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Definition of a Circulant Graph

Definition
Circ(n; S) is the digraph whose vertices are the elements of Zn,
with m adjacent to m + s iff s ∈ S.
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Definition of a Circulant Graph

Definition
Circ(n; S) is the digraph whose vertices are the elements of Zn,
with m adjacent to m + s iff s ∈ S. For a graph, we require
S = −S, 0 6∈ S.
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Definition of a Cayley Graph

Definition
Cay(G ; S) is the digraph whose vertices are the elements of G ,
with g adjacent to gs iff s ∈ S.



Definition of a Cayley Graph

Definition
Cay(G ; S) is the digraph whose vertices are the elements of G ,
with g adjacent to gs iff s ∈ S. For a graph, we require S = S−1,
1 6∈ S.



Notice...
there is a natural partition of the edges of Circ(n; S) (or more
generally of Cay(G ; S)) by the elements of S .
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Furthermore...
there is a natural refinement of this partition of the edges of
Circ(n; S) (or more generally of Cay(G ; S)) by making each cycle
of the previous partition, a part of the new partition.
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Furthermore...
there is a natural refinement of this partition of the edges of
Circ(n; S) (or more generally of Cay(G ; S)) by making each cycle
of the previous partition, a part of the new partition.
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Definition
We say that an automorphism of a graph respects a partition of
the edge set of the graph, if it takes every set of edges that is an
element of the partition, to a set of edges that is also an element
of the partition.

So the sets of edges in the partition are treated as
blocks by the automorphism.
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We say that an automorphism of a graph respects a partition of
the edge set of the graph, if it takes every set of edges that is an
element of the partition, to a set of edges that is also an element
of the partition. So the sets of edges in the partition are treated as
blocks by the automorphism.



Proposition

In a connected Cayley digraph Cay(G ; S), any automorphism α
that respects the first partition and fixes the vertex 1, is an
automorphism of G .

Proof.
Let S = {s1, . . . , sk}. Since the automorphism α respects the first
partition, we have any edge (g , gsi ) is mapped to (α(g), α(g)sπ(i))
for some permutation π of {1, . . . , k}.
We must show that for any g , h ∈ G , α(gh) = α(g)α(h). Since
the graph is connected, we can write g as a word in s1, . . . , sk .
What we will actually show is that for any g = si1 . . . sim , we must
have α(g) = sπ(i1) . . . sπ(im); this is sufficient. We work by
induction on m. If g = si , then (1, g) = (1, si ) is an edge, and is
mapped to (1, sπ(i)), so we have α(g) = sπ(i). Suppose now that
g = si1 . . . sim , α(g) = sπ(i1) . . . sπ(im), and h = gsj . We know that
(g , h) = (g , gsj) is an edge and is mapped to (α(g), α(g)sπ(j)).
Thus α(h) = α(g)sπ(j), as desired.
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Notice...
in a graph (rather than a digraph), this proof won’t work
immediately, because

α(si ) could be sπ(i) or s−1π(i).

So α(si sj) could be any one of

• sπ(i)sπ(j);

• sπ(i)s
−1
π(j);

• s−1π(i)sπ(j); or

• s−1π(i)s
−1
π(j).
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Question [Conder, Pisanski, Žitnik]

In the case of circulant graphs, is an automorphism of the graph
that fixes the identity vertex and respects the second partition,
necessarily an automorphism of the group?

(i.e. a multiplier)
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This question arose in the context of studying the structure and
automorphism groups of GI-graphs, which are a generalisation of
both

generalised Petersen graphs; and the Foster census I -graphs.
but seemed of interest in its own right.

Answer [M., 2012]

Yes (for connected circulants).

Corollary

For circulant graphs (not just digraphs), a graph automorphism
that respects the first partition and fixes the identity vertex, is
necessarily a group automorphism.
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Main ideas of the proof

• (By straightforward number theory arguments.) If the graph is
connected, then for any graph automorphism α that fixes 0
and respects the second partition, there is a group
automorphism β such that βα fixes the vertex as for every
a ∈ Z and every s ∈ S .

• (Easy consequence of definitions.) Any such βα fixes every
coset of 〈s〉 setwise, for every s ∈ S .

• (With a lot of technical details.) If x , x + s, and x + s ′ are all
fixed by a graph automorphism that respects the second
partition, then so is x + s + s ′.
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Idea of the technical part – An Example

Induct on the size of S .

Suppose n = 60, and s = 5, s ′ = 3.

0

3

6

9

12

5 10 15 20 25 30 35 40 45 50 55

8 13 18 23 28 33 38 43 48 53 58

11 16 21 26 31 36 41 46 51 56 1

14 19 24 29 34 39 44 49 54 59 4

17 22 27 32 37 42 47 52 57 2 7

We know that every row and every “column” of this diagram is
fixed setwise, so each of their intersections, i.e. each colour class
(coset of 〈15〉) is fixed setwise.
But why pointwise? It turns out that if 8 moves to 8 + 15z with
0 < z < 4, we can show that there is some prime that divides both
|3|/|15| and |5|/|15|, which is not possible.
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But why pointwise? It turns out that if 8 moves to 8 + 15z with
0 < z < 4, we can show that there is some prime that divides both
|3|/|15| and |5|/|15|, which is not possible.
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Theorem
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n with a graph automorphism that
respects the second partition but is not a group automorphism:

namely, (Cn�Cn) o Cn.
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Some Questions that Remain

Question
Is the same property true for any more general class of groups or of
graphs?

E.g. nonabelian groups of square-free order.

Question
Is it true that graph automorphisms that respect the first partition
are always group automorphisms (possibly known)?

Question
Are there other natural partitions for which we could ask this
question? E.g. edges that are mapped to one another by
automorphisms of a vertex-transitive graph that is not a Cayley
graph?
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Thank you!
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