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Motivation...
Highly symmetric polyhedra in Euclidean Spaces...

1978 Grünbaum  
There are 18 finite regular polyhedra in R3

1982 Dress 
There are 48 regular polyhedra in R3 

~2004 Schulte 
There are no finite chiral polyhedra in R3  
Classified chiral polyhedra in R3 



2007 McMullen  
Classified finite regular polyhedra in R4

What about finite chiral polyhedra in R4? 
      What about {4,4} toroids in R4?

Highly symmetric polyhedra in Euclidean Spaces...
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{4,4} toroids





{4,4} toroids

Let G  be a translation subgroup of Aut(U ). 

Denote by U the (regular) square tessellation of 
the plane. 

The quotient U/G is a toroid.



TOROIDS

The quotient U/G  is a toroid.

{4,4} toroids



A face, edge or vertex of a toroid U/G is the orbit 
FG, where F is a face, edge or vertex of U, resp. 

A flag of U/G  is 
the orbit ΦG , 
where Φ is a 
flag of U.



A symmetry of a toroid is a symmetry of 
U that normalises G.



Translation (to vertices) are symmetries 
Half-turns (at vertices) are symmetries



Translation (to vertices) are symmetries 
Half-turns (at vertices) are symmetries
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Regular {4,4} toroids
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K =< t>K =< t , R1> K =< t , R2>

K =< R1R2>

K =< R1, R2>

Class 21: 
 
 
      

€ 

R1 
           
                 

€ 

R1 
 
 
 
 
 
 
    
   

€ 

4,4{ } a,a( ) b,−b( ), a > b > 0  

€ 

4,4{ } a,b( ) b,a( ) , a > b > 0 

Širán, Tucker, Watkins, 2001

Class 21. Edge transitive
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Duarte, 2007; H., 2007
Class 202. Face & vertex transitive
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Class 4. Face & vertex transitive 
H., Orbanič,  

Pellicer, Weiss 2012





(a,b)

(c,0)

R1 is a symmetry if and only if  

Proposition 5 Let R1 : (x, y) !→ (y, x), R2 : (x, y) !→ (x,−y) and R′
2 : (x, y) !→ (x +

y,−y). Let Λ be an integer lattice of E2 with basis (a, b) and (c, 0). Then:

1. R1 preserves Λ if and only if b|a, b|c and c
b
|1− a2

b2
.

2. R2 preserves Λ if and only if c|2a.

3. R′
2 preserves Λ if and only if c|2a+ b.

4. R1R2 preserves Λ if and only if b|a, b|c and c
b
|1 + a2

b2
.

5. R1R
′
2 preserves Λ if and only if b|a, b|c and c

b
|1 + a

b
+ a2

b2
.

3 Toroids of rank n
We define a tessellation of Euclidean n-space En as a collection U of n-dimensional convex
polytopes (n-polytopes), called cells, which cover En and tile it in a face-to-face manner.
That is, the cells of U cover En and if two cells have non-empty intersection, then they have
disjoint interiors and meet in a common face of each. We shall only consider Euclidean
tessellations with isomorphic cells which are convex regular polytopes.

A flag of an n-polytope is a maximal subset of pairwise incident faces of the polytope,
including the polytope itself. A flag of a tessellation is defined to be a flag of any of it
cells. We say that two flags of U are i-adjacent if they differ only in a face of dimension i.
Note that for each flag Ψ and each i ∈ {0, . . . , n} there is a unique i-adjacent flag to Ψ;
we denote that flag by Ψi, and extend this notation by induction (Ψik,...,i1)i0 =: Ψik,...,i1,i0 .
A tessellation U is said to be regular if its group of symmetries Aut(U) (that is, the group
of isometries of En which preserve U) is transitive on the flags of U . The symmetry group
of a regular tessellation is a Coxeter group, generated by reflections R0, . . . , Rn, where
Ri maps a fixed (base) flag Φ to its i-adjacent flag Φi. Note that given a base flag, the
reflections R0, . . . , Rn are unique. Regular tessellations are equivelar in the sense that
they have a (Schläfli) type {p1, . . . , pn−1}, where pi is the order of Ri−1Ri. In other words,
for each i ! 2, the number pi of i faces between a (i− 2)-face and a (i+ 1)-face depends
only on i and not on the chosen faces. Similarly, the number p1 of edges in a 2-face F ,
does not depend on the choice of F .

For each n ! 2, there is a regular tessellation by n-cubes with type {4, 3n−2, 4}. In the
plane, there are also triangular and hexagonal tessellations with types {3, 6} and {6, 3},
respectively. For n = 4, there are two exceptional tessellations, one of type {3, 3, 4, 3} and
its dual of type {3, 4, 3, 3}, having 4-cross-polytopes and 24-cells as cells, respectively.

Table ?? gives a complete list, up to duality, of all regular Euclidean tessellations. For
each tessellation, the second column of the Table gives a set of generators R0, . . . , Rn for
its symmetry group (here, the points of En are given by coordinates (x1, . . . , xn)). For
details see [?].
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Proposition 5 Let R1 : (x, y) !→ (y, x), R2 : (x, y) !→ (x,−y) and R′
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3 Toroids of rank n
We define a tessellation of Euclidean n-space En as a collection U of n-dimensional convex
polytopes (n-polytopes), called cells, which cover En and tile it in a face-to-face manner.
That is, the cells of U cover En and if two cells have non-empty intersection, then they have
disjoint interiors and meet in a common face of each. We shall only consider Euclidean
tessellations with isomorphic cells which are convex regular polytopes.

A flag of an n-polytope is a maximal subset of pairwise incident faces of the polytope,
including the polytope itself. A flag of a tessellation is defined to be a flag of any of it
cells. We say that two flags of U are i-adjacent if they differ only in a face of dimension i.
Note that for each flag Ψ and each i ∈ {0, . . . , n} there is a unique i-adjacent flag to Ψ;
we denote that flag by Ψi, and extend this notation by induction (Ψik,...,i1)i0 =: Ψik,...,i1,i0 .
A tessellation U is said to be regular if its group of symmetries Aut(U) (that is, the group
of isometries of En which preserve U) is transitive on the flags of U . The symmetry group
of a regular tessellation is a Coxeter group, generated by reflections R0, . . . , Rn, where
Ri maps a fixed (base) flag Φ to its i-adjacent flag Φi. Note that given a base flag, the
reflections R0, . . . , Rn are unique. Regular tessellations are equivelar in the sense that
they have a (Schläfli) type {p1, . . . , pn−1}, where pi is the order of Ri−1Ri. In other words,
for each i ! 2, the number pi of i faces between a (i− 2)-face and a (i+ 1)-face depends
only on i and not on the chosen faces. Similarly, the number p1 of edges in a 2-face F ,
does not depend on the choice of F .

For each n ! 2, there is a regular tessellation by n-cubes with type {4, 3n−2, 4}. In the
plane, there are also triangular and hexagonal tessellations with types {3, 6} and {6, 3},
respectively. For n = 4, there are two exceptional tessellations, one of type {3, 3, 4, 3} and
its dual of type {3, 4, 3, 3}, having 4-cross-polytopes and 24-cells as cells, respectively.

Table ?? gives a complete list, up to duality, of all regular Euclidean tessellations. For
each tessellation, the second column of the Table gives a set of generators R0, . . . , Rn for
its symmetry group (here, the points of En are given by coordinates (x1, . . . , xn)). For
details see [?].
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Theorem (Bracho, H., Pellicer) 
If you can realise every regular  















toroid in some metric space, then you can 
realise every {4,4} toroid in that space.

(0,a)

(a,0)



Thank you!


