
The 2-blocking number and the upper chromatic

number of PG(2, q)

Tamás Szőnyi

Joint work with Gábor Bacsó and Tamás Héger

Eötvös Loránd University, MTA-ELTE GAC Research Group

and Ghent University

Budapest and Ghent

July 2, 2014

Bacsó, Héger, Szőnyi τ2(PG(2, q)) and χ̄(PG(2, q))



The problem

Color the vertices of a hypergraph H.

A hyperedge is rainbow, if its vertices have pairwise distinct colors.

The upper chromatic number of H, χ̄(H): the maximum number
of colors that can be used without creating a rainbow hyperedge
(V. VOLOSHIN).

For graphs it gives the number of connected components.
Determining χ̄(Πq) and χ̄(PG(2, q)) has been a goal since the
mid-1990s.
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Trivial coloring

v := q2 + q + 1, the number of points in Πq.

τ2 := the size of the smallest double blocking set in Πq.

Then χ̄(Πq) ≥ v − τ2 + 1.

We call this a trivial coloring.
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What is known about blocking sets?

blocking set: meets every line, smallest one: line
non-trivial blocking set: contains no line
BRUEN: a non-triv. bl. set has ≥ q +

√
q + 1 points, in case of

equality it is a Baer subplane
Better results for PG(2, q), q = ph, p prime:
BLOKHUIS for q = p, prime, the size is at least 3(p + 1)/2, and
there are examples for every q
SzT, SZIKLAI: for q 6= p, a minimal blocking set meets every line
in 1 modulo p (or rather in) 1 modulo pe points with some e|h;
there are several examples (linear bl. sets) In particular, there are
bl. sets of size q + ((q − 1)/(pe − 1) and q + q/pe + 1.
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Simeon Ball
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What is known about (double) blocking sets?

double blocking set: meets each line in ≥ 2 pts. analogue of
Bruen’s bound: |B| ≥ 2q +

√
2q + ..., not sharp

For PG(2, q): |B| ≥ 2q + 2
√

q + 2 (BALL-BLOKHUIS, sharp for q
square. In case of equality: union of two Baer subplanes (GÁCS,
SzT)
When q is prime, then |B| ≥ 2q + 2 + (q + 1)/2 (BALL. Known
examples have at least 3p − 1 points (examples are due to BRAUN,
KOHNERT, WASSERMANN and recently to HÉGER).
The results are generalized to t-fold blocking sets, e.g. the lines
meet small t-fold blocking sets in t modulo p points, see more
details later.
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What is known about τ2?

Theorem

For the minimum size τ2 of a double blocking set in PG(2, q) the
following is known:

1 If q is a prime then 2q + (q + 5)/2 ≤ τ2 ≤ 3q − 1,

2 If q is a square then τ2 = 2(q +
√

q + 1), and in case of
equality the double blocking set is the union of two Baer
subplanesm

3 If q = ph, h > 1 odd, then 2q + cpq
2/3 ≤ τ2 ≤

2(q + (q − 1)/(pe − 1)), for the largest e|h, e 6= h.

In (3), the lower and upper bounds have the same order of
magnitude for 3|h (in particular, the lower bound can be improved
to 2q + 2q2/3 − ..., if h = 3). The upper bounds come from explicit
constructions, e.g. by POLVERINO, STORME; see more details
later.
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Gábor Bacsó, Zsolt Tuza
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Projective planes

Theorem (Bacsó, Tuza, 2007)

As q → ∞,

χ̄(Πq) ≤ v − (2q +
√

q/2) + o(
√

q);

for q square, χ̄(PG(2, q)) ≥ v − (2q + 2
√

q + 1) = v − τ2 + 1;

χ̄(PG(2, q)) ≤ v − (2q +
√

q) + o(
√

q);

for q non-square, χ̄(PG(2, q)) ≤ v − (2q + Cq2/3) + o(
√

q).

Theorem (Bacsó, Héger, SzT)

Let Πq be an arbitrary projective plane of order q ≥ 4, and let
τ2(Πq) = 2(q + 1) + c(Πq). Then

χ̄(Πq) < q2 − q − 2c(Πq)

3
+ 4q2/3.
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Improvement for projective planes

Theorem (Bacsó, Héger, SzT)

Let v = q2 + q + 1. Suppose that τ2(PG(2, q)) ≤ c0q − 8,
c0 < 8/3, and let q ≥ max{(6c0 − 11)/(8 − 3c0), 15}. Then

χ̄(PG(2, q)) < v − τ2 +
c0

3 − c0
.

In particular, χ̄(PG(2, q)) ≤ v − τ2 + 7.

Theorem (Bacsó, Héger, SzT)

Let q = ph, p prime. Suppose that either q > 256 is a square, or
h ≥ 3 odd and p ≥ 29. Then χ̄(PG(2, q)) = v − τ2 + 1, and
equality is reached only by trivial colorings.
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C1, . . . ,Cn: color classes of size at least two
(only these are useful)

Ci colors the line ℓ iff |ℓ ∩ Ci | ≥ 2.

All lines have to be colored, so

B =
n⋃

i=1

Ci is a double blocking set. B

We use v − |B| + n colors.

C1

C2

Cn

To reach the trivial coloring, we must have v −|B|+ n ≥ v − τ2 + 1,
thus we need

n ≥ |B| − τ2 + 1

colors in B.
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Eliminating color classes of size two

B
So there is at most one color class of size two.
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|B| & 3q − ε

Recall that τ2 . 2.5q. Say, τ2 ≈ 2.5q.

L(Ci ) := the number of lines colored by Ci . Then L(Ci ) ≤
(
|Ci |
2

)
.

By convexity, to satisfy

q2 + q + 1 ≤
∑

L(Ci ) ≤
∑

(|Ci |
2

)

,

the best is to have one giant, and many dwarf color classes. But as

0.5q .|B| − τ2 + 1 ≤ n ≤ 1 +
|B| −

∣
∣
∣Cgiant

∣
∣
∣

3
,

the giant can not be large enough. |Cgiant| . 1.5q

However, if
∣
∣
∣Cgiant

∣
∣
∣ ≥ q + 2, we use L(Ci ) ≤ (q+1)

2
|Ci |.
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Gács, Ferret, Kovács, Sziklai
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Leo Storme
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Zsuzsa Weiner
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τ2 + ε′ . |B| . 3q − ε

Lemma (Ferret, Storme, Sziklai, Weiner)

Let B be t-fold blocking set in PG(2, q), |B| = t(q + 1) + k, and
P ∈ B be an essential point of B. Then there are at least
(q + 1 − k − t) t-secants of B through P.

Corollary

Let B be a t-fold blocking set with |B| ≤ (t + 1)q points. Then
there is exactly one minimal t-fold blocking set in B, namely the
set of essential points.

Remark

Harrach has a recent result on the unique reducibility of weighted
t-fold (n − k)-blocking sets in the projective space PG(n, q).
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τ2 + ε′ . |B| . 3q − ε

Clear: if ℓ is a 2-secant to B, then ℓ ∩ B is monochromatic.

Let |B| = 2(q + 1) + k . Then

Proposition

Every color class containing an essential point of B has at least
(q − k) points.

B = B∗ ∪ B′, where B∗ is the set of essential points, |B∗| ≥ τ2.
We have

|B|−τ2+1 ≤ n ≤ |B| − |B∗|
3

+
|B∗|

q − k
,

so B∗
2
3
(|B|−τ2)(q−k) ≤ τ2. B B′
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Aart Blokhuis
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|B| ≤ τ2 + ε, q > 256 square (so τ2 = 2(q +
√

q + 1))

Blokhuis, Storme, SzT: B contains two disjoint Baer subplanes, B1

and B2. B∗ = B1 ∪ B2 can not be monochromatic.

Let P ∈ B1 be purple. There are at least (q −√
q − ε − 1)

2-secants on P , so there are a lot of purple points in B2.

The same from B2: we have at least 2(q −√
q − ε − 1) purple

points.

If we have brown points as well: |B| ≥ 4(q −√
q − ε − 1)  
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|B| ≤ τ2 + ε

By melting color classes, we may assume n = 2, B∗ = Br ∪ Bg ,
|B∗| = 2(q + 1) + k .

For a line ℓ, let

nr
ℓ = |Br ∩ ℓ|,

ng
ℓ = |Bg ∩ ℓ|,

nℓ = nr
ℓ + ng

ℓ = |B ∩ ℓ|.

Define the set of red, green and balanced lines as

Lr = {ℓ ∈ L : nr
ℓ > ng

ℓ },
Lg = {ℓ ∈ L : ng

ℓ > nr
ℓ},

L= = {ℓ ∈ L : nr
ℓ = ng

ℓ }.
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|B| ≤ τ2 + ε

Using double counting, we get

∑

ℓ∈L

nℓ = |B∗|(q + 1), hence

∑

ℓ∈L : nℓ>2

nℓ ≥
∑

ℓ∈L

(nℓ − 2) = |B∗|(q + 1) − 2(q2 + q + 1) & kq.

On the other hand,
∑

ℓ∈L : nℓ>2

nℓ =

∑

ℓ∈Lr : nℓ>2

(nr
ℓ + ng

ℓ ) +
∑

ℓ∈Lg : nℓ>2

(nr
ℓ + ng

ℓ ) +
∑

ℓ∈L= : nℓ>2

(nr
ℓ + ng

ℓ ) ≤

∑

ℓ∈Lr : nℓ>2

2nr
ℓ +

∑

ℓ∈Lg : nℓ>2

2ng
ℓ +

∑

ℓ∈L= : nℓ>2

2nr
ℓ ≤ 4·

∑

ℓ∈Lr∪L= : nℓ>2

nr
ℓ .
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|B| ≤ τ2 + ε

Thus
kq

4
≤

∑

ℓ∈Lr∪L= : nℓ>2

nr
ℓ ,

so there is a red point P with at least kq

4|Br |
(half)-red long secants

through it.

Theorem (Blokhuis, Lovász, Storme, SzT)

Let B be a minimal t-fold blocking set in PG(2, q), q = ph, h ≥ 1,
|B| < tq + (q + 3)/2. Then every line intersects B in t (mod p)
points.

Thus on each of these long secants we find at least p/2 new red
points.
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László Lovász
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|B| ≤ τ2 + ε

So we see:
kpq
8|Br | red points on the red long secants through P ,

q − k red points on the red two-secants through P ,
and q − k green points.

Note that |Br | ≤ |B| − |Bg | ≤ 2q + k − (q − k) = q + 2k < 2q.

Thus 2q + k & |B| ≥ 2q − 2k + kpq
8|Br | ≥ 2q − 2k + kp
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Two disjoint blocking sets

Let q = ph, h ≥ 3 odd, p not necessarily prime, p odd. Let
m = (q− 1)/(p− 1) = ph−1 + ph−2 + . . .+ 1. Note that m is odd.

Let f (x) = a(xp + x), a ∈ GF(q)∗. Then f is GF(p)-linear, and

determines the directions
{

f (x)−f (y)
(x−y) : x 6= y

}

={f (x)/x : x 6= 0}=
{(1 : f (x)/x : 0) : x 6= 0}= {(x : f (x) : 0) : x 6= 0}. Thus

B1 = {(x : f (x) : 1)}
︸ ︷︷ ︸

A1

∪{(x : f (x) : 0)}x 6=0
︸ ︷︷ ︸

I1

is a blocking set of Rédei type. Similarly, for g(x) = xp,

B2 = {(y : 1 : g(y))}
︸ ︷︷ ︸

A2

∪{(y : 0 : g(y))}y 6=0
︸ ︷︷ ︸

I2

is also a blocking set.
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Two disjoint blocking sets

B1 = {(x : f (x) : 1)}
︸ ︷︷ ︸

A1

∪{(x : f (x) : 0)}x 6=0
︸ ︷︷ ︸

I1

B2 = {(y : 1 : g(y))}
︸ ︷︷ ︸

A2

∪{(y : 0 : g(y))}y 6=0
︸ ︷︷ ︸

I2

f (x) = 0 iff xp + x = x(xp−1 + 1) = 0. As

−1 = (−1)m 6= x (p−1)m = xq−1 = 1,

f (x) = 0 iff x = 0.

I2 ∩ B1 is empty, as (0 : 0 : 1) /∈ I2.

If (x : f (x) : 0) ≡ (y : 1 : g(y)) ∈ I1 ∩ A2, then g(y) = 0, hence
y = 0 and x = 0, a contradiction. So I1 ∩ A2 = ∅.
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Two disjoint blocking sets

B1 = {(x : f (x) : 1)}
︸ ︷︷ ︸

A1

∪{(x : f (x) : 0)}x 6=0
︸ ︷︷ ︸

I1

B2 = {(y : 1 : g(y))}
︸ ︷︷ ︸

A2

∪{(y : 0 : g(y))}y 6=0
︸ ︷︷ ︸

I2

Now we need A1 ∩ A2 = ∅.

(y : 1 : g(y)) ≡ (x : f (x) : 1) (x 6= 0) iff

(y ; 1; g(y)) = (x/f (x); 1; 1/f (x)), in which case

1/f (x) = g(x/f (x)) = g(x)/g(f (x)).

Thus we need that g(x) = g(f (x))/f (x) = f (x)p−1 that is,
xp = (a(xp + x))p−1 = ap−1xp−1(xp−1 + 1)p−1 has no solution in
GF(q)∗.
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Two disjoint blocking sets

Equivalent form:

1
ap−1

=
(xp−1 + 1)p−1

x
= (xp−1 + 1)p−1xq−2 =: h(x)

should have no solutions.

Let D = {xm : x ∈ GF(q)∗} = {x (p−1) : x ∈ GF(q)∗}. Then
1/ap−1 ∈ D.

Note that h(x) ∈ D ⇐⇒ x ∈ D.

So to find an element a such that 1/a(p−1) is not in the range of h,
we need that h|D : D → D does not permute D.
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Permutation polynomials

Theorem (Hermite-Dickson)

Let f ∈ GF(q)[X ], q = ph, p prime. Then f permutes GF(q) iff
the following conditions hold:

f has exactly one root in GF(q);

for each integer t, 1 ≤ t ≤ q − 2 and p 6 | t, f (X )t

(mod X q − X ) has degree q − 2.

A variation for multiplicative subgroups of GF(q)∗:

Theorem

Suppose d | q − 1, and let D = {xd : x ∈ GF(q)∗} be the set of
nonzero d th powers. Assume that g ∈ GF(q)[X ] maps D into D.
Then g |D is a permutation of D if and only if the constant term of
g(x)t (mod xm − 1) is zero for all 1 ≤ t ≤ m − 1.
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Two disjoint blocking sets

Recall that h(X ) = (X p−1 + 1)p−1X q−2. Let t = p − 1, that is,
consider

hp−1(X ) =

(p−1)2
∑

k=0

(
(p − 1)2

k

)

X k(p−1)+(p−1)(q−2) (mod Xm − 1).

Since k(p − 1) + (p − 1)(q − 2) ≡ (k − 1)(p − 1) (mod m), the
exponents reduced to zero are of form k = 1 + ℓ m

(m,p−1) . Let r be

the characteristic of the field GF(q). As
(
(p−1)2

1

)
≡ 1 (mod r), it is

enough to show that
((p−1)2

k

)
≡ 0 (mod r) for the other possible

values of k .

Suppose h ≥ 5. Then m/(m, p − 1) > m/p > ph−2 > p2, thus by
k ≤ (p − 1)2, ℓ ≥ 1 does not occur at all. The case h = 3 can also
be done.
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Geertrui Van De Voorde
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Two disjoint blocking sets

Using a higher dimensional representation of projective planes, VAN
DE VOORDE could also contruct two disjoint bl. sets. Moreover
she could specify that one of them is of Trace-type.

Theorem (G. Van De Voorde)

Let B be any non-trivial blocking set of size < 3(q + 1)/2. Then
there is a linear blocking set disjoint to B.

It is known that a GF(pe)-linear blocking set (e|h) has size at most
2(q + (q − 1)/(pe − 1)). Taking the smallest known blocking set
(of size q + q/pe + 1) as B , it shows
τ2 ≤ 2q + q/pe + 1 + (q − 1)/(pe − 1). She could also show the
existence of a double blocking set of size 2(q + q/pe + 1).
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Multiple blocking sets in higher dims

Definition

A set B is a t-fold k-blocking set, if B meets each (n − k)-dim.
subspace in ≥ t pts. In many cases B can be a multiset.

For k = 1 we just call them t-fold blocking sets. Trivial lower
bound: |B| ≥ t(q + 1) or |B| ≥ t(qk + ... + q + 1)) for k-blocking
sets. In higher dims it can be reached as the sum (union) of lines
(and similarly, if k is small, we have disjoint k-subspaces as the
smallest examples).
Later we shall use results for t = 2. So |B| ≥ 2qk + ... in this case.
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János Barát
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Barát-Storme

They prove similar results to the Blokhuis-Storme-SzT results in
higher dims.

Theorem (Barát and Storme)

Let B be a t-fold 1-blocking set in PG(n, q), q = ph, p prime,
q ≥ 661, n ≥ 3, of size |B| < tq + cpq

2/3 − (t − 1)(t − 2)/2, with
c2 = c3 = 2−1/3, cp = 1 when p > 3, and with
t < min(cpq

1/6, q1/4/2). Then B contains a union of t pairwise
disjoint lines and/or Baer subplanes.

The analogous result for (1-fold) blocking sets is due to STORME,
WEINER. Some multiple points are also allowed here (in the plane).
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t modulo p results

Theorem (Ferret,Storme, Sziklai, Weiner)

Let B be a minimal weighted t-fold blocking set in PG(2, q),
q = ph, p prime, h ≥ 1, with |B| = tq + t + k, t + k < (q + 3)/2,
k ≥ 2. Then every line intersects B in t (mod p) points.

The corresponding result for non-weighted t-fold blocking sets is
due to BLOKHUIS, LOVÁSZ, STORME, SzT. We remark that
such a results (for non-weighted sets) immediately gives an upper
bound on the size, which can be combined that the sizes are in
certain intervals.
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t modulo p result for k-blocking sets

Theorem (Ferret, Storme, Sziklai, Weiner)

A minimal weighted t-fold 1-blocking set B in PG(n, q), q = ph, p
prime, h ≥ 1, of size |B| = tq + t + k, t + k ≤ (q − 1)/2,
intersects every hyperplane in t (mod p) points.

Theorem (Ferret, Storme, Sziklai, Weiner)

Let B be a minimal weighted t-fold (n − k)-blocking set of
PG(n, q), q = ph, p prime, h ≥ 1, of size |B| = tqn−k + t + k ′,
with t + k ′ ≤ (qn−k − 1)/2.
Then B intersects every k-dimensional subspace in t (mod p)
points.
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Stability version of Ferret–Storme–Sziklai–Weiner

Theorem (Barát, Storme)

Let B be a t-fold 1-blocking set in PG(n, q), q = ph, p prime,
q ≥ 661, n ≥ 3, of size |B| < tq + cpq

2/3, with c2 = c3 = 2−1/3,
cp = 1 when p > 3, and with t < cpq

1/6/2. Then B contains a
union of t pairwise disjoint lines and/or Baer subplanes.

They also have more general results for k-blocking sets, but it is
stated only for q square. As remarked earlier, the bounds for q
non-square are signifivcantly weaker. Somewhat weaker but easier
to prove bounds are due to KLEIN, METSCH. Recently, ZOLTÁN
BLÁZSIK extended the results for q non-square.
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The case of k-blocking sets

The case q square in the next theorem is due to FERRET,
STORME, SZIKLAI, WEINER, the non-square case to BLÁZSIK.

Theorem (Ferret et al., Blázsik)

Let B be a t-fold k-blocking set in PG(n, q), q = ph, p prime,
q ≥ 661, n ≥ 3, of size
|B| = tqk + c < tqk + 2tqk−1√q < tqk + cpq

k−1/3, with
c2 = c3 = 2−1/3, cp = 1 when p > 3, and with t < cpq

1/6/2. Then
B contains a union of t pairwise disjoint cones
〈
πmi

, PG(2k − mi − 1,
√

q)
〉
, −1 ≤ mi ≤ k − 1, i = 1, . . . , t

So, small enough double blocking sets can be decomposed into
disjoint blocking sets.
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Upper chromatic number for spaces: stability version

Theorem (Héger-SzT)

Let q ≥ 37, n ≥ 3, 1 ≤ k < n/2 and consider Σ = PGn−k(n, q).
Then χ̄(Σ) = v − τ2 + 1. Moreover, if d ≤ qk/20 and 2d + 3 ≤ c,
where c is the value in the stability result by
Ferret-Storme-Sziklai-Weiner, then any proper coloring of Σ using
at least v − τ2 + 1 − d colors is trivial in the sense that it colors
each point of two disjoint blocking sets with the same color.
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Sketch of the proof I

Let C1, ...,Cm be the color classes of size at least two. Let
N = v − 2

[
k+1

1

]
+ 1 − d be the no. of colors. As every

(n − k)-space has to be colored, B = C1 ∪ ... ∪ Cm has to be a
2-fold k-blocking set.

Proposition

m ≥ |B| − 2
[
k+1

1

]
+ 1 − d

m ≤ 2
[
k+1

1

]
+ d − 1

|B| ≤ 4
[
k+1

1

]
+ 2(d − 1)
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Sketch of the proof II

We say that a color class C colors the (n − k)-space U if
|C ∩ U| ≥ 2.

Lemma

A color class C colors at most
(
|C |
2

)[
n−1
k

]
distinct (n − k)-spaces.

Proposition

Let q ≥ 4, and suppose that d ≤ 0.05qk . Then
|B| ≥ 4

[
k+1

1

]
−
√

2qk + 2d + 2 cannot occur. In particular,
|B| ≥ (2.8 + 8/q)qk + 2 cannot hold.
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Nóra Harrach
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Sketch of the proof III

We need a result of NÓRA HARRACH: Suppose that a t-fold
s-blocking set S in PG(n, q) has less than (t + 1)qs +

[
s
1

]
points.

Then S contains a unique minimal t-fold s-blocking set S ′.

Lemma

Suppose that a color class C contains an essential point P of B.
Then C contains at least 3qk − |B| +

[
k
1

]
further essential points of

B, and for each such point Q there exists an (n − k) space U such
that U ∩ B = {P; Q}. In particular, |C | ≥ 3qk − |B| +

[
k
1

]
+ 1.

Proposition

Assume that d ≤ qk/20 and q ≥ 29. Suppose that
|B| ≤ 3qk +

[
k
1

]
− 4; for example, |B| ≤ (2.8 + 8/q)qk + 2, where

q ≥ 37. Then |B| ≤ 2
[
k+1

1

]
+ 2d + 3.

Hence B is the union of two disjoint k-blocking set and they have
to be colored by just one color.
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Balanced upper chromatic number

ARAUJO-PARDO, KISS, MONTEJANO consider balanced
coloring, when the sizes of color classes differ by at most 1. The
maximum number of colors one can have in a balanced
rainbow-free coloring is denoted by χ̄b.

Theorem (Araujo-Pardo, Kiss, Montejano)

For a cyclic projective plane Πq one has
((q2 + q + 1)/6 ≤ χ̄b(Πq) ≤ (q2 + q + 1)/3, with equality in the
upper bound if 3 divides q2 + q + 1.

They also have some results for 3 and more dimensions and also
results of similar flavour, see GYURI KISS’s talk.
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Thank you for your attention!
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