Realisations of {4,4} toroidal maps

Isabel Hubard

Javier Bracho Daniel Pellicer

REPUBLIKA SLOVENIJA MINISTRSTVO ZA IZOBRAŽEVANJE, ZNANOST IN ŠPORT

Highly symmetric polyhedra in Euclidean Spaces...

1978 Grünbaum There are 18 finite regular polyhedra in \mathbb{R}^3

1982 Dress

There are 48 regular polyhedra in \mathbb{R}^3

~2004 Schulte

There are no finite chiral polyhedra in \mathbb{R}^3 Classified chiral polyhedra in \mathbb{R}^3

Highly symmetric polyhedra in Euclidean Spaces...

2007 McMullen Classified finite regular polyhedra in \mathbb{R}^4

What about finite chiral polyhedra in \mathbb{R}^4 ? What about {4,4} toroids in \mathbb{R}^4 ?

Highly symmetric polyhedra in Euclidean Spaces...

2007 McMullen Classified finite regular polyhedra in \mathbb{R}^4

What about finite chiral polyhedra in \mathbb{R}^4 ? What about {4,4} toroids in \mathbb{R}^4 ?

Denote by \mathcal{U} the (regular) square tessellation of the plane.

Let \mathcal{G} be a translation subgroup of Aut(\mathcal{U}).

The quotient \mathcal{U}/\mathcal{G} is a toroid.

$\{4,4\}$ toroids

The quotient \mathcal{U}/\mathcal{G} is a toroid.

A face, edge or vertex of a toroid \mathcal{U}/\mathcal{G} is the orbit F \mathcal{G} , where F is a face, edge or vertex of \mathcal{U} , resp.

A flag of \mathcal{U}/\mathcal{G} is the orbit $\Phi \mathcal{G}$, where Φ is a flag of \mathcal{U} .

A symmetry of a toroid is a symmetry of U that normalises G.

Translation (to vertices) are symmetries Half-turns (at vertices) are symmetries

Translation (to vertices) are symmetries Half-turns (at vertices) are symmetries

 $\mathbf{K} = \langle \mathbf{R}_1 \mathbf{R}_2 \rangle \qquad \mathbf{K} = \langle \mathbf{t}, \mathbf{R}_1 \rangle$

 $\mathbf{K} = \langle t, R_2 \rangle$

 $\mathbf{K} = \langle t \rangle$

 $\{4,4\}_{(a,b)(b,a)}$

 $\{4,4\}_{(a,a)(b,-b)}$

 $\mathbf{K} = \langle t, R_2 \rangle$ $\mathbf{K} = \langle t, R_1 \rangle$

 $\mathbf{K} = \langle \mathbf{R}_{1}, \mathbf{R}_{2} \rangle$

Class 2₀₂. Face & vertex transitive $\mathbf{K} = \langle t, R_1 \rangle$ Duarte, 2007; H., 2007

 $\{4,4\}_{(a,0)(0,b)},$

 $\{4,4\}_{(a,b)(a,-b)},$

R₁ is a symmetry if and only if b|a, b|c & $\frac{c}{b}|1 - \frac{a^2}{b^2}$.

 R_2 is a symmetry if and only if c|2a.

R₁ **R**₂ is a symmetry if and only if b|a, b|c & $\frac{c}{b}|1 + \frac{a^2}{b^2}$.

Highly symmetric polyhedra in Euclidean Spaces...

2007 McMullen Classified finde de gut @ Foliyasdrin R4

What about finite chiral polyhedra in \mathbb{R}^4 ? What about {4,4} toroids in \mathbb{R}^4 ?

Regular toroids in \mathbb{R}^4

Regular

Chiral

(0,2ab)

(2ab,0)

 $(a^2-b^2,0)$

Theorem (Bracho, H., Pellicer) If you can realise every regular

toroid in some metric space, then you can realise every {4,4} toroid in that space.

