The 2-blocking number and the upper chromatic number of PG(2, q)

Tamás Szőnyi
 Joint work with Gábor Bacsó and Tamás Héger

Eötvös Loránd University, MTA-ELTE GAC Research Group and Ghent University Budapest and Ghent

$$
\text { July 2, } 2014
$$

(ii)

REPUBLIKA SLOVENIJA MINISTRSTVO ZA IZOBRAŽEVANJE, ZNANOST IN ŠPORT

Color the vertices of a hypergraph \mathcal{H}.
A hyperedge is rainbow, if its vertices have pairwise distinct colors.
The upper chromatic number of $\mathcal{H}, \bar{\chi}(\mathcal{H})$: the maximum number of colors that can be used without creating a rainbow hyperedge (V. VOLOSHIN).

For graphs it gives the number of connected components. Determining $\bar{\chi}\left(\Pi_{q}\right)$ and $\bar{\chi}(\operatorname{PG}(2, q))$ has been a goal since the mid-1990s.

Example: $\bar{\chi}(\mathrm{PG}(2,2))=3$

Trivial coloring

$v:=q^{2}+q+1$, the number of points in Π_{q}.
$\tau_{2}:=$ the size of the smallest double blocking set in Π_{q}.
Then $\bar{\chi}\left(\Pi_{q}\right) \geq v-\tau_{2}+1$.
We call this a trivial coloring.

What is known about blocking sets?

blocking set: meets every line, smallest one: line non-trivial blocking set: contains no line
BRUEN: a non-triv. bl. set has $\geq q+\sqrt{q}+1$ points, in case of equality it is a Baer subplane
Better results for $\operatorname{PG}(2, q), q=p^{h}, p$ prime:
BLOKHUIS for $q=p$, prime, the size is at least $3(p+1) / 2$, and there are examples for every q
SzT, SZIKLAI: for $q \neq p$, a minimal blocking set meets every line in 1 modulo p (or rather in) 1 modulo p^{e} points with some $e \mid h$; there are several examples (linear bl. sets) In particular, there are bl. sets of size $q+\left((q-1) /\left(p^{e}-1\right)\right.$ and $q+q / p^{e}+1$.

Simeon Ball

What is known about (double) blocking sets?

double blocking set: meets each line in ≥ 2 pts. analogue of Bruen's bound: $|B| \geq 2 q+\sqrt{2 q}+\ldots$, not sharp For PG(2, q): $|B| \geq 2 q+2 \sqrt{q}+2$ (BALL-BLOKHUIS, sharp for q square. In case of equality: union of two Baer subplanes (GÁCS, SzT)
When q is prime, then $|B| \geq 2 q+2+(q+1) / 2$ (BALL. Known examples have at least $3 p-1$ points (examples are due to BRAUN, KOHNERT, WASSERMANN and recently to HÉGER).
The results are generalized to t-fold blocking sets, e.g. the lines meet small t-fold blocking sets in t modulo p points, see more details later.

What is known about τ_{2} ?

Theorem

For the minimum size τ_{2} of a double blocking set in $P G(2, q)$ the following is known:
(1) If q is a prime then $2 q+(q+5) / 2 \leq \tau_{2} \leq 3 q-1$,
(2) If q is a square then $\tau_{2}=2(q+\sqrt{q}+1)$, and in case of equality the double blocking set is the union of two Baer subplanesm
(3) If $q=p^{h}, h>1$ odd, then $2 q+c_{p} q^{2 / 3} \leq \tau_{2} \leq$ $2\left(q+(q-1) /\left(p^{e}-1\right)\right)$, for the largest $e \mid h, e \neq h$.

In (3), the lower and upper bounds have the same order of magnitude for $3 \mid h$ (in particular, the lower bound can be improved to $2 q+2 q^{2 / 3}-\ldots$, if $h=3$). The upper bounds come from explicit constructions, e.g. by POLVERINO, STORME; see more details later.

Gábor Bacsó, Zsolt Tuza

Projective planes

Theorem (Bacsó, Tuza, 2007)

As $q \rightarrow \infty$,

- $\bar{\chi}\left(\Pi_{q}\right) \leq v-(2 q+\sqrt{q} / 2)+o(\sqrt{q})$;
- for q square, $\bar{\chi}(\operatorname{PG}(2, q)) \geq v-(2 q+2 \sqrt{q}+1)=v-\tau_{2}+1$;
- $\bar{\chi}(\operatorname{PG}(2, q)) \leq v-(2 q+\sqrt{q})+o(\sqrt{q})$;
- for q non-square, $\bar{\chi}(\mathrm{PG}(2, q)) \leq v-\left(2 q+C q^{2 / 3}\right)+o(\sqrt{q})$.

Theorem (Bacsó, Héger, SzT)

Let Π_{q} be an arbitrary projective plane of order $q \geq 4$, and let $\tau_{2}\left(\Pi_{q}\right)=2(q+1)+c\left(\Pi_{q}\right)$. Then

$$
\bar{\chi}\left(\Pi_{q}\right)<q^{2}-q-\frac{2 c\left(\Pi_{q}\right)}{3}+4 q^{2 / 3}
$$

Tamás Héger

Bacsó, Héger, Szőnyi $\quad \tau_{\mathbf{2}}(\mathrm{PG}(2, q))$ and $\bar{\chi}(\operatorname{PG}(2, q))$

Projective planes

Theorem (Bacsó, Tuza, 2007)

As $q \rightarrow \infty$,

- $\bar{\chi}\left(\Pi_{q}\right) \leq v-(2 q+\sqrt{q} / 2)+o(\sqrt{q})$;
- for q square, $\bar{\chi}(\operatorname{PG}(2, q)) \geq v-(2 q+2 \sqrt{q}+1)=v-\tau_{2}+1$;
- $\bar{\chi}(\operatorname{PG}(2, q)) \leq v-(2 q+\sqrt{q})+o(\sqrt{q})$;
- for q non-square, $\bar{\chi}(\mathrm{PG}(2, q)) \leq v-\left(2 q+C q^{2 / 3}\right)+o(\sqrt{q})$.

Theorem (Bacsó, Héger, SzT)

Let Π_{q} be an arbitrary projective plane of order $q \geq 4$, and let $\tau_{2}\left(\Pi_{q}\right)=2(q+1)+c\left(\Pi_{q}\right)$. Then

$$
\bar{\chi}\left(\Pi_{q}\right)<q^{2}-q-\frac{2 c\left(\Pi_{q}\right)}{3}+4 q^{2 / 3}
$$

Improvement for projective planes

Theorem (Bacsó, Héger, SzT)

Let $v=q^{2}+q+1$. Suppose that $\tau_{2}(\operatorname{PG}(2, q)) \leq c_{0} q-8$, $c_{0}<8 / 3$, and let $q \geq \max \left\{\left(6 c_{0}-11\right) /\left(8-3 c_{0}\right), 15\right\}$. Then

$$
\bar{\chi}(\mathrm{PG}(2, q))<v-\tau_{2}+\frac{c_{0}}{3-c_{0}} .
$$

In particular, $\bar{\chi}(\mathrm{PG}(2, q)) \leq v-\tau_{2}+7$.

Theorem (Bacsó, Héger, SzT)

Let $q=p^{h}, p$ prime. Suppose that either $q>256$ is a square, or $h \geq 3$ odd and $p \geq 29$. Then $\bar{\chi}(\mathrm{PG}(2, q))=v-\tau_{2}+1$, and equality is reached only by trivial colorings.
C_{1}, \ldots, C_{n} : color classes of size at least two (only these are useful)
C_{i} colors the line ℓ iff $\left|\ell \cap C_{i}\right| \geq 2$.
All lines have to be colored, so $\mathcal{B}=\bigcup_{i=1}^{n} C_{i}$ is a double blocking set.

We use $v-|\mathcal{B}|+n$ colors.

To reach the trivial coloring, we must have $v-|\mathcal{B}|+n \geq v-\tau_{2}+1$, thus we need

$$
n \geq|\mathcal{B}|-\tau_{2}+1
$$

colors in \mathcal{B}.
C_{1}, \ldots, C_{n} : color classes of size at least two (only these are useful)
C_{i} colors the line ℓ iff $\left|\ell \cap C_{i}\right| \geq 2$.
All lines have to be colored, so $\mathcal{B}=\bigcup_{i=1}^{n} C_{i}$ is a double blocking set.

We use $v-|\mathcal{B}|+n$ colors.

To reach the trivial coloring, we must have $v-|\mathcal{B}|+n \geq v-\tau_{2}+1$, thus we need

$$
n \geq|\mathcal{B}|-\tau_{2}+1
$$

colors in \mathcal{B}.

Eliminating color classes of size two

So there is at most one color class of size two.

$|\mathcal{B}| \gtrsim 3 q-\varepsilon$

Recall that $\tau_{2} \lesssim 2.5 q$.
$L\left(C_{i}\right):=$ the number of lines colored by C_{i}. Then $L\left(C_{i}\right) \leq\binom{\left|C_{i}\right|}{2}$.
By convexity, to satisfy

$$
q^{2}+q+1 \leq \sum L\left(C_{i}\right) \leq \sum\binom{\left|C_{i}\right|}{2}
$$

the best is to have one giant, and many dwarf color classes. But as

$$
|\mathcal{B}|-\tau_{2}+1 \leq n \leq 1+\frac{|\mathcal{B}|-\left|C_{\text {giant }}\right|}{3}
$$

the giant can not be large enough.

$|\mathcal{B}| \gtrsim 3 q-\varepsilon$

Recall that $\tau_{2} \lesssim 2.5 q$. Say, $\tau_{2} \approx 2.5 q$.
$L\left(C_{i}\right):=$ the number of lines colored by C_{i}. Then $L\left(C_{i}\right) \leq\binom{\left|C_{i}\right|}{2}$.
By convexity, to satisfy

$$
q^{2}+q+1 \leq \sum L\left(C_{i}\right) \leq \sum\binom{\left|C_{i}\right|}{2}
$$

the best is to have one giant, and many dwarf color classes. But as

$$
0.5 q \lesssim|\mathcal{B}|-\tau_{2}+1 \leq n \leq 1+\frac{|\mathcal{B}|-\left|C_{\text {giant }}\right|}{3}
$$

the giant can not be large enough: $\left|C_{\text {giant }}\right| \lesssim 1.5 q$.

$|\mathcal{B}| \gtrsim 3 q-\varepsilon$

Recall that $\tau_{2} \lesssim 2.5 q$. Say, $\tau_{2} \approx 2.5 q$.
$L\left(C_{i}\right):=$ the number of lines colored by C_{i}. Then $L\left(C_{i}\right) \leq\binom{\left|C_{i}\right|}{2}$.
By convexity, to satisfy

$$
q^{2}+q+1 \leq \sum L\left(C_{i}\right) \leq \sum\binom{\left|C_{i}\right|}{2}
$$

the best is to have one giant, and many dwarf color classes. But as

$$
0.5 q \lesssim|\mathcal{B}|-\tau_{2}+1 \leq n \leq 1+\frac{|\mathcal{B}|-\left|C_{\text {giant }}\right|}{3}
$$

the giant can not be large enough: $\left|C_{\text {giant }}\right| \lesssim 1.5 q$.
However, if $\left|C_{\text {giant }}\right| \geq q+2$, we use $L\left(C_{i}\right) \leq \frac{(q+1)}{2}\left|C_{i}\right|$.

Gács, Ferret, Kovács, Sziklai

$$
\text { Bacsó, Héger, Szőnyi } \quad \tau_{\mathbf{2}}(\operatorname{PG}(2, q)) \text { and } \bar{\chi}(\operatorname{PG}(2, q))
$$

Zsuzsa Weiner

$\tau_{2}+\varepsilon^{\prime} \lesssim|\mathcal{B}| \lesssim 3 q-\varepsilon$

Lemma (Ferret, Storme, Sziklai, Weiner)

Let \mathcal{B} be t-fold blocking set in $\mathrm{PG}(2, q),|\mathcal{B}|=t(q+1)+k$, and $P \in \mathcal{B}$ be an essential point of \mathcal{B}. Then there are at least $(q+1-k-t) t$-secants of \mathcal{B} through P.

Corollary

Let \mathcal{B} be a t-fold blocking set with $|\mathcal{B}| \leq(t+1) q$ points. Then there is exactly one minimal t-fold blocking set in \mathcal{B}, namely the set of essential points.

Remark

Harrach has a recent result on the unique reducibility of weighted t-fold ($n-k$)-blocking sets in the projective space $\mathrm{PG}(n, q)$.

$\tau_{2}+\varepsilon^{\prime} \lesssim|\mathcal{B}| \lesssim 3 q-\varepsilon$

Lemma (Ferret, Storme, Sziklai, Weiner)

Let \mathcal{B} be t-fold blocking set in $\operatorname{PG}(2, q),|\mathcal{B}|=t(q+1)+k$, and $P \in \mathcal{B}$ be an essential point of \mathcal{B}. Then there are at least $(q+1-k-t) t$-secants of \mathcal{B} through P.

Corollary
Let \mathcal{B} be a t-fold blocking set with $|\mathcal{B}| \leq(t+1) q$ points. Then there is exactly one minimal t-fold blocking set in \mathcal{B}, namely the set of essential points.

Remark

Harrach has a recent result on the unique reducibility of weighted t-fold ($n-k$)-blocking sets in the projective space $\operatorname{PG}(n, q)$

$\tau_{2}+\varepsilon^{\prime} \lesssim|\mathcal{B}| \lesssim 3 q-\varepsilon$

Lemma (Ferret, Storme, Sziklai, Weiner)

Let \mathcal{B} be t-fold blocking set in $\operatorname{PG}(2, q),|\mathcal{B}|=t(q+1)+k$, and $P \in \mathcal{B}$ be an essential point of \mathcal{B}. Then there are at least $(q+1-k-t) t$-secants of \mathcal{B} through P.

Corollary

Let \mathcal{B} be a t-fold blocking set with $|\mathcal{B}| \leq(t+1) q$ points. Then there is exactly one minimal t-fold blocking set in \mathcal{B}, namely the set of essential points.

> Remark
> Harrach has a recent result on the unique reducibility of weighted t-fold $(n-k)$-blocking sets in the projective space $\mathrm{PG}(n, q)$

$\tau_{2}+\varepsilon^{\prime} \lesssim|\mathcal{B}| \lesssim 3 q-\varepsilon$

Lemma (Ferret, Storme, Sziklai, Weiner)

Let \mathcal{B} be t-fold blocking set in $\operatorname{PG}(2, q),|\mathcal{B}|=t(q+1)+k$, and $P \in \mathcal{B}$ be an essential point of \mathcal{B}. Then there are at least $(q+1-k-t) t$-secants of \mathcal{B} through P.

Corollary

Let \mathcal{B} be a t-fold blocking set with $|\mathcal{B}| \leq(t+1) q$ points. Then there is exactly one minimal t-fold blocking set in \mathcal{B}, namely the set of essential points.

Remark

Harrach has a recent result on the unique reducibility of weighted t-fold ($n-k$)-blocking sets in the projective space $\operatorname{PG}(n, q)$.

$\tau_{2}+\varepsilon^{\prime} \lesssim|\mathcal{B}| \lesssim 3 q-\varepsilon$

Clear: if ℓ is a 2 -secant to \mathcal{B}, then $\ell \cap \mathcal{B}$ is monochromatic. Let $|\mathcal{B}|=2(q+1)+k$. Then

Proposition

Every color class containing an essential point of \mathcal{B} has at least ($q-k$) points.
$\mathcal{B}=\mathcal{B}^{*} \cup \mathcal{B}^{\prime}$, where \mathcal{B}^{*} is the set of essential points, $\left|\mathcal{B}^{*}\right| \geq \tau_{2}$.
We have

$$
|\mathcal{B}|-\tau_{2}+1 \leq n \leq \frac{|\mathcal{B}|-\left|\mathcal{B}^{*}\right|}{3}+\frac{\left|\mathcal{B}^{*}\right|}{q-k},
$$

so

$$
\frac{2}{3}\left(|\mathcal{B}|-\tau_{2}\right)(q-k) \leq \tau_{2}
$$

Aart Blokhuis

Bacsó, Héger, Szőnyi $\quad \tau_{\mathbf{2}}(\mathrm{PG}(2, q))$ and $\bar{\chi}(\operatorname{PG}(2, q))$

$|\mathcal{B}| \leq \tau_{2}+\varepsilon, q>256$ square (so $\left.\tau_{2}=2(q+\sqrt{q}+1)\right)$

Blokhuis, Storme, SzT: \mathcal{B} contains two disjoint Baer subplanes, \mathcal{B}_{1} and \mathcal{B}_{2}. $\mathcal{B}^{*}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ can not be monochromatic.

$|\mathcal{B}| \leq \tau_{2}+\varepsilon, q>256$ square (so $\left.\tau_{2}=2(q+\sqrt{q}+1)\right)$

Blokhuis, Storme, SzT: \mathcal{B} contains two disjoint Baer subplanes, \mathcal{B}_{1} and \mathcal{B}_{2}. $\mathcal{B}^{*}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ can not be monochromatic.

Let $P \in \mathcal{B}_{1}$ be purple.

$|\mathcal{B}| \leq \tau_{2}+\varepsilon, q>256$ square $\left(\right.$ so $\left.\tau_{2}=2(q+\sqrt{q}+1)\right)$

Blokhuis, Storme, SzT: \mathcal{B} contains two disjoint Baer subplanes, \mathcal{B}_{1} and \mathcal{B}_{2}. $\mathcal{B}^{*}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ can not be monochromatic.

Let $P \in \mathcal{B}_{1}$ be purple. There are at least $(q-\sqrt{q}-\varepsilon-1)$ 2-secants on P, so there are a lot of purple points in \mathcal{B}_{2}.

$|\mathcal{B}| \leq \tau_{2}+\varepsilon, q>256$ square $\left(\right.$ so $\left.\tau_{2}=2(q+\sqrt{q}+1)\right)$

Blokhuis, Storme, SzT: \mathcal{B} contains two disjoint Baer subplanes, \mathcal{B}_{1} and \mathcal{B}_{2}. $\mathcal{B}^{*}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ can not be monochromatic.

Let $P \in \mathcal{B}_{1}$ be purple. There are at least $(q-\sqrt{q}-\varepsilon-1)$ 2 -secants on P, so there are a lot of purple points in \mathcal{B}_{2}.

The same from \mathcal{B}_{2} : we have at least $2(q-\sqrt{q}-\varepsilon-1)$ purple points.

$|\mathcal{B}| \leq \tau_{2}+\varepsilon, q>256$ square $\left(\right.$ so $\left.\tau_{2}=2(q+\sqrt{q}+1)\right)$

Blokhuis, Storme, SzT: \mathcal{B} contains two disjoint Baer subplanes, \mathcal{B}_{1} and \mathcal{B}_{2}. $\mathcal{B}^{*}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ can not be monochromatic.

Let $P \in \mathcal{B}_{1}$ be purple. There are at least $(q-\sqrt{q}-\varepsilon-1)$ 2 -secants on P, so there are a lot of purple points in \mathcal{B}_{2}.

The same from \mathcal{B}_{2} : we have at least $2(q-\sqrt{q}-\varepsilon-1)$ purple points.

If we have brown points as well:

$|\mathcal{B}| \leq \tau_{2}+\varepsilon, q>256$ square $\left(\right.$ so $\left.\tau_{2}=2(q+\sqrt{q}+1)\right)$

Blokhuis, Storme, SzT: \mathcal{B} contains two disjoint Baer subplanes, \mathcal{B}_{1} and \mathcal{B}_{2}. $\mathcal{B}^{*}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ can not be monochromatic.

Let $P \in \mathcal{B}_{1}$ be purple. There are at least $(q-\sqrt{q}-\varepsilon-1)$ 2 -secants on P, so there are a lot of purple points in \mathcal{B}_{2}.

The same from \mathcal{B}_{2} : we have at least $2(q-\sqrt{q}-\varepsilon-1)$ purple points.

If we have brown points as well: $|\mathcal{B}| \geq 4(q-\sqrt{q}-\varepsilon-1)$

$|\mathcal{B}| \leq \tau_{2}+\varepsilon$

By melting color classes, we may assume $n=2, \mathcal{B}^{*}=\mathcal{B}^{r} \cup \mathcal{B}^{g}$, $\left|\mathcal{B}^{*}\right|=2(q+1)+k$.

For a line ℓ, let

$$
\begin{aligned}
n_{\ell}^{r} & =\left|\mathcal{B}^{r} \cap \ell\right| \\
n_{\ell}^{g} & =\left|\mathcal{B}^{g} \cap \ell\right| \\
n_{\ell} & =n_{\ell}^{r}+n_{\ell}^{g}=|\mathcal{B} \cap \ell| .
\end{aligned}
$$

Define the set of red, green and balanced lines as

$$
\begin{aligned}
\mathcal{L}^{r} & =\left\{\ell \in \mathcal{L}: n_{\ell}^{r}>n_{\ell}^{g}\right\} \\
\mathcal{L}^{g} & =\left\{\ell \in \mathcal{L}: n_{\ell}^{g}>n_{\ell}^{r}\right\} \\
\mathcal{L}^{=} & =\left\{\ell \in \mathcal{L}: n_{\ell}^{r}=n_{\ell}^{g}\right\}
\end{aligned}
$$

$|\mathcal{B}| \leq \tau_{2}+\varepsilon$

Using double counting, we get

$$
\begin{gathered}
\sum_{\ell \in \mathcal{L}} n_{\ell}=\left|\mathcal{B}^{*}\right|(q+1), \text { hence } \\
\sum_{\ell \in \mathcal{L}: n_{\ell}>2} n_{\ell} \geq \sum_{\ell \in \mathcal{L}}\left(n_{\ell}-2\right)=\left|\mathcal{B}^{*}\right|(q+1)-2\left(q^{2}+q+1\right) \gtrsim k q
\end{gathered}
$$

On the other hand, $\sum_{\ell \in \mathcal{L}: n_{\ell}>2} n_{\ell}=$
$\sum_{\ell \in \mathcal{L}^{r}: n_{\ell}>2}\left(n_{\ell}^{r}+n_{\ell}^{g}\right)+\sum_{\ell \in \mathcal{L}^{g}: n_{\ell}>2}\left(n_{\ell}^{r}+n_{\ell}^{g}\right)+\sum_{\ell \in \mathcal{L}^{=}: n_{\ell}>2}\left(n_{\ell}^{r}+n_{\ell}^{g}\right) \leq$
$\sum_{\ell \in \mathcal{L}^{r}: n_{\ell}>2} 2 n_{\ell}^{r}+\sum_{\ell \in \mathcal{L}^{g}: n_{\ell}>2} 2 n_{\ell}^{g}+\sum_{\ell \in \mathcal{L}^{=}: n_{\ell}>2} 2 n_{\ell}^{r} \leq 4 . \sum_{\ell \in \mathcal{L}^{r} \cup \mathcal{L}^{=}: n_{\ell}>2} n_{\ell}^{r}$.

$|\mathcal{B}| \leq \tau_{2}+\varepsilon$

Thus

$$
\frac{k q}{4} \leq \sum_{\ell \in \mathcal{L}^{r} \cup \mathcal{L}^{=}: n_{\ell}>2} n_{\ell}^{r},
$$

so there is a red point P with at least $\frac{k q}{4\left|\mathcal{B}^{r}\right|}$ (half)-red long secants through it.

Theorem (Blokhuis, Lovász, Storme, SzT)

Let B be a minimal t-fold blocking set in $\operatorname{PG}(2, q), q=p^{h}, h \geq 1$, $|B|<t q+(q+3) / 2$. Then every line intersects B in $t(\bmod p)$ points.

László Lovász

$|\mathcal{B}| \leq \tau_{2}+\varepsilon$

Thus

$$
\frac{k q}{4} \leq \sum_{\ell \in \mathcal{L}^{r} \cup \mathcal{L}^{=}: n_{\ell}>2} n_{\ell}^{r},
$$

so there is a red point P with at least $\frac{k q}{4\left|\mathcal{B}^{r}\right|}$ (half)-red long secants through it.

Theorem (Blokhuis, Lovász, Storme, SzT)

Let B be a minimal t-fold blocking set in $\operatorname{PG}(2, q), q=p^{h}, h \geq 1$, $|B|<t q+(q+3) / 2$. Then every line intersects B in $t(\bmod p)$ points.

Thus on each of these long secants we find at least $p / 2$ new red points.

$|\mathcal{B}| \leq \tau_{2}+\varepsilon$

So we see:
$\frac{k p q}{8\left|\mathcal{B}^{r}\right|}$ red points on the red long secants through P, $q-k$ red points on the red two-secants through P, and $q-k$ green points.

Note that $\left|\mathcal{B}_{r}\right| \leq|\mathcal{B}|-\left|\mathcal{B}^{g}\right| \leq 2 q+k-(q-k)=q+2 k<2 q$.
Thus $2 q+k \gtrsim|\mathcal{B}| \geq 2 q-2 k+\frac{k p q}{8\left|\mathcal{B}^{r}\right|} \geq 2 q-2 k+\frac{k p}{16}$

Two disjoint blocking sets

Let $q=p^{h}, h \geq 3$ odd, p not necessarily prime, p odd. Let $m=(q-1) /(p-1)=p^{h-1}+p^{h-2}+\ldots+1$. Note that m is odd.

Let $f(x)=a\left(x^{p}+x\right), a \in \operatorname{GF}(q)^{*}$. Then f is $\operatorname{GF}(p)$-linear, and determines the directions $\left\{\frac{f(x)-f(y)}{(x-y)}: x \neq y\right\}=\{f(x) / x: x \neq 0\}=$ $\{(1: f(x) / x: 0): x \neq 0\}=\{(x: f(x): 0): x \neq 0\}$. Thus

$$
B_{1}=\underbrace{\{(x: f(x): 1)\}}_{A_{1}} \cup \underbrace{\{(x: f(x): 0)\}_{x \neq 0}}_{I_{1}}
$$

is a blocking set of Rédei type. Similarly, for $g(x)=x^{p}$,

$$
B_{2}=\underbrace{\{(y: 1: g(y))\}}_{A_{2}} \cup \underbrace{\{(y: 0: g(y))\}_{y \neq 0}}_{l_{2}}
$$

is also a blocking set.

$$
\begin{aligned}
& B_{1}=\underbrace{\{(x: f(x): 1)\}}_{A_{1}} \cup \underbrace{\{(x: f(x): 0)\}_{x \neq 0}}_{I_{1}} \\
& B_{2}=\underbrace{\{(y: 1: g(y))\}}_{A_{2}} \cup \underbrace{\{(y: 0: g(y))\}_{y \neq 0}}_{I_{2}}
\end{aligned}
$$

$$
f(x)=0 \text { iff } x^{p}+x=x\left(x^{p-1}+1\right)=0 . \text { As }
$$

$$
-1=(-1)^{m} \neq x^{(p-1) m}=x^{q-1}=1
$$

$f(x)=0$ iff $x=0$.
$I_{2} \cap B_{1}$ is empty, as $(0: 0: 1) \notin I_{2}$.
If $(x: f(x): 0) \equiv(y: 1: g(y)) \in \iota_{1} \cap A_{2}$, then $g(y)=0$, hence $y=0$ and $x=0$, a contradiction. So $I_{1} \cap A_{2}=\emptyset$.

$$
\begin{aligned}
& B_{1}=\underbrace{\{(x: f(x): 1)\}}_{A_{1}} \cup \underbrace{\{(x: f(x): 0)\}_{x \neq 0}}_{I_{1}} \\
& B_{2}=\underbrace{\{(y: 1: g(y))\}}_{A_{2}} \cup \underbrace{\{(y: 0: g(y))\}_{y \neq 0}}_{I_{2}}
\end{aligned}
$$

Now we need $A_{1} \cap A_{2}=\emptyset$.
$(y: 1: g(y)) \equiv(x: f(x): 1)(x \neq 0)$ iff
$(y ; 1 ; g(y))=(x / f(x) ; 1 ; 1 / f(x))$, in which case
$1 / f(x)=g(x / f(x))=g(x) / g(f(x))$.
Thus we need that $g(x)=g(f(x)) / f(x)=f(x)^{p-1}$ that is, $x^{p}=\left(a\left(x^{p}+x\right)\right)^{p-1}=a^{p-1} x^{p-1}\left(x^{p-1}+1\right)^{p-1}$ has no solution in $\mathrm{GF}(q)^{*}$.

Two disjoint blocking sets

Equivalent form:

$$
\frac{1}{a^{p-1}}=\frac{\left(x^{p-1}+1\right)^{p-1}}{x}=\left(x^{p-1}+1\right)^{p-1} x^{q-2}=: h(x)
$$

should have no solutions.
Let $D=\left\{x^{m}: x \in \operatorname{GF}(q)^{*}\right\}=\left\{x^{(p-1)}: x \in \operatorname{GF}(q)^{*}\right\}$. Then $1 / a^{p-1} \in D$.

Note that $h(x) \in D \Longleftrightarrow x \in D$.
So to find an element a such that $1 / a^{(p-1)}$ is not in the range of h, we need that $\left.h\right|_{D}: D \rightarrow D$ does not permute D.

Permutation polynomials

Theorem (Hermite-Dickson)

Let $f \in \operatorname{GF}(q)[X], q=p^{h}$, p prime. Then f permutes $\mathrm{GF}(q)$ iff the following conditions hold:

- f has exactly one root in $\mathrm{GF}(q)$;
- for each integer $t, 1 \leq t \leq q-2$ and $p \nmid t, f(X)^{t}$ $\left(\bmod X^{q}-X\right)$ has degree $q-2$.

A variation for multiplicative subgroups of $\mathrm{GF}(q)^{*}$:

Theorem

Suppose $d \mid q-1$, and let $D=\left\{x^{d}: x \in \operatorname{GF}(q)^{*}\right\}$ be the set of nonzero $d^{\text {th }}$ powers. Assume that $g \in \mathrm{GF}(q)[X]$ maps D into D.
Then $\left.g\right|_{D}$ is a permutation of D if and only if the constant term of $g(x)^{t}\left(\bmod x^{m}-1\right)$ is zero for all $1 \leq t \leq m-1$.

Two disjoint blocking sets

Recall that $h(X)=\left(X^{p-1}+1\right)^{p-1} X^{q-2}$. Let $t=p-1$, that is, consider
$h^{p-1}(X)=\sum_{k=0}^{(p-1)^{2}}\binom{(p-1)^{2}}{k} X^{k(p-1)+(p-1)(q-2)} \quad\left(\bmod X^{m}-1\right)$.
Since $k(p-1)+(p-1)(q-2) \equiv(k-1)(p-1)(\bmod m)$, the exponents reduced to zero are of form $k=1+\ell \frac{m}{(m, p-1)}$. Let r be the characteristic of the field $\operatorname{GF}(q)$. As $\binom{(p-1)^{2}}{1} \equiv 1(\bmod r)$, it is enough to show that $\binom{(p-1)^{2}}{k} \equiv 0(\bmod r)$ for the other possible values of k.

Suppose $h \geq 5$. Then $m /(m, p-1)>m / p>p^{h-2}>p^{2}$, thus by $k \leq(p-1)^{2}, \ell \geq 1$ does not occur at all. The case $h=3$ can also be done.

Geertrui Van De Voorde

Two disjoint blocking sets

Using a higher dimensional representation of projective planes, VAN DE VOORDE could also contruct two disjoint bl. sets. Moreover she could specify that one of them is of Trace-type.

Theorem (G. Van De Voorde)

Let B be any non-trivial blocking set of size $<3(q+1) / 2$. Then there is a linear blocking set disjoint to B.

It is known that a $\operatorname{GF}\left(p^{e}\right)$-linear blocking set $(e \mid h)$ has size at most $2\left(q+(q-1) /\left(p^{e}-1\right)\right)$. Taking the smallest known blocking set (of size $q+q / p^{e}+1$) as B, it shows
$\tau_{2} \leq 2 q+q / p^{e}+1+(q-1) /\left(p^{e}-1\right)$. She could also show the existence of a double blocking set of size $2\left(q+q / p^{e}+1\right)$.

Multiple blocking sets in higher dims

Definition

A set B is a t-fold k-blocking set, if B meets each ($n-k$)-dim. subspace in $\geq t$ pts. In many cases B can be a multiset.

For $k=1$ we just call them t-fold blocking sets. Trivial lower bound: $|B| \geq t(q+1)$ or $\left.|B| \geq t\left(q^{k}+\ldots+q+1\right)\right)$ for k-blocking sets. In higher dims it can be reached as the sum (union) of lines (and similarly, if k is small, we have disjoint k-subspaces as the smallest examples).
Later we shall use results for $t=2$. So $|B| \geq 2 q^{k}+\ldots$ in this case.

Bacsó, Héger, Szőnyi $\quad \tau_{\mathbf{2}}(\operatorname{PG}(\mathbf{2}, \mathbf{q}))$ and $\bar{\chi}(\operatorname{PG}(\mathbf{2}, \boldsymbol{q}))$

They prove similar results to the Blokhuis-Storme-SzT results in higher dims.

Theorem (Barát and Storme)

Let B be a t-fold 1-blocking set in $\operatorname{PG}(n, q), q=p^{h}, p$ prime, $q \geq 661, n \geq 3$, of size $|B|<t q+c_{p} q^{2 / 3}-(t-1)(t-2) / 2$, with $c_{2}=c_{3}=2^{-1 / 3}, c_{p}=1$ when $p>3$, and with $t<\min \left(c_{p} q^{1 / 6}, q^{1 / 4} / 2\right)$. Then B contains a union of t pairwise disjoint lines and/or Baer subplanes.

The analogous result for (1-fold) blocking sets is due to STORME, WEINER. Some multiple points are also allowed here (in the plane).

Theorem (Ferret,Storme, Sziklai, Weiner)

Let B be a minimal weighted t-fold blocking set in $\operatorname{PG}(2, q)$, $q=p^{h}, p$ prime, $h \geq 1$, with $|B|=t q+t+k, t+k<(q+3) / 2$, $k \geq 2$. Then every line intersects B in $t(\bmod p)$ points.

The corresponding result for non-weighted t-fold blocking sets is due to BLOKHUIS, LOVÁSZ, STORME, SzT. We remark that such a results (for non-weighted sets) immediately gives an upper bound on the size, which can be combined that the sizes are in certain intervals.

t modulo p result for k-blocking sets

> Theorem (Ferret, Storme, Sziklai, Weiner)
> A minimal weighted t-fold 1-blocking set B in $\operatorname{PG}(n, q), q=p^{h}, p$ prime, $h \geq 1$, of size $|B|=t q+t+k, t+k \leq(q-1) / 2$, intersects every hyperplane in $t(\bmod p)$ points.

Theorem (Ferret, Storme, Sziklai, Weiner)

Let B be a minimal weighted t-fold $(n-k)$-blocking set of $\operatorname{PG}(n, q), q=p^{h}, p$ prime, $h \geq 1$, of size $|B|=t q^{n-k}+t+k^{\prime}$, with $t+k^{\prime} \leq\left(q^{n-k}-1\right) / 2$.
Then B intersects every k-dimensional subspace in $t(\bmod p)$ points.

Theorem (Barát, Storme)

Let B be a t-fold 1-blocking set in $\operatorname{PG}(n, q), q=p^{h}, p$ prime, $q \geq 661, n \geq 3$, of size $|B|<t q+c_{p} q^{2 / 3}$, with $c_{2}=c_{3}=2^{-1 / 3}$, $c_{p}=1$ when $p>3$, and with $t<c_{p} q^{1 / 6} / 2$. Then B contains a union of t pairwise disjoint lines and/or Baer subplanes.

They also have more general results for k-blocking sets, but it is stated only for q square. As remarked earlier, the bounds for q non-square are signifivcantly weaker. Somewhat weaker but easier to prove bounds are due to KLEIN, METSCH. Recently, ZOLTÁN BLÁZSIK extended the results for q non-square.

The case of k-blocking sets

The case q square in the next theorem is due to FERRET, STORME, SZIKLAI, WEINER, the non-square case to BLÁZSIK.

Theorem (Ferret et al., Blázsik)

Let B be a t-fold k-blocking set in $\operatorname{PG}(n, q), q=p^{h}$, p prime, $q \geq 661, n \geq 3$, of size
$|B|=t q^{k}+c<t q^{k}+2 t q^{k-1} \sqrt{q}<t q^{k}+c_{p} q^{k-1 / 3}$, with
$c_{2}=c_{3}=2^{-1 / 3}, c_{p}=1$ when $p>3$, and with $t<c_{p} q^{1 / 6} / 2$. Then
B contains a union of t pairwise disjoint cones
$\left\langle\pi_{m_{i}}, \mathrm{PG}\left(2 k-m_{i}-1, \sqrt{q}\right)\right\rangle,-1 \leq m_{i} \leq k-1, i=1, \ldots, t$
So, small enough double blocking sets can be decomposed into disjoint blocking sets.

Upper chromatic number for spaces: stability version

Theorem (Héger-SzT)

Let $q \geq 37, n \geq 3,1 \leq k<n / 2$ and consider $\Sigma=\mathrm{PG}_{n-k}(n, q)$. Then $\bar{\chi}(\Sigma)=v-\tau_{2}+1$. Moreover, if $d \leq q^{k} / 20$ and $2 d+3 \leq c$, where c is the value in the stability result by
Ferret-Storme-Sziklai-Weiner, then any proper coloring of Σ using at least $v-\tau_{2}+1-d$ colors is trivial in the sense that it colors each point of two disjoint blocking sets with the same color.

Sketch of the proof I

Let C_{1}, \ldots, C_{m} be the color classes of size at least two. Let $N=v-2\left[\begin{array}{c}k+1 \\ 1\end{array}\right]+1-d$ be the no. of colors. As every ($n-k$)-space has to be colored, $B=C_{1} \cup \ldots \cup C_{m}$ has to be a 2-fold k-blocking set.

Proposition

- $m \geq|B|-2\left[\begin{array}{c}k+1 \\ 1\end{array}\right]+1-d$
- $m \leq 2\left[\begin{array}{c}k+1 \\ 1\end{array}\right]+d-1$
- $|B| \leq 4\left[\begin{array}{c}k+1 \\ 1\end{array}\right]+2(d-1)$

Sketch of the proof II

We say that a color class C colors the $(n-k)$-space U if $|C \cap U| \geq 2$.

Lemma

A color class C colors at most $\binom{|C|}{2}\left[\begin{array}{c}n-1 \\ k\end{array}\right]$ distinct $(n-k)$-spaces.

Proposition

Let $q \geq 4$, and suppose that $d \leq 0.05 q^{k}$. Then
$|\mathcal{B}| \geq 4\left[\begin{array}{c}k+1 \\ 1\end{array}\right]-\sqrt{2} q^{k}+2 d+2$ cannot occur. In particular,
$|B| \geq(2.8+8 / q) q^{k}+2$ cannot hold.

Nóra Harrach

Sketch of the proof III

We need a result of NÓRA HARRACH: Suppose that a t-fold s-blocking set S in $\operatorname{PG}(n, q)$ has less than $(t+1) q^{s}+\left[\begin{array}{l}s \\ 1\end{array}\right]$ points. Then S contains a unique minimal t-fold s-blocking set S^{\prime}.

Lemma

Suppose that a color class C contains an essential point P of B. Then C contains at least $3 q^{k}-|B|+\left[\begin{array}{l}k \\ 1\end{array}\right]$ further essential points of \mathcal{B}, and for each such point Q there exists an $(n-k)$ space U such that $U \cap B=\{P ; Q\}$. In particular, $|C| \geq 3 q^{k}-|\mathcal{B}|+\left[\begin{array}{l}k \\ 1\end{array}\right]+1$.

Proposition

Assume that $d \leq q^{k} / 20$ and $q \geq 29$. Suppose that $|B| \leq 3 q^{k}+\left[\begin{array}{l}k \\ 1\end{array}\right]-4$; for example, $|B| \leq(2.8+8 / q) q^{k}+2$, where $q \geq 37$. Then $|B| \leq 2\left[\begin{array}{c}k+1 \\ 1\end{array}\right]+2 d+3$.

Hence B is the union of two disjoint k-blocking set and they have to be colored by just one color.

Balanced upper chromatic number

ARAUJO-PARDO, KISS, MONTEJANO consider balanced coloring, when the sizes of color classes differ by at most 1 . The maximum number of colors one can have in a balanced rainbow-free coloring is denoted by $\bar{\chi}_{b}$.

Theorem (Araujo-Pardo, Kiss, Montejano)

For a cyclic projective plane Π_{q} one has
$\left(\left(q^{2}+q+1\right) / 6 \leq \bar{\chi}_{b}\left(\Pi_{q}\right) \leq\left(q^{2}+q+1\right) / 3\right.$, with equality in the upper bound if 3 divides $q^{2}+q+1$.

They also have some results for 3 and more dimensions and also results of similar flavour, see GYURI KISS's talk.

Thank you for your attention!

