||,

where p ≥ 2, n
∣∣ p3 − 1 but n - p2 − 1; and e + f β + dβ2 is a

fixed element of order n in F∗
p3 .

M11(p, n, i , j) =M(G11(p, n); x i , t(1,0,0)x
jn
2 ),

where i ∈ Z∗
n/(Z∗

n)3+, j = 0 for p = 2, and j = 1 for p ≥ 3.



(1.2) G12(p, h, d) = T :〈x〉,

x = ||1, 1, 0; 1, 0, 0; 0, 0, 1|| for p = 2 and n = 3;

x = ||e, f θ, 0; f , e, 0; 0, 0, d || for p ≥ 3,

where (e + f α, d) ∈ F∗
p2 × F∗

p such that

(−1,−1) ∈ 〈(e + f α, d)〉 and e + f α is a fixed element of
order h, where h

∣∣ p2 − 1 but h - p − 1, and set n = [h, |d |].

M12(p, h, d , i , j) =M(G12(p, h, d); x i , t(1,0,1)x
jn
2 ),

where i ∈ Z∗
n/(Z∗

n)2+, j = 0 for p = 2, and j = 1 for p ≥ 3.



(1.3) G13(p, t1, t2, t3) = T :〈x〉,

x = [t1; t2; t3],

where p ≥ 5, let (t1, t2, t3) ∈ Z∗
p × Z∗

p × Z∗
p such that

(−1,−1,−1) ∈ 〈(t1, t2, t3)〉 and t1, t2 and t3 are distinct
integer, and set n = [|t1|, |t2|, |t3|] ≥ 4.

M13(p, t1, t2, t3, i) =M(G13(p, t1, t2, t3); x i , t(1,1,1)x
n
2 ),

where i ∈ Z∗
n/(Z∗

n)2+ if tki1 = ti1 , tki2 = ti3 and tki3 = ti2 for

some k ∈ Z∗
n; i ∈ Z∗

n/(Z∗
n)3+ if tki1 = ti2 , tki2 = ti3 and tki3 = ti1

for some k ∈ Z∗
n; and i ∈ Z∗

n other cases, where
{i1, i2, i3} = {1, 2, 3}.



(2) G2(p, t1, t2) = 〈a, b, x |ap2 = bp = xn = 1, [a, b] = 1, ax =
at1 , bx = bt2〉,

where p ≥ 5, let (t1, t2) ∈ Z∗
p2 × Z∗

p such that |t1|
∣∣ (p − 1),

(−1,−1) ∈ 〈(t1, t2)〉 and t1 6≡ t2(mod p); and set
n = [|t1|, |t2|] ≥ 4.

M2(p, t1, t2, i) =M(G2(p, t1, t2); x i , abx
n
2 ),

where i ∈ Z∗
n.



(3) G3(p, n) = 〈a, x |ap3 = xn = 1, ax = at〉,

where p ≥ 3, n is a even divisor of p − 1 with n ≥ 2, and let t
be any fixed element of order n in Z∗

p3 .

M3(p, n, i) =M(G3(p, n); x i , ax
n
2 ),

where i ∈ Z∗
n.



(4) Define two groups:

(4.1) G41(p, t1, t2) = 〈a, b, x |ap = bp = cp = xn = 1, [a, b] = c , ax =
at1 , bx = bt2 , cx = c t1t2〉,

where p ≥ 5, let (t1, t2) ∈ Z∗
p × Z∗

p such that
(−1,−1) ∈ 〈(t1, t2)〉 and t1 6= t2, and set n = [|t1|, |t2|] ≥ 4.

M41(p, t1, t2, i) =M(G41(p, t1, t2); x i , abc
p−1
2 x

n
2 ),

where i ∈ Z∗
n/(Z∗

n)2+ if tk1 = t2 and tk2 = t1 for some k ∈ Z∗
n;

i ∈ Z∗
n for other cases.



(4.2) G42(p, n) = 〈a, b, x |ap = bp = cp = xn = 1, [a, b] = c, ax =
ae1bf1 , bx = ae2bf2 , cx = c〉,

(e1, f1, e2, f2) = (1, 1, 1, 0) for p = 2 and n = 3;

(e1, f1, e2, f2) = (e, f θ, f , e) for p ≥ 3,

where n
∣∣ p2 − 1 but n - p − 1, e + f α is a fixed element of

order n in F∗
p2 .

M42(p, n, i , j) =M(G42(p, n); x i , ac
jef θ(1−e+f )

4(e−1) x
jn
2 ),

where i = ±1 and j = 0 for p = 2, or i ∈ Z∗
n ∩ {1, 2, · · · , n2}

and j = 1 for p ≥ 3.



3.4 |P | = p4

Theorem

Suppose that |P| = p4. Then G and M are given by

(1) G1(p, h) = 〈a, b, x |ap3 = bp = xh = 1, ab = a1+p2 , ax =
ae , bx = b〉,

where p ≥ 3, n = ph and h any even divisor of p − 1, and let
e be any fixed element of order h in Z∗

p2 .

M1(p, h, i , j) =M(G1(p, h); bix j , ax
h
2 ),

where i ∈ Z∗
p and j ∈ Z∗

h.



(2) G2(p, h) = 〈a, b, x |ap2 = bp = cp = xh = 1, [a, b] = c , [c , a] =
[b, c] = 1, ax = ae , bx = b〉.

where p ≥ 3, n = ph and h ≥ 2 is an even divisor p − 1, and
let e be any fixed element of order h in Z∗

p2 .

M2(p, h, i) =M(G2(p, e); bx i , acx
h
2 ),

where i ∈ Z∗
h.



(3) G3(p, t1, t2) = 〈a, b, c, x |ap2 = bp = cp = xh = 1, ab =
a1+p, [a, c] = [b, c] = 1, ax = at1 , bx = b, cx = ct2〉,

where p ≥ 5, n = ph and let h
∣∣ p − 1, let (t1, t2) ∈ Z∗

p2 × Z∗
p

such that |t1| = h, t1 6= t2 and 〈(t1, t2)〉 contains (−1,−1).

M3(p, t1, t2, i , j) =M(G3(p, t1, t2); bix j , acx
h
2 ),

where i ∈ Z∗
p and j ∈ Z∗

h.



(4) G4(p, t1, t2) = 〈a, b, d , x |ap = bp = cp = dp = xh =
1, [a, b] = c , [a, c] = [b, c] = [a, d ] = [b, d ] = 1, ax = a, bx =
bt1 , dx = d t2〉,

where p ≥ 5, n = ph, let (t1, t2) ∈ Z∗
p × Z∗

p such that

t1 = θ
p−1
h , t1 6= t2 and 〈(t1, t2)〉 contains (−1,−1), let

h = [|t1|, |t2|] with h ≥ 4 is even.

M4(p, t1, t2, i) =M(G4(p, t1, t2); ax i , bdx
h
2 ),

where i ∈ Z∗
h.



(5) G5(p, h) = 〈a, b, x |ap2 = bp = cp = xh = 1, [a, b] = c , [a, c] =
1, [c , b] = aip, ax = at , bx = b〉,

where p ≥ 3 and let t be any fixed element of order h in Z∗
p2 .

M5(p, h, j , k) =M(G5(p, h); bjxk , ax
h
2 ),

where j ∈ Z∗
p ∩ {1, 2, · · · ,

p−1
2 } and k ∈ Z∗

h.



(6) G6(p, t1, t2, t3) = 〈a, b, x |ap2 = bp = cp = xh = 1, [a, b] =

c, [c , a] = ap, [c, b] = 1, ax = at1ct3 , bx = bt2c
1−t2
2 〉,

t1 6≡ t2(mod p), (−1,−1) ∈ 〈(t1, t2)〉 and
th1 −

pht3
2 ≡ 1(mod p2).

M6(p, t1, t2, t3, i , j , k) =

M(G6(p, t1, t2, t3); c ix j , abkc
−k− t3

1−t1 x
h
2 ),

where i , k ∈ Z∗
p and j ∈ Z∗

h.



(7) Define three affine subgroups and the corresponding maps:

(7.1) G71(p, t) = 〈a, b, x
∣∣ ap = bp = cp = dp = xh = 1, [a, b] =

c , [c , a] = 1, [c , b] = d , ax = at , bx = b〉,

where p ≥ 5 and let t be any fixed element of order h in Z∗
p;

M(p, t, i) =M(G71(p, t); bx i , ax
h
2 ),

where i ∈ Z∗
p.



(7.2) G72(p, t) = 〈a, b, x
∣∣ ap = bp = cp = dp = xh = 1, [a, b] =

c , [c, a] = 1, [c, b] = d , ax = a, bx = bt〉,

where p ≥ 5 and let t be any fixed element of order h in Z∗
p;

M72(p, t, i) =M(G72(p, t); ax i , bx
h
2 ),

where i ∈ Z∗
h.



(7.3) G73(p, t1, t2) = 〈a, b, x
∣∣ ap = bp = cp = dp = xh =

1, [a, b] = c , [c, a] = 1, [c , b] = d , ax = at1c
t1−1
2 , bx = bt2〉,

where p ≥ 5 and let (t1, t2) ∈ Z∗
p × Z∗

p such that
t1t2 ≡ 1(mod p), t1 6= t2 and (−1,−1) ∈ 〈(t1, t2)〉;

M73(p, t1, t2, i , j) =M(G73(p, t1, t2), c ix j , abx
h
2 ),

where i ∈ Z∗
p and j ∈ Z∗

h.



(8) Define two subgroups and the corresponding maps:

(8.1) G81(2, 2) = 〈a, b
∣∣ a8 = b2 = 1, ab = a−1〉

M81(2, 2) =M(G81(2, 2), b, ab).

(8.2) G82(2, 2) = 〈a, b, c
∣∣ a4 = b2 = c2 = [a, c] = [b, c] = 1, ab =

a−1〉

M82(2, 2, i) =M(G82(2, 2), b, ab).



4. Further woks:

1. NORM of order p3

2. Classify RM of order p3 with multiple edges.



Thank You Very Much !


