On the number of words of a given GC-content in some cyclic DNA-codes

Luis Martínez, University of the Basque Country UPV/EHU Joint work with Josu Sangroniz, University of the Basque

Country UPV/EHU

Symetries of Graphs and Networks IV, Rogla 2014 July 1, 2014

(in) REPUBLIKA SLOVENIJA MINISTRSTVO ZA IZOBRAŽEVANJE, ZNANOST IN ŠPORT

Biological preliminaries

Biological preliminaries

A (Adenine), T (Thymine), G (Guanine), C (Cytosine)

Biological preliminaries

A (Adenine), T (Thymine), G (Guanine), C (Cytosine)
DNA forms a double helix, and two single strands are coupled in a double strand

Biological preliminaries

A (Adenine), T (Thymine), G (Guanine), C (Cytosine)

DNA forms a double helix, and two single strands are coupled in a double strand
$A \longleftrightarrow T, C \longleftrightarrow G$

Biological preliminaries

Transcription: RNA A (Adenine), U (Uracil), G (Guanine), C (Cytosine)

Biological preliminaries

Transcription: RNA A (Adenine), U (Uracil), G (Guanine), C (Cytosine)

Translation: Each three nucleotides of RNA determine an aminoacid (or the beginning of a gene), according to the genetic code.

Biological preliminaries

Transcription: RNA A (Adenine), U (Uracil), G (Guanine), C (Cytosine)

Translation: Each three nucleotides of RNA determine an aminoacid (or the beginning of a gene), according to the genetic code.

For instance, UUA determines Leucine.

Biological preliminaries

Transcription: RNA A (Adenine), U (Uracil), G (Guanine), C (Cytosine)

Translation: Each three nucleotides of RNA determine an aminoacid (or the beginning of a gene), according to the genetic code.

For instance, UUA determines Leucine.
Thus, the complete sequence of a gene determines the sequence of aminoacids of a protein.

Mathematical formulation of DNA-codes

Recall that a code of length n over a finite alphabet Σ is a subset C of Σ^{n}.

Mathematical formulation of DNA-codes

Recall that a code of length n over a finite alphabet Σ is a subset C of Σ^{n}.

Intuitively speaking, a DNA-code is a code over the alphabet formed by the four nucleotides A, T, G, C.

Mathematical formulation of DNA-codes

Recall that a code of length n over a finite alphabet Σ is a subset C of Σ^{n}.

Intuitively speaking, a DNA-code is a code over the alphabet formed by the four nucleotides A, T, G, C.

In practice, usually \mathbb{F}_{4} or $\mathbb{Z} / 4 \mathbb{Z}$ is considered for the set Σ.

Mathematical formulation of DNA-codes

Recall that a code of length n over a finite alphabet Σ is a subset C of Σ^{n}.

Intuitively speaking, a DNA-code is a code over the alphabet formed by the four nucleotides $\mathrm{A}, \mathrm{T}, \mathrm{G}, \mathrm{C}$.

In practice, usually \mathbb{F}_{4} or $\mathbb{Z} / 4 \mathbb{Z}$ is considered for the set Σ.
DNA-codes have many applications in Biology and in Genetic Engineering, for instance

Mathematical formulation of DNA-codes

Recall that a code of length n over a finite alphabet Σ is a subset C of Σ^{n}.

Intuitively speaking, a DNA-code is a code over the alphabet formed by the four nucleotides $\mathrm{A}, \mathrm{T}, \mathrm{G}, \mathrm{C}$.

In practice, usually \mathbb{F}_{4} or $\mathbb{Z} / 4 \mathbb{Z}$ is considered for the set Σ.
DNA-codes have many applications in Biology and in Genetic Engineering, for instance
(1) In the design of bioarrays

Mathematical formulation of DNA-codes

Recall that a code of length n over a finite alphabet Σ is a subset C of Σ^{n}.

Intuitively speaking, a DNA-code is a code over the alphabet formed by the four nucleotides $\mathrm{A}, \mathrm{T}, \mathrm{G}, \mathrm{C}$.

In practice, usually \mathbb{F}_{4} or $\mathbb{Z} / 4 \mathbb{Z}$ is considered for the set Σ.
DNA-codes have many applications in Biology and in Genetic Engineering, for instance
(1) In the design of bioarrays
(2) In biomolecular computing

Mathematical formulation of DNA-codes

Recall that a code of length n over a finite alphabet Σ is a subset C of Σ^{n}.

Intuitively speaking, a DNA-code is a code over the alphabet formed by the four nucleotides A,T,G,C.

In practice, usually \mathbb{F}_{4} or $\mathbb{Z} / 4 \mathbb{Z}$ is considered for the set Σ.

DNA-codes have many applications in Biology and in Genetic Engineering, for instance
(1) In the design of bioarrays
(2) In biomolecular computing
(3) As molecular barcodes

Mathematical formulation of DNA-codes

Several methods have been used to obtain DNA-codes, in particular

Mathematical formulation of DNA-codes

Several methods have been used to obtain DNA-codes, in particular
(1) Additive codes

Mathematical formulation of DNA-codes

Several methods have been used to obtain DNA-codes, in particular
(1) Additive codes
(2) Linear codes

Mathematical formulation of DNA-codes

Several methods have been used to obtain DNA-codes, in particular
(1) Additive codes
(2) Linear codes
(3) Cyclic codes

Mathematical formulation of DNA-codes

Several methods have been used to obtain DNA-codes, in particular
(1) Additive codes
(2) Linear codes
(3) Cyclic codes
(a) Cosets of linear codes

Mathematical formulation of DNA-codes

Definition

> A linear DNA-code C is complementable if $u+(1, \ldots, 1) \in C$ for every $u \in C$.

Mathematical formulation of DNA-codes

Definition

A linear DNA-code C is complementable if $u+(1, \ldots, 1) \in C$ for every $u \in C$.

Theorem

A cyclic code C over \mathbb{F}_{4} is complementable if and only if $X-1$ does not divide the generator polynomial of the code C.

Mathematical formulation of DNA-codes

Definition
 A linear DNA-code C is reversible if $\left(a_{n}, \ldots, a_{1}\right) \in C$ for every $\left(a_{1}, \ldots, a_{n}\right) \in C$.

Mathematical formulation of DNA-codes

Definition

> A linear DNA-code C is reversible if $\left(a_{n}, \ldots, a_{1}\right) \in C$ for every $\left(a_{1}, \ldots, a_{n}\right) \in C$

Definition

If q is a prime power and $g(X)=g_{0}+\cdots+X^{r} \in \mathbb{F}_{q}[X]$ is a monic polynomial of degree r dividing $X^{n}-1$, then the reciprocal polynomial of $g(X)$ is the polynomial $g_{R}(X)=g_{0}^{-1} X^{r} g\left(X^{-1}\right)$. The polynomial $g(X)$ is called self-reciprocal if $g(X)=g_{R}(X)$.

Mathematical formulation of DNA-codes

Definition

> A linear DNA-code C is reversible if $\left(a_{n}, \ldots, a_{1}\right) \in C$ for every $\left(a_{1}, \ldots, a_{n}\right) \in C$

Definition

If q is a prime power and $g(X)=g_{0}+\cdots+X^{r} \in \mathbb{F}_{q}[X]$ is a monic polynomial of degree r dividing $X^{n}-1$, then the reciprocal polynomial of $g(X)$ is the polynomial $g_{R}(X)=g_{0}^{-1} X^{r} g\left(X^{-1}\right)$. The polynomial $g(X)$ is called self-reciprocal if $g(X)=g_{R}(X)$.

Theorem (Massey)

A cyclic code C over \mathbb{F}_{4} is reversible if and only if the generator polynomial of the code C is self-reciprocal.

Combinatorial restrictions on the words of a DNA-code

Some biological interesting combinatorial restrictions are usually imposed on the words of a DNA-code C

Combinatorial restrictions on the words of a DNA-code

Some biological interesting combinatorial restrictions are usually imposed on the words of a DNA-code C
(1) Hamming constraint: $d(u, v) \geq d \forall u, v \in C$ with $u \neq v$.

Combinatorial restrictions on the words of a DNA-code

Some biological interesting combinatorial restrictions are usually imposed on the words of a DNA-code C
(1) Hamming constraint: $d(u, v) \geq d \forall u, v \in C$ with $u \neq v$.
(2) Complement constraint: $d\left(u, v^{c}\right) \geq d \forall u, v \in C$.

Combinatorial restrictions on the words of a DNA-code

Some biological interesting combinatorial restrictions are usually imposed on the words of a DNA-code C
(1) Hamming constraint: $d(u, v) \geq d \forall u, v \in C$ with $u \neq v$.
(2) Complement constraint: $d\left(u, v^{c}\right) \geq d \forall u, v \in C$.
(3) Reverse complement constraint: $d\left(u, v^{r c}\right) \geq d \forall u, v \in C$.

Combinatorial restrictions on the words of a DNA-code

Some biological interesting combinatorial restrictions are usually imposed on the words of a DNA-code C
(1) Hamming constraint: $d(u, v) \geq d \forall u, v \in C$ with $u \neq v$.
(2) Complement constraint: $d\left(u, v^{c}\right) \geq d \forall u, v \in C$.
(3) Reverse complement constraint: $d\left(u, v^{r c}\right) \geq d \forall u, v \in C$.
(9) GC-content constraint: the number of positions in which a nucleotide G or C appears is the same for all the words of the code.

Combinatorial restrictions on the words of a DNA-code

As usual in the literature of DNA-codes, $\max _{w} A_{4}^{G C, R C}(n, d, w)$ will denote the maximum number number of words in a DNA-code of length n satisfying the Hamming constraint and the reverse-complement constraint with parameter d and the constant GC-content constraint.

Combinatorial restrictions on the words of a DNA-code

As usual in the literature of DNA-codes, $\max _{w} A_{4}^{G C, R C}(n, d, w)$ will denote the maximum number number of words in a DNA-code of length n satisfying the Hamming constraint and the reverse-complement constraint with parameter d and the constant GC-content constraint.
It is well known that, if C is a complementable reversible
DNA-code with minimum distance d, we can put
$C=C_{0} \cup C_{1} \cup C_{2}$, where C_{0} is the set of words in C which coincide with their reverse complement and where $u^{r c} \in C$ if and only if $u \in C$, and $\max _{w} A_{4}^{G C, R C}(n, d, w) \geq\left|C_{1}\right|$.

Number of words with a given GC-content

Definition

Let $u \in \mathbb{F}_{4}^{n}$. We will call \mathbb{F}_{2}-weight of u, and we will denote it $w t_{\mathbb{F}_{2}}(u)$, to the number of coordinates of u which are in \mathbb{F}_{2}. If $C \subseteq \mathbb{F}_{4}^{n}$ is a code over \mathbb{F}_{4}, we define the \mathbb{F}_{2}-weight enumerator polynomial to be

$$
W_{\mathbb{F}_{2}, C}(X)=\sum_{u \in C} X^{w t_{\mathbb{F}_{2}}(u)}=\sum_{w \geq 0} b_{w} X^{w}
$$

where $b_{w}=b_{w}(C)$ is the number of words of the code C with \mathbb{F}_{2}-weight equal to w.

Number of words with a given GC-content

Definition

Let $g \in \mathbb{F}_{4}[X]$ be a divisor of $X^{n}-1$. We will say that the cyclic code generated by g is Galois-supplemented if $\left(g, g^{\sigma}\right)=1$, where σ is the Frobenius automorphism of \mathbb{F}_{4} over \mathbb{F}_{2}.

Number of words with a given GC-content

Definition

Let $g \in \mathbb{F}_{4}[X]$ be a divisor of $X^{n}-1$. We will say that the cyclic code generated by g is Galois-supplemented if $\left(g, g^{\sigma}\right)=1$, where σ is the Frobenius automorphism of \mathbb{F}_{4} over \mathbb{F}_{2}.

Theorem

Let $C \subseteq \mathbb{F}_{4}^{n}$ be a Galois-supplemented cyclic code with generator polynomial g. Then,

$$
W_{F_{2}, C}(X)=2^{n-2 \operatorname{deg} g}(X+1)^{n}
$$

Number of words with a given GC-content

Aboulion et al. gave a table of lower bounds for $\max _{w} A_{4}^{G C, R C}(n, d, w)$ for $n \leq 30$. In particular, for $\max _{w} A_{4}^{G C, R C}(29,11, w)$ they obtained the bound 38777664. By considering the Quadratic-residue code of length 29 over \mathbb{F}_{4}, which is complementable and reversible, and whose minimum distance is 11, and using the previous Theorem, we obtain that $\max _{w} A_{4}^{G C, R C}(29,11, w) \geq 77558760$, and so we have improved that bound for this set of parameters.

Future research

Future research

(1) Study other combinatorial restrictions more precise that the constant GC-content constraint.

Future research

(1) Study other combinatorial restrictions more precise that the constant GC-content constraint.
(2) Take advantage of good symmetry groups on codes.

Future research

THANK YOU VERY MUCH FOR YOUR ATTENTION!

