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The roots of combinatorial design theory, date from the 18th and 19th centuries, may

be found in statistical theory of experiments, geometry and recreational mathematics. De-

sign theory rapidly developed in the second half of the twentieth century to an independent

branch of combinatorics. It has deep interactions with graph theory, algebra, geometry and

number theory, together with a wide range of applications in many other disciplines. Most

of the problems are simple enough to explain even to non-mathematicians, yet the solutions

usually involve innovative techniques as well as advanced tools and methods of other areas

of mathematics. The most fundamental problems still remain unsolved.

Balanced incomplete block designs

A design (or combinatorial design, or block design) is a pair (V,B) such that V is a finite

set and B is a collection of nonempty subsets of V . Elements in V are called points while

subsets in B are called blocks.

One of the most important classes of designs are balanced incomplete block designs.

Definition 1. A balanced incomplete block design (BIBD) is a pair (V,B) where |V | = v and

B is a collection of b blocks, each of cardinality k, such that each element of V is contained

in exactly r blocks and any 2-element subset of V is contained in exactly λ blocks. The

numbers v, b, r, k an λ are parameters of the BIBD.

Since r = λ(v−1)
k−1 and b = λv(v−1)

k(k−1) must be integers, the following are obvious arithmetic

necessary conditions for the existence of a BIBD(v, b, r, k, λ):

(1) λ(v − 1) ≡ 0 (mod k − 1),

(2) λv(v − 1) ≡ 0 (mod k(k − 1)).

Parameter sets that satisfy (1) and (2) are called admissible.

The five parameters: v, b, r, k, λ are not independent; three of them: v, k and λ

uniquely determine the remaining two as r = λ(v−1)
k−1 and b = vr

k . Hence we often write

(v, k, λ)-design (or (v, k, λ)− BIBD) to denote a BIBD(v, b, r, k, λ).

Example 1. A (7, 3, 1)− BIBD (the ”Fano plane”):

V = {0, 1, . . . , 6},
B = {{0, 1, 2}, {0, 3, 4}, {0, 5, 6}, {1, 3, 5}, {1, 3, 6}, {2, 3, 6}, {2, 4, 5}}.

Example 2. A (11, 5, 2)− BIBD:

V = {0, 1, . . . , 10},
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B = {{0, 1, 2, 6, 9}, {0, 1, 5, 8, 10}, {0, 2, 3, 4, 8}, {0, 3, 5, 6, 7}, {0, 4, 7, 9, 10}, {1, 2, 3, 7, 10},
{1, 3, 4, 5, 9}, {1, 4, 6, 7, 8}, {2, 4, 5, 6, 10}, {2, 5, 7, 8, 9}, {3, 6, 8, 9, 10}}.

A convenient way to represent a BIBD, other than a list of its blocks, is an incidence

matrix. The incidence matrix of a (v, k, λ)−BIBD (V,B), where V = {xi : 1 ≤ i ≤ v} and

B = {Bj : 1 ≤ j ≤ b}, is a v × b matrix A = (aij), in which aij = 1 when xi ∈ Bj and

aij = 0 otherwise.

Theorem 1. If A is an incidence matrix of a (v, k, λ)−BIBD, then AAT = (r−λ)I +λJ ,

where I is a v × v identity matrix and J is a v × v all ones matrix.

Theorem 2 (Fisher’s inequality). If a (v, k, λ)−BIBD exists with 2 ≤ k < v, then b ≥ v.

This result, for instance, shows that a (21, 6, 1) − BIBD cannot exist, since b = 14 <

21 = v, even though the above arithmetic necessary conditions are satisfied.

The dual of D is a design D∗ = (B, V ), where B corresponds to a set of elements and

V to a set of blocks, such that B ∈ B is an element contained in v ∈ V if and only if v

is contained in B in D. Thus, if M is an incidence matrix of D, then MT is an incidence

matrix of D∗.

A BIBD is called symmetric if v = b (and r = k).

The most fundamental necessary condition for the existence of symmetric designs is

due to Bruck, Ryser and Chowla.

Theorem 3 (Bruck-Ryser-Chowla). Let v, k and λ be integers satisfying λ(v−1) = k(k−1)

and for which there exists a symmetric (v, k, λ)− BIBD.

(1) If v is even, then n = k − λ is a square.

(2) If v is odd, then the equation z2 = nx2 +(−1)(v−1)/2λy2 has a solution in integers x, y,

z not all zero.

Remark. The dual of a BIBD is a BIBD if and only if the BIBD is symmetric.

Also, the parameters of a symmetric design and its dual are the same, yet they are

not necessarily isomorphic.

All necessary conditions specified above (taken together) are still not sufficient for the

existence, for instance, of a symmetric (111, 111, 11, 11, 1) − BIBD. One can easily check

the set of parameters satisfies all conditions (including Fisher’s inequality and Bruck-Ryser-

Chowla theorem) but such design does not exist, what was proven by a detailed structural

analysis combined with exhaustive computational search. The general existence question

for BIBD’s remains crucial open problem for infinitely many sets of parameters.

A parallel class in a design (V,B) is a set of blocks that partition the set V . A partial

parallel class is a set of blocks that contain no point of the design more than once.

Definition 2. A design (V,B) is resolvable if all its blocks can be partitioned into parallel

classes.

Example 3. A (9, 3, 1)− BIBD is resolvable; parallel classes are R1, R2, R3, R4:

V = {0, 1, . . . , 9},
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R1 = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}},
R2 = {{0, 3, 6}, {1, 4, 7}, {2, 5, 8}},
R3 = {{0, 4, 8}, {1, 5, 6}, {2, 3, 7}},
R4 = {{0, 5, 7}, {1, 3, 8}, {2, 4, 6}}.

Definition 3. Two designs, (V1,B1) and (V2,B2), are isomorphic if there exists a bijection

α : V1 7→ V2 such that for any B1 ∈ B1 there exists B2 ∈ B2, where B2 = {α(xi) : xi ∈ B1}.

An automorphism is an isomorphism from a design to itself. The set of all automor-

phisms of a design forms a group called the full automorphism group. An automorphism

group of a design is any subgroup of its full automorphism group.

Specifying an automorphism group allows sometimes to construct a design in much

easier way. Then it is enough to select a set of base blocks which are representatives of

each orbit of blocks under the prescribed automorphism group. All remaining blocks are

obtained by action of the group on these base blocks.

For instance, a (v, k, λ) − BIBD is cyclic if it admits a cyclic group of order v as its

automorphism group.

Example 4. A cyclic (13, 3, 1)−BIBD has two base blocks {0, 1, 4}, {0, 2, 7}, where V = Z13

and a cyclic permutation (0 1 . . . 12) is an automorphism.

A complement of a design (V,B) is a design (V,B), where B = {V \B : B ∈ B}. Thus
a complement of a BIBD(v, b, r, k, λ) is a BIBD(v, b, b− r, v − k, b− 2r + λ). A supplement

of a BIBD(v, b, r, k, λ) is a BIBD obtained by taking all k-subsets which are not in B as

blocks; in this way we get a BIBD(v,
(
v
k

)
− b,

(
v−1
k−1

)
− r, k,

(
v−2
k−2

)
− λ).

A design (V ′,B′) is a subdesign of (V,B) if V ′ ⊂ V and B′ ⊂ B.
Given a design D = (V,B), a block intersection graph G(D) is a graph with the vertex

set B and the edge set {{Bi, Bj} : Bi ∩Bj ̸= ∅}. In particular, for a (v, k, 1)−BIBD, G(D)

is strongly regular.

Exercise 1.

(1) Construct a (6, 3, 2)− BIBD.

(2) Construct a (13, 4, 1)− BIBD.

Exercise 2.

Find an isomorphism for the Fano plane given in Example 1 and its dual.

Exercise 3.

Prove that Fano plane is unique up to automorphism. Determine the order of its full

automorphism group.

Exercise 4.

Construct a resolvable (16, 4, 1)− BIBD.

Exercise 5.

Construct a cyclic (19, 3, 1)− BIBD.

Exercise 6.

Given a BIBD(v, b, r, k, 1), determine the parameters (i.e., order, size, degree, clique number,
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the number of common neighbors for each pair of adjacent vertices and for each pair of

nonadjacent vertices) of its block intersection graph.

Latin squares

Definition 4. A latin square of order n (or side n) is an n × n array in which each cell

contains a single symbol from an n-element set S, such that each symbol occurs exactly

once in each row and exactly once in each column.

Definition 5. A quasigroup is an algebraic structure (Q, ◦), where Q is a set and ◦ is a

binary operation on Q such that the equations a ◦x = b and y ◦a = b have unique solutions

for every pair of elements a, b in Q. If Q is finite, then |Q| = n is the order of the quasigroup.

A latin square can be viewed as a multiplication table of a quasigroup with the headline

and sideline removed. Thus latin squares and quasigroups are equivalent combinatorial

objects and we may use these two terms interchangeably.

Example 5. Latin square of order 4 and its corresponding quasigroup of order 4.

1 2 4 3
3 4 2 1
4 1 3 2
2 3 1 4

◦ 1 2 3 4

1 1 2 4 3
2 3 4 2 1
3 4 1 3 2
4 2 3 1 4

A latin square L of side n is commutative (or symmetric) if L(i, j) = L(j, i) for all

1 ≤ i, j ≤ n. L is idempotent if L(i, i) = i for all 1 ≤ i ≤ n. A latin square L′ of even order

n = 2k is half-idempotent if L′(i, i) = i and L′(k + i, k + i) = i for all 1 ≤ i ≤ k.

The existence of a latin square of order n is equivalent to the existence of a one-

factorization of the complete bipartite graph Kn,n. Moreover, the existence of a commuta-

tive idempotent latin square of order n is equivalent to the existence of a one-factorization

of the complete graph Kn.

Two latin squares, L and L′, of order n are isotopic (or equivalent) if there are three

bijections from the rows, columns and symbols of L to the rows, columns and symbols,

respectively, of L′, that map L to L′. Latin squares L and L′ are isomorphic if there exists

a bijection φ : S 7→ S such that φ(L(i, j)) = L′(φ(i), φ(j)) for every i, j ∈ S, where S is not

only the set of symbols of each square but also the indexing set for the rows and columns

of each square.

Two latin squares, L and L′, of order n are orthogonal if the n2 ordered pairs (L(i, j),

L′(i, j)) are all distinct. A set of latin squares L1, L2, . . . , Lm is mutually orthogonal (or a

set of MOLS(n)) if for every 1 ≤ i < j ≤ m, Li and Lj are orthogonal.

Example 6. A set of three MOLS(4):
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1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

Let N(n) denote the largest number of latin squares in a set of MOLS(n).

Remark. For every n, 1 ≤ N(n) ≤ n− 1.

Theorem 4. If q = pk is a prime power, then N(q) = q − 1.

Theorem 5. A pair of orthogonal latin squares of order n exists for all n other than 2 and

6 (for which no such pair exists).

Construction of a pair of orthogonal latin squares of odd order n.

Let S = Zn. Then L1(i, j) = (i+ j) modn and L2(i, j) = (i− j) modn.

Construction of a set of n-1 MOLS of order q = pk, where p is a prime.

Let Fq be a finite field of order q. Let α0, α1, . . . , αq−1 be elements of Fq, where α0 is a

zero element. For each nonzero element αr (r ̸= 0) in Fq, define a latin square Lr(i, j) =

αr × αi + αj .

Theorem 6. The existence a set of n − 1 MOLS(n) is equivalent to the existence of a

BIBD(n2 + n+1, n2 + n+1, n+1, n+1, 1) and a resolvable BIBD(n2, n2 + n, n+1, n, 1).

Determining the value of N(n) remains one of the most foremost problems in combi-

natorics.

Definition 6. A partial latin square of order n is an n × n array in which some cells are

empty and some are filled with elements of S, such that each element of S appears in every

row and every column at most once.

Theorem 7. Any partial latin square of order n which has at most n− 1 cells occupied can

be completed to a latin square.

Definition 7. A latin rectangle of size m×n (m ≤ n) is an m×n array with entries from a

set S of cardinality n such that every row is a permutation of S and every column contains

no repetition.

Theorem 8. If L is an m× n latin rectangle, then one can append n−m further rows to

L so that the resulting array in a latin square.

Exercise 7.

(1) Find an idempotent commutative latin square of order 5.

(2) Find a half-idempotent commutative latin square of order 6.

Exercise 8.

Construct a set of two MOLS(3).
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Steiner triple systems

The first class of intensively studied designs were BIBD’s with block size 3 and λ = 1.

Definition 8. A Steiner triple system, STS(v), of order v is a (v, 3, 1)− BIBD. Blocks of

an STS(v) are often called triples.

The arithmetic necessary conditions for the existence of an STS(v) reduce to v ≡ 1, 3

(mod 6). This is also a sufficient condition, what was proven in 1847 by Kirkman. One of

the simplest known direct constructions is due to Bose and Skolem.

Bose construction (for STS(v) when v ≡ 3 (mod 6)).

Let v = 6k + 3 and let (Q, ◦) be an idempotent commutative quasigroup of order 2k + 1,

where Q = {0, 1, . . . , 2k}. Let V = Q× {1, 2, 3}, and define B to contain the following two

types of triples:

(1) for 0 ≤ i ≤ 2k, {(i, 1), (i, 2), (i, 3)} ∈ B
(2) for 0 ≤ i < j ≤ 2k, {(i, 1), (j, 1), (i ◦ j, 2)} ∈ B, {(i, 2), (j, 2), (i ◦ j, 3)} ∈ B,
{(i, 3), (j, 3), (i ◦ j, 1)} ∈ B.

Skolem construction (for STS(v) when v ≡ 1 (mod 6)).

Let v = 6k + 1 and let (Q, ◦) be a half-idempotent commutative quasigroup of order 2k,

where Q = {0, 1, . . . , 2k − 1}. Let V = (Q× {1, 2, 3}) ∪ {∞}, and define B as follows:

(1) for 0 ≤ i ≤ k − 1, {(i, 1), (i, 2), (i, 3)} ∈ B
(1) for 0 ≤ i ≤ k − 1, {∞, (k + i, 1), (i, 2)} ∈ B, {∞, (k + i, 2), (i, 3)} ∈ B,
{∞, (k + i, 3), (i, 1)} ∈ B
(3) for 0 ≤ i < j ≤ 2k − 1, {(i, 1), (j, 1), (i ◦ j, 2)} ∈ B, {(i, 2), (j, 2), (i ◦ j, 3)} ∈ B,
{(i, 3), (j, 3), (i ◦ j, 1)} ∈ B.

An STS(v) is cyclic if it admits an automorphism which is a single cycle of length

v. Then all triples may be represented by base triples, one for each orbit of triples under

a cyclic automorphism. The existence of cyclic Steiner triple systems may be proved by

solving two problems posed by Heffter in 1896. An ordered 3-element subset {a, b, c} of the

set {1, 2, . . . , (v − 1)/2} is called a difference triple if either a+ b = c or a+ b+ c = v.

Heffter’s difference problems.

(1) Let v = 6k+1. Is it possible to partition the set {1, 2, . . . , 3k} into k difference triples?

(2) Let v = 6k + 3. Is it possible to partition the set {1, 2, . . . , 3k + 1} \ {2k + 1} into k

difference triples?

In 1939, Peltesohn solved both Heffter’s difference problems in the affirmative except

for v = 9 (for which no solution exists).

Example 7. A solution to the second Heffer’s difference problem for v = 27 is:

{{1, 2, 3}, {4, 10, 13}, {5, 6, 11}, {7, 8, 12}}.
The base blocks corresponding to the difference triples are:

{0, 1, 3}, {0, 4, 14},{0, 5, 11},{0, 7, 15}.
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Given a solution to the first Heffter’s difference problem, i.e. the collection of k ordered

triples, each triple {a, b, c} forms the base triple {0, ai, ai + bi} of a cyclic STS(6k + 1).

Similarly, given a solution to the second Heffter’s difference problem, each triple {a, b, c}
forms the base triple {0, ai, ai + bi} of a cyclic STS(6k + 3); one more base triple (for short

orbit) is {0, 2k + 1, 4k + 2}.
The number of pairwise nonisomorphic Steiner triple systems increases rapidly with

v. While STS(7) and STS(9) are unique (up to isomorphism), there are two STS(13)’s, 80

STS(15)’s and 11, 084, 874, 829 STS(19)’s.

Definition 9. A Kirkman triple system, KTS(v), of order v is a resolvable STS(v) together

with a resolution of its blocks.

Distinct resolutions of a given STS(v) may form nonisomorphic KTS’s.

Example 8. KTS(15), V = {1, 2, . . . , 15},
R1 = {{1, 2, 3}, {4, 8, 12}, {5, 11, 14}, {6, 9, 15}, {7, 10, 13}},
R2 = {{1, 4, 5}, {2, 12, 14}, {3, 9, 10}, {6, 11, 13}, {7, 8, 15}},
R3 = {{1, 6, 7}, {2, 13, 15}, {3, 8, 11}, {4, 10, 14}, {5, 9, 12}},
R4 = {{1, 8, 9}, {2, 4, 6}, {3, 13, 14}, {5, 10, 15}, {7, 11, 12}},
R5 = {{1, 10, 11}, {2, 5, 7}, {3, 12, 15}, {4, 9, 13}, {6, 8, 14}},
R6 = {{1, 12, 13}, {2, 8, 10}, {3, 5, 6}, {4, 11, 15}, {7, 9, 14}},
R7 = {{1, 14, 15}, {2, 9, 11}, {3, 4, 7}, {5, 8, 13}, {6, 10, 12}}.

The existence problem for Kirkman triple systems was completely solved by Ray-

Chaudhuri and Wilson in 1971, more than 120 years after the problem was posed by Kirk-

man.

Theorem 9. A Kirkman triple system of order v exists if and only if v ≡ 3 (mod 6).

Definition 10. A Hanani triple system, HTS(v), of order v is an STS(v) with a partition

of its blocks into (v − 1)/2 almost parallel classes and a single partial parallel class with

(v − 1)/6 triples.

Theorem 10. A Hanani triple system of order v exists if and only if v ≡ 1 (mod 6) and

v ̸∈ {7, 13}.

A partial triple system PTS(v) is a pair (V,B), where |V | = v and B is a collection of

3-element subsets of V such that each unordered pair of elements of V occurs in at most

one triple of B. Let (V,B) be a PTS(v) and (W,D) be an STS(w) for which V ⊆ W and

B ⊆ D. Then (W,D) is an embedding of (V,B).

Theorem 11. Any partial triple system PTS(v) can be embedded in an STS(w) if w = 1, 3

(mod 6) and w ≥ 2v + 1.

Theorem 12 (Doyen-Wilson). Let v, w ≡ 1, 3 (mod 6) and v ≥ 2w + 1. Then there exists

an STS(v) containing an STS(w) as a subsystem.
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Exercise 9.

Apply Skolem construction to get an STS(13).

Exercise 10.

Show that a cyclic STS(9) does not exist.

Exercise 11.

Find a solution to Heffer’s difference problems when:

(1) v=19

(2) v=21.

Exercise 12.

Show that a HTS(7) does not exist.

Pairwise balanced designs and group divisible designs

Relaxing some of conditions in the definition of BIBD leads to other classes of designs. One

of them considers the case when all blocks do not have to have the same size.

Definition 11. Let λ be a positive integer and K be a set of positive integers. A pairwise

balanced design, PBD(v,K, λ), of order v with block sizes from K is a pair (V,B) where V is

a set of cardinality v and B is a collection of subsets of V called blocks such that each block

B ∈ B has |B| ∈ K and every pair of distinct elements of V occurs in exactly λ blocks.

Example 9. A PBD(6, {3, 4}, 3):
V = {1, 2, 3, 4, 5, 6},
B = {{1, 2, 3, 4}, {1, 3, 4, 5}, {1, 4, 5, 6}, {2, 3, 4, 6}, {2, 4, 5, 6}, {1, 2, 5}, {1, 2, 6}, {1, 3, 6},
{2, 3, 5}, {3, 5, 6}}.

If a PBD(v,K, λ) has bi blocks of size ki for each ki ∈ K, then λ
(
v
2

)
=

∑
i bi

(
ki
2

)
.

For a set of positive integers K, let α(K) = gcd{k − 1 : k ∈ K} and β(K) =

gcd{k(k− 1) : k ∈ K}. Then the necessary condistions for the existence of a PBD(v,K, λ)

are:

(1) λ(v − 1) ≡ 0 (mod α(K)), and

(2) λv(v − 1) ≡ 0 (mod β(K)).

Remark. Let K ̸= {v}. If there exists a PBD(v,K, 1), then v ≥ l(s− 1) + 1, where l and

s are the largest and the smallest sizes, respectively, of blocks in a PBD.

Definition 12. Let K and G be sets of positive integers and λ be a positive integer. A

group divisible design of order v and index λ, GDD(v,K,G, λ), is a triple (V,B,G) where

V is a finite set of cardinality v, G is a partition of V into groups whose sizes belong to G,

and B is a collection of subsets of V called blocks such that each B ∈ B has |B| ∈ K and

every pair of distinct elements of V is contained in exactly λ blocks or in one group, but

not both. Moreover, |G| ≥ 2.

Given a GDD(v,K,G, λ) with ai groups of size gi, i = 1, 2, . . . , s (so that
∑s

i=1 aigi =
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v), we use exponential notation ga11 ga22 . . . gass for the group type. If K = {k} and λ = 1,

then we write k −GDD.

Example 10. A GDD(10, {3, 4}, {1, 3}, 1) of type 1133:

V = {1, 2, . . . , 10},
G = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10}},
B = {{1, 4, 7, 10}, {2, 5, 8, 10}, {3, 6, 9, 10}, {1, 5, 9}, {2, 6, 7}, {3, 4, 8}, {1, 6, 8}, {2, 4, 9},
{3, 5, 7}}.

A GDD is uniform if K = {k} and all its groups have the same size m, that is, if it

is of type mu for some positive integer u. The necessary conditions for the existence of a

uniform GDD(v, k,m, λ) of type mu are:

(1) u ≥ k,

(2) λ(u− 1)m ≡ 0 (mod k − 1),

(3) λu(u− 1)m2 ≡ 0 (mod k(k − 1)).

Definition 13. A transversal design, TD(k,m), is a uniform k −GDD of type mk.

In other words, a GDD is a transversal design if and only if each block meets every

group in exactly one point.

Theorem 13. A transversal design TD(k,m) exists if and only if there exists a set of k−2

MOLS(m). Moreover, a resolvable transversal design TD(k,m) exists if and only if there

exists a set of k − 1 MOLS(m).

A GDD(v,K,G, λ) may be viewed as a PBD(v,K ∪ G,λ) by considering all groups

of the GDD to be blocks of the PBD, together with blocks of the GDD. Moreover, a

GDD(v,K,G, λ) can be used to built a PBD(v + 1,K ∪ {g + 1 : g ∈ G}, λ) by adjoining a

new point to each group to form new blocks. Conversely, a GDD may be obtained from a

PBD by deleting a point.

Exercise 13.

(1) Construct a PBD(10, {3, 4}, 1).
(2) Construct a PBD(12, {3, 4}, 1).
(3) Construct a PBD(11, {3, 5}, 1).

Exercise 14.

Show that a PBD(8, {3, 4}, 1) does not exist.
Exercise 15.

(1) Construct a 3−GDD of type 35.

(2) Construct a 4−GDD of type 34.

Exercise 16.

Construct a resolvable TD(5, 7).
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Room squares

Definition 14. Let S be a set of n+ 1 elements (symbols). A Room square of side n is an

n× n array, R, that satisfies the following properties:

(1) every cell of R is either empty or contains an unordered pair of symbols from S,

(2) every symbol of S occurs exactly once in each row and exactly once in each column of

R,

(3) every unordered pair of symbols occurs in precisely one cell in R.

Thus each row and each column of R contain n−1
2 empty cells.

Example 11. A room square of side 9:

S = {0, 1, . . . , 9},

01 49 37 28 56

89 02 57 34 16

58 03 69 24 17

36 78 04 19 25

79 12 05 38 46

45 06 18 39 27

26 59 13 07 48

67 14 29 08 35

23 15 68 47 09

Theorem 14. A room square of side n exists if and only if n is odd and n ̸∈ {3, 5}.

For odd n, two 1-factorizations of the complete graph Kn+1, F = {F1, F2, . . . , Fn}
and G = {G1, G2, . . . , Gn} are orthogonal if |Fi ∩Gi| ≤ 1 for all 1 ≤ i, j ≤ n. The existence

of a Room square of side n is equivalent to the existence of two orthogonal 1-factorizations

of Kn+1.

Exercise 17.

Show that a Room square of side 5 does not exist.

Exercise 18.

Construct a Room square of side 7.

Hadamard matrices and designs

In 1893, Hadamard addressed the problem of the maximum absolute value of the determi-

nant of an n × n complex matrix H with all its entries on a unit circle. That maximum

value is
√
nn. Among real matrices, this value is attained if and only if H has every entry

either 1 or −1, and satisfies HHT = nI. This condition means that any two distinct rows

of H(n) are orthogonal.

Definition 15. An n×n (±1)-matrix H(n) is a Hadamard matrix of side n if HHT = nI.
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Notice that we may multiply all entries in any row (and column) by -1 and the result

is again a Hadamard matrix. By a sequence of such multiplications, a Hadamard matrix

may be transformed into another Hadamard matrix, in which every entry in the first row

or in the first column is 1. Such a Hadamard matrix is called standardized.

Example 12. H(4):
+ + + +
+ + − −
+ − + −
+ − − +


Necessary condition for the existence of an H(n) is n ≡ 0 (mod 4) or n = 1, 2. It is

famous conjecture, stated by Hadamard in 1893, that the above condition is also sufficient.

The smallest order for which the conjecture remains open is 428.

Definition 16. A Hadamard design is a symmetric (4m− 1, 2m− 1,m− 1)− BIBD.

The existence of a Hadamard design of order 4m− 1 is equivalent to the existence of

a Hadamard matrix of side 4m.

Example 13. (7, 3, 1)− BIBD and its corresponding H(8).

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1



+ + + + + + + +
+ + + − + − − −
+ − + + − + − −
+ − − + + − + −
+ − − − + + − +
+ + − − − + + −
+ − + − − − + +
+ + − + − − − +


Exercise 19.

Construct a Hadamard matrix H(12).
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