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The problem

Color the vertices of a hypergraph H.
A hyperedge is rainbow, if its vertices have pairwise distinct colors.

The upper chromatic number of H, X(H): the maximum number

of colors that can be used without creating a rainbow hyperedge
(V. VOLOSHIN).

For graphs it gives the number of connected components.
Determining X(Mg) and X(PG(2, q)) has been a goal since the
mid-1990s.
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Example: x(PG(2,2)) =3
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Trivial coloring
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v:= g%+ g+ 1, the number of points in M.
T := the size of the smallest double blocking set in M.
Then x(Mg) > v —m +1.

We call this a trivial coloring.
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What is known about blocking sets?

blocking set: meets every line, smallest one: line

non-trivial blocking set: contains no line

BRUEN: a non-triv. bl. set has > g + /g + 1 points, in case of
equality it is a Baer subplane

Better results for PG(2,q), ¢ = p", p prime:

BLOKHUIS for g = p, prime, the size is at least 3(p + 1)/2, and
there are examples for every g

SzT, SZIKLAI: for g # p, a minimal blocking set meets every line
in 1 modulo p (or rather in) 1 modulo p® points with some e|h;
there are several examples (linear bl. sets) In particular, there are
bl. sets of size g+ ((¢ —1)/(p®* — 1) and g+ q/p° + 1.
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Simeon Ball
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What is known about (double) blocking sets?

double blocking set: meets each line in > 2 pts. analogue of
Bruen's bound: |B| > 2q + /2q + ..., not sharp

For PG(2,q): |B| > 2q + 2,/ + 2 (BALL-BLOKHUIS, sharp for g
square. In case of equality: union of two Baer subplanes (GACS,
SzT)

When q is prime, then |B| > 2g + 2+ (g + 1)/2 (BALL. Known
examples have at least 3p — 1 points (examples are due to BRAUN,
KOHNERT, WASSERMANN and recently to HEGER).

The results are generalized to t-fold blocking sets, e.g. the lines
meet small t-fold blocking sets in t modulo p points, see more
details later.
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What is known about 77

Theorem
For the minimum size T, of a double blocking set in PG(2, q) the
following is known:

Q Ifqisaprime then2qg+ (¢+5)/2<1 <3qg-1,

@ If q is a square then 7o = 2(q + /q + 1), and in case of
equality the double blocking set is the union of two Baer
subplanesm

© Ifqg=p" h>1 odd then2q+ cpqz/3 <m <
2(q+ (g —1)/(p® — 1)), for the largest e|h, e # h.

In (3), the lower and upper bounds have the same order of
magnitude for 3|h (in particular, the lower bound can be improved

to2q+2¢%3 — ... if h= 3). The upper bounds come from explicit
constructions, e.g. by POLVERINO, STORME; see more details
later.
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Gabor Bacso, Zsolt Tuza
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Projective planes

Theorem (Bacs6, Tuza, 2007)

As g — o0,
° X(Mg) < v —(29+/q/2) +o(\/q):
o for q square, X(PG(2,q9)) >v—(29+2/g+1)=v—-1+1;
o X(PG(2,q)) <v—(29+q) + o(\/9);
o for q non-square, Y(PG(2,q)) < v — (29 + Cq?/3) + o(1/q)-

>

Theorem (Bacs6, Héger, SzT)

Let Ty be an arbitrary projective plane of order ¢ > 4, and let
7(Mg) =2(q + 1)+ c(MNg). Then

+4¢%/3.

2¢(IN
T(Mg) < ¢ — q - 22019
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Tamas Héger
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Projective planes

Theorem (Bacs6, Tuza, 2007)
As g — oo,
o X(MNg) <v—1(29+./49/2)+ o(\/9);
o for q square, X(PG(2,q9)) >v—(29+2/q+1)=v—m+1;
° X(PG(2,9)) <v—(29+/q)+ o(a),
o for q non-square, X(PG(2,q)) < v — (29 + Cq*/3) + o(,/q).

Theorem (Bacs6, Héger, SzT)

Let Ty be an arbitrary projective plane of order ¢ > 4, and let
7(Mg) =2(qg+ 1) + c(MNg). Then

2¢(Mg)

4q°/3.
3 T4

X(Mg) <q” —q-

Bacsé, Héger, Szényi 72(PG(2, q)) and X(PG(2, q))




Improvement for projective planes

Theorem (Bacs6, Héger, SzT)

Let v = g° + q+ 1. Suppose that 7(PG(2,q)) < coq — 8,
co < 8/3, and let ¢ > max{(6cop — 11)/(8 — 3¢cp), 15}. Then

<)
3—C0.

X(PG(2,q9)) <v—m+

In particular, X(PG(2,q)) <v—m+7.

A\

Theorem (Bacs6, Héger, SzT)

Let g = ph, p prime. Suppose that either g > 256 is a square, or
h >3 odd and p > 29. Then x(PG(2,q)) =v —m +1, and
equality is reached only by trivial colorings.

A\
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([ ]
Cy, ..., C,: color classes of size at least two

(only these are useful) PY

C; colors the line ¢ iff |¢ N G| @2. o e

All lines have to be colorad, so \ o © \

B = |J G is a double blocking set. @ Bl G )
i=1 &

We use v — |B| + n colors. @%

To reach the trivial coloring, we must have v — |B|+n> v —m+1,

thus we need
n>|Bl—m+1

colors in B.
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Cy, ..., C,: color classes of size at least two

(only these are useful)

C;i colors the line ¢ iff |[¢N G| > 2. /7.\
All Iinss have to be colored, so \ .. P \
B= ’yl C; is a double blocking set. B \Cz./
We use v — |B| + n colors. @%

To reach the trivial coloring, we must have v — |B|+n> v —m+1,

thus we need
n>|Bl—m+1

colors in B.
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Eliminating color classes of size two

Bacsé, Héger, Szényi 72(PG(2, q)) and X(PG(2, q))



Eliminating color classes of size two

Bacsé, Héger, Szényi 72(PG(2, q)) and X(PG(2, q))



Eliminating color classes of size two

Bacsé, Héger, Szényi 72(PG(2, q)) and X(PG(2, q))



Eliminating color classes of size two
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Eliminating color classes of size two

@ 0
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Eliminating color classes of size two

~
.
~

B
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Eliminating color classes of size two

—S -

So there is at most one color class of size two.
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IB| 239 —¢

Recall that m» < 2.5q.
L(C;) := the number of lines colored by C;. Then L((;) < ('g”).

By convexity, to satisfy

q2+q+1§ZL(C;)§Z<|§i‘>,

the best is to have one giant, and many dwarf color classes. But as

181~ | Catant|
Bl-m+1<n< 1y — B,

the giant can not be large enough.
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IB| 239 —¢

Recall that » < 2.5q. Say, ™ =~ 2.5q¢.
L(C;) := the number of lines colored by C;. Then L((;) < ('g”).

By convexity, to satisfy

q2+q+1§ZL(C;)§Z<|gi‘>,

the best is to have one giant, and many dwarf color classes. But as

181~ | Catant|
0.5q§|l’>’|—7’2+1§n§1++lan,

the giant can not be large enough: |Cgiant’ < 1l.5g.
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IB| 239 —¢

Recall that » < 2.5q. Say, ™ =~ 2.5q¢.
L(C;) := the number of lines colored by C;. Then L((;) < ('g”).

By convexity, to satisfy

q2+q+1§ZL(C;)§Z<|gi‘>,

the best is to have one giant, and many dwarf color classes. But as

18I~ | Cgiant|

05gSIBl—mm+1<n<1+ 3 ,

the giant can not be large enough: |Cgiant’ < 1l.5g.

However, if ‘Cgiant‘ >qg+2, weuse L(G) < (q-25-1)|(_‘,-|.
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Gacs, Ferret, Kovacs, Sziklai
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/suzsa Weiner
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mn+e S|IB <3qg—¢

Lemma (Ferret, Storme, Sziklai, Weiner)
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mn+e S|IB <3qg—¢

Lemma (Ferret, Storme, Sziklai, Weiner)

Let B be t-fold blocking set in PG(2,q), |B| = t(q + 1) + k, and
P € B be an essential point of B. Then there are at least
(g+1— k —t) t-secants of B through P.
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mn+e S|IB <3qg—¢

Lemma (Ferret, Storme, Sziklai, Weiner)

Let B be t-fold blocking set in PG(2,q), |B| = t(q + 1) + k, and
P € B be an essential point of B. Then there are at least
(g+1— k —t) t-secants of B through P.

Corollary

Let B be a t-fold blocking set with |B| < (t + 1)q points. Then
there is exactly one minimal t-fold blocking set in I3, namely the
set of essential points.
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mn+e S|IB <3qg—¢

Lemma (Ferret, Storme, Sziklai, Weiner)

Let B be t-fold blocking set in PG(2,q), |B| = t(q + 1) + k, and
P € B be an essential point of B. Then there are at least
(g+1— k —t) t-secants of B through P.

- -

Corollary

Let B be a t-fold blocking set with |B| < (t + 1)q points. Then
there is exactly one minimal t-fold blocking set in I3, namely the
set of essential points.

Remark

Harrach has a recent result on the unique reducibility of weighted
t-fold (n — k)-blocking sets in the projective space PG(n, q).
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Clear: if ¢ is a 2-secant to B, then ¢ N B is monochromatic.

Let [B] =2(q +1) + k. Then

Proposition

Every color class containing an essential point of B has at least
(g — k) points.

B = B*U B, where B* is the set of essential points, |B*| > 7».
We have

|B|—m+1<n<

- \ /’67">
1Bl —[B*| | B[ || : ° .‘o:: ° :‘(\2/«
)
3 qg—k ° 0! °

20Blm)ak <m B[,

SO
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Aart Blokhuis
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|B| < 175+ ¢, g > 256 square (so » = 2(q + /g + 1))

Blokhuis, Storme, SzT: B contains two disjoint Baer subplanes, B;
and By. B* = By U B> can not be monochromatic.

Y Y
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|B| < 175+ ¢, g > 256 square (so » = 2(q + /g + 1))

Blokhuis, Storme, SzT: B contains two disjoint Baer subplanes, B;
and By. B* = By U B> can not be monochromatic.

‘e )
N

Let P € By be purple.
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|B| < 175+ ¢, g > 256 square (so » = 2(q + /g + 1))

Blokhuis, Storme, SzT: B contains two disjoint Baer subplanes, B;
and By. B* = By U B> can not be monochromatic.

e——=

J

oo

s

—

:

Let P € By be purple. There are at least (¢ — /g — ¢ — 1)
2-secants on P, so there are a lot of purple points in B;.
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|B| < 175+ ¢, g > 256 square (so » = 2(q + /g + 1))

Blokhuis, Storme, SzT: B contains two disjoint Baer subplanes, B;
and By. B* = By U B> can not be monochromatic.

Let P € By be purple. There are at least (¢ — /g — ¢ — 1)
2-secants on P, so there are a lot of purple points in B;.

The same from B,: we have at least 2(q — /g — ¢ — 1) purple
points.
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|B| < 175+ ¢, g > 256 square (so » = 2(q + /g + 1))

Blokhuis, Storme, SzT: B contains two disjoint Baer subplanes, B;
and By. B* = By U B> can not be monochromatic.

e® ) (&)
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°
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Let P € By be purple. There are at least (¢ — /g — ¢ — 1)
2-secants on P, so there are a lot of purple points in B;.

The same from B,: we have at least 2(q — /g — ¢ — 1) purple
points.

If we have brown points as well:
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|B| < 175+ ¢, g > 256 square (so » = 2(q + /g + 1))

Blokhuis, Storme, SzT: B contains two disjoint Baer subplanes, B;
and By. B* = By U B> can not be monochromatic.

'Y °
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° °
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Let P € By be purple. There are at least (¢ — /g — ¢ — 1)
2-secants on P, so there are a lot of purple points in ;.

The same from B,: we have at least 2(q — /g — ¢ — 1) purple
points.

If we have brown points as well: |B| > 4(q — /g —c—1) /4

Bacsé, Héger, Szényi 72(PG(2, q)) and X(PG(2, q))



IB| < +e¢

By melting color classes, we may assume n =2, B* = B" U BB,
|B*| =2(qg+ 1) + k.

For a line ¢, let

W= BN,
nf = |BEN{|,
ng = np+nf=|Bn.

Define the set of red, green and balanced lines as
L' = {teLl:n;>nf},
L8 = {teL:nf>np},
L= = {teLl:n;=nF}.
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IB| < +e¢

Using double counting, we get

an |B*|(qg + 1), hence

Lel
o om>Y (m—=2)=|B(qg+1)—2(¢*+q+1) 2 kq.
LeL: ng>2 Lel
On the other hand, > n/=
beLl: ng>2
Yoomp+nf)+ D> )+ DY ()<
LELT: ng>2 LeELE: ng>2 0L ng>2
oo+ Y 2+ ) 2mp<a Y ny.
LELT: ng>2 (ELE: np>2 LEL=: np>2 LELIUL=: ny>2
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IB| < +e¢

Thus ’
q r
T S Z néa
CELTUL=: np>2
so there is a red point P with at least

4|B,‘ (half)-red long secants
through it.

Theorem (Blokhuis, Lovasz, Storme, SzT)

Let B be a minimal t-fold blocking set in PG(2,q), g = p", h > 1,

|B| < tqg+ (q+ 3)/2. Then every line intersects B in t (mod p)
points.
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Laszlé Lovasz
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IB| < +e¢

Thus

%s >

CELTUL=: ng>2

so there is a red point P with at least 4|B,‘ (half)-red long secants
through it.

Theorem (Blokhuis, Lovasz, Storme, SzT)

Let B be a minimal t-fold blocking set in PG(2,q), g = p, h > 1,
|B| < tq+ (q + 3)/2. Then every line intersects B in t (mod p)
points.

Thus on each of these long secants we find at least p/2 new red
points.
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IB| < +e¢

So we see:

% red points on the red long secants through P,
g — k red points on the red two-secants through P,
and g — k green points.

" e N

o /

Note that |B,| < |B| — |B8| <2q+ k — (g — k) = g+ 2k < 2q.

Thus 2q + k 2 |B| > 29 — 2k + %% > 2q — 2k + {2 4
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Two disjoint blocking sets

Let g = p", h > 3 odd, p not necessarily prime, p odd. Let
m=(qg—1)/(p—1) = p" 1 +p"2+...41. Note that mis odd.

Let f(x) = a(xP + x), a € GF(q)*. Then f is GF(p)-linear, and
determines the directions { (?))( ;gy) x # y} ={f(x)/x: x #£0}=
{(1T:f(x)/x:0): x#0}={(x:f(x):0): x#0}. Thus

By = {(x: f(x) : 1)} U{(x: f(x):0)}xxo

Ay h

is a blocking set of Rédei type. Similarly, for g(x) = xP,

By ={(y:1:8(y))}U{(y:0:g(¥))}y+0
Ao I

is also a blocking set.
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Two disjoint blocking sets

By = {(x: f(x) : 1)} U{(x: f(x):0)}xxzo

A1 I
By = {(y: 1:Vg(y))} U{(y:0:g(¥))}yxo
A I

f(x) =0iff xP + x = x(xP"1 +1) = 0. As

—1= (1) £ xP7Um = xa71 — 1
f(x) =0iff x=0.
l N By is empty, as (0:0: 1) ¢ b.

If (x:f(x):0)=(y:1:g(y)) € hNAy, then g(y) =0, hence
y =0 and x = 0, a contradiction. So I; N Ay = 0.
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Two disjoint blocking sets

By = {(x:f(x) : 1)} U{(x:f(x):0)}czo

A1 h
Bo={(y:1:8(y)}U{(y:0:g(y))}yxo
Ao I

Now we need A; N Ay = 0.
(y:1:8(y))=(x:f(x):1) (x #0) iff

(v: L:g(y)) = (x/f(x); 1; 1/F(x)), in which case
1/F(x) = g(x/f(x)) = g(x)/&(f(x)).

Thus we need that g(x) = g(f(x))/f(x) = f(x)P~! that is,
xP = (a(xP + x))P~1 = aP~1xP~1(xP~1 4 1)P~1 has no solution in
GF(q)".
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Two disjoint blocking sets

Equivalent form:

1 Pl 1)t
T = (x +1) = (x”_:l + 1)”_1xc’_2 =: h(x)
aP— X

should have no solutions.

Let D = {x™: x € GF(q)*} = {x(P~Y: x € GF(q)*}. Then
1/aP~t e D.

Note that h(x) € D <= x € D.

So to find an element a such that 1/a(P~1) is not in the range of h,
we need that h|p: D — D does not permute D.
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Permutation polynomials

Theorem (Hermite-Dickson)

Let f € GF(q)[X], g = p", p prime. Then f permutes GF(q) iff
the following conditions hold:

@ f has exactly one root in GF(q),

o for each integert, 1 <t <q—2andpft, f(X)!
(mod X9 — X) has degree q — 2.

A variation for multiplicative subgroups of GF(g)*:

Suppose d | g — 1, and let D = {x9: x € GF(q)*} be the set of
nonzero d*' powers. Assume that g € GF(q)[X] maps D into D.
Then g|p is a permutation of D if and only if the constant term of
g(x)t (mod x™ —1) is zero forall 1 < t < m— 1.

Bacsé, Héger, Szényi
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Two disjoint blocking sets

Recall that h(X) = (XP71 +1)P71X972, Let t = p — 1, that is,
consider

(pfl) ( _ 1)2

)= 3 (P ] ) XKP-DH-D-2)  (mod X™ _ 1)
k=0

Since k(p— 1)+ (p—1)(g —2) = (k — 1)(p — 1) (mod m), the

exponents reduced to zero are of form k =1+ Eﬁ. Let r be

the characteristic of the field GF(q). A ((p—1)2) =1 (mod r), it is

€
enough to show that (( i 1y ) =0 (mod r) for the other possible
values of k.

Suppose h > 5. Then m/(m,p —1) > m/p > p"=2 > p?, thus by
k < (p—1)2, ¢ > 1 does not occur at all. The case h = 3 can also
be done.
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Geertrui Van De Voorde
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Two disjoint blocking sets

Using a higher dimensional representation of projective planes, VAN
DE VOORDE could also contruct two disjoint bl. sets. Moreover
she could specify that one of them is of Trace-type.

Theorem (G. Van De Voorde)

Let B be any non-trivial blocking set of size < 3(q + 1)/2. Then
there is a linear blocking set disjoint to B.

It is known that a GF(p®)-linear blocking set (e|h) has size at most
2(g+ (g —1)/(p® —1)). Taking the smallest known blocking set
(of size g+ q/p® + 1) as B, it shows

™ <2q9+4+q/p*+1+(q—1)/(p® —1). She could also show the
existence of a double blocking set of size 2(q + q/p® + 1).
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Multiple blocking sets in higher dims

Definition

A set B is a t-fold k-blocking set, if B meets each (n — k)-dim.
subspace in > t pts. In many cases B can be a multiset.

For k = 1 we just call them t-fold blocking sets. Trivial lower
bound: |B| > t(q + 1) or |B| > t(gX + ... + g + 1)) for k-blocking
sets. In higher dims it can be reached as the sum (union) of lines
(and similarly, if k is small, we have disjoint k-subspaces as the
smallest examples).

Later we shall use results for t = 2. So |B| > 2g* + ... in this case.
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Janos Barat
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Barat-Storme

They prove similar results to the Blokhuis-Storme-SzT results in
higher dims.

Theorem (Barat and Storme)

Let B be a t-fold 1-blocking set in PG(n, q), g = p", p prime,

q > 661, n > 3, of size |B| < tq + c»,q?/3 — (t — 1)(t — 2)/2, with
e =c3 =273, ¢, =1 when p > 3, and with

t < min(c,q*/%, q*/*/2). Then B contains a union of t pairwise
disjoint lines and/or Baer subplanes.

The analogous result for (1-fold) blocking sets is due to STORME,
WEINER. Some multiple points are also allowed here (in the plane).
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t modulo p results

Theorem (Ferret,Storme, Sziklai, Weiner)

Let B be a minimal weighted t-fold blocking set in PG(2, q),
q=p", pprime, h>1, with |B| =tq+t+k, t+ k < (q+3)/2,
k > 2. Then every line intersects B in t (mod p) points.

The corresponding result for non-weighted t-fold blocking sets is
due to BLOKHUIS, LOVASZ, STORME, SzT. We remark that
such a results (for non-weighted sets) immediately gives an upper
bound on the size, which can be combined that the sizes are in
certain intervals.
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t modulo p result for k-blocking sets

Theorem (Ferret, Storme, Sziklai, Weiner)

A minimal weighted t-fold 1-blocking set B in PG(n,q), g = p", p
prime, h > 1, of size |[B| =tq+t+ k, t + k < (q—1)/2,
intersects every hyperplane in t (mod p) points.

Theorem (Ferret, Storme, Sziklai, Weiner)

Let B be a minimal weighted t-fold (n — k)-blocking set of
PG(n,q), g = p", p prime, h > 1, of size |B| = tq" ™% + t + K,
with t + k' < (¢"k - 1)/2.

Then B intersects every k-dimensional subspace in t (mod p)
points.
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Stability version of Ferret—Storme-Sziklai—-Weiner

Theorem (Barat, Storme)

Let B be a t-fold 1-blocking set in PG(n, q), g = p", p prime,

q > 661, n > 3, of size |B| < tq + c,q*/3, with ¢y = ¢z = 271/3,
¢, =1 when p > 3, and with t < cpq1/6/2. Then B contains a
union of t pairwise disjoint lines and/or Baer subplanes.

They also have more general results for k-blocking sets, but it is
stated only for g square. As remarked earlier, the bounds for ¢
non-square are signifivcantly weaker. Somewhat weaker but easier
to prove bounds are due to KLEIN, METSCH. Recently, ZOLTAN
BLAZSIK extended the results for g non-square.
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The case of k-blocking sets

The case g square in the next theorem is due to FERRET,
STORME, SZIKLAI, WEINER, the non-square case to BLAZSIK.

Theorem (Ferret et al., Blazsik)

Let B be a t-fold k-blocking set in PG(n, q), g = p”", p prime,

q > 661, n > 3, of size

|B| = tgk + ¢ < tg¥ + 2tg" "1 /q < tg* + c,q" /3, with

¢ =c3 =213 ¢, =1 when p > 3, and with t < c,q*/®/2. Then
B contains a union of t pairwise disjoint cones

(Tm;, PG(2k —mj — 1,,/q)), -1 <m;j < k—1,i=1,...,t

So, small enough double blocking sets can be decomposed into
disjoint blocking sets.
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Upper chromatic number for spaces: stability version

Theorem (Héger-SzT)

Let g >37,n>3,1< k < n/2 and consider ¥ = PG, _k(n, q).
Then Y(X) = v — 72 + 1. Moreover, ifd < q¥/20 and 2d + 3 < c,
where c is the value in the stability result by
Ferret-Storme-Sziklai-Weiner, then any proper coloring of ¥ using
at least v — 7 + 1 — d colors is trivial in the sense that it colors
each point of two disjoint blocking sets with the same color.
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Sketch of the proof |

Let Gy, ..., Gy be the color classes of size at least two. Let

N = v —2[*T] +1 — d be the no. of colors. As every

(n — k)-space has to be colored, B = C; U...U Cp, has to be a
2-fold k-blocking set.

Proposition

o m>|Bl -2 +1-d
om< 2t +d-1
o Bl <a[*i'] +2(d—1)
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Sketch of the proof Il

We say that a color class C colors the (n — k)-space U if
|[CNU|>2.

Lemma

A color class C colors at most ('g') [”;1] distinct (n — k)-spaces.

Proposition

Let g > 4, and suppose that d < 0.05qg%. Then
1B > 4[] — v2¢* + 2d + 2 cannot occur. In particular,
|B| > (2.8 +8/q)q* + 2 cannot hold.
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Sketch of the proof Il

We need a result of NORA HARRACH: Suppose that a t-fold
s-blocking set S in PG(n, q) has less than (t + 1)g° + [ﬂ points.
Then S contains a unique minimal t-fold s-blocking set S’.

Lemma

Suppose that a color class C contains an essential point P of B.
Then C contains at least 3¢* — |B| + [] further essential points of
B, and for each such point Q there exists an (n — k) space U such
that UN B = {P; Q}. In particular, |C| > 3q* — |B| + [’ﬂ + 1.

| A\

Proposition

Assume that d < g*/20 and q > 29. Suppose that
|B| < 3q* + m — 4, for example, |B| < (2.8 4+ 8/q)q* + 2, where
q > 37. Then |B| < 2[kJ1r1] +2d + 3.

\

Hence B is the union of two disjoint k-blocking set and they have

o be colored bv just one color.
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Balanced upper chromatic number

ARAUJO-PARDO, KISS, MONTEJANO consider balanced
coloring, when the sizes of color classes differ by at most 1. The
maximum number of colors one can have in a balanced
rainbow-free coloring is denoted by Y.

Theorem (Araujo-Pardo, Kiss, Montejano)

For a cyclic projective plane g one has
(> +q+1)/6 < xp(Ng) < (g% + g+ 1)/3, with equality in the
upper bound if 3 divides g*> + q + 1.

They also have some results for 3 and more dimensions and also
results of similar flavour, see GYURI KISS's talk.
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Thank you for your attention!
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