Realisations of $\{4,4\}$

 toroidal maps

 toroidal maps}

Isabel Hubard

Javier Bracho
Daniel Pellicer

Matemáticas
UNAM

Motivation...

Highly symmetric polyhedra in Euclidean Spaces...
1978 Grünbaum
There are 18 finite regular polyhedra in \mathbb{R}^{3}
1982 Dress
There are 48 regular polyhedra in \mathbb{R}^{3}

~2004 Schulte

There are no finite chiral polyhedra in \mathbb{R}^{3}
Classified chiral polyhedra in \mathbb{R}^{3}

Motivation...

Highly symmetric polyhedra in Euclidean Spaces...

2007 McMullen
Classified finite regular polyhedra in \mathbb{R}^{4}

What about finite chiral polyhedra in \mathbb{R}^{4} ? What about $\{4,4\}$ toroids in \mathbb{R}^{4} ?

Motivation...

Highly symmetric polyhedra in Euclidean Spaces...

2007 McMullen
Classified finite regular polyhedra in \mathbb{R}^{4}

What about finite chiral polyhedra in \mathbb{R}^{4} ? What about $\{4,4\}$ toroids in \mathbb{R}^{4} ?

$\{4,4\}$ toroids

(

$\{4,4\}$ toroids

Denote by \mathbb{U} the (regular) square tessellation of the plane.

Let \mathscr{G} be a translation subgroup of $\operatorname{Aut}(\mathbb{U})$.

The quotient $\mathscr{U} / \mathscr{G}$ is a toroid.

$\{4,4\}$ foroids

A face, edge or vertex of a toroid U / \mathscr{G} is the orbit $\mathrm{F} \mathscr{G}$, where F is a face, edge or vertex of \mathscr{U}, resp.

A flag of U / \mathscr{G} is the orbit $\Phi \mathscr{G}$, where Φ is a flag of \because.

A symmetry of a toroid is a symmetry of \mathscr{U} that normalises \mathscr{G}.

Translation (to vertices) are symmetries Half-turns (at vertices) are symmetries

Translation (to vertices) are symmetries Half-turns (at vertices) are symmetries

Regular $\{4,4\}$ toroids Coxeter 1948

$\mathrm{K}=\left\langle\mathrm{R}_{1} \mathrm{R}_{2}\right\rangle$

$\{4,4\}_{(a, 0) \mid \sigma_{a} \Gamma}\left\langle a,>\mathcal{M}_{1}\right\rangle$

$\{4,4\}_{(d, d)(\overline{\bar{a}},-a\}}, \quad \mathrm{F}_{2}>0$

$$
\mathbf{K}=\langle\mathrm{t}\rangle
$$

$$
\mathbf{K}=\left\langle\mathrm{R}_{1}, \mathrm{R}_{2}\right\rangle
$$

Chiral $\{4,4\}$ toroids Coxeter 1948

$$
\{4,4\}_{(a, b)(-b, a)}
$$

$\mathbf{K}=\left\langle\mathrm{R}_{1} \mathrm{R}_{2}\right\rangle$
$\mathbf{K}=\left\langle\mathrm{t}, \mathrm{R}_{1}\right\rangle$
$\mathbf{K}=\left\langle\mathrm{t}, \mathrm{R}_{2}\right\rangle$
$\mathbf{K}=\langle\mathrm{t}\rangle$

Class 21. Edge transitive $\mathrm{K}=\left\langle\mathrm{R}_{1} \mathrm{R}_{2}\right\rangle \quad$ Širán, Tucker, Watkins, 2001

$\{4,4\}_{(a, a)(b,-b)}$

$\{4,4\}_{(a, b)(b, a)}$

$\mathbf{K}=\left\langle\mathrm{t}, \mathrm{R}_{1}\right\rangle$

$\mathbf{K}=\left\langle\mathrm{t}, \mathrm{R}_{2}\right\rangle$

$\mathbf{K}=\langle\mathrm{t}\rangle$

$\mathbf{K}=\left\langle\mathrm{R}_{1}, \mathrm{R}_{2}\right\rangle$

Class 2_{02}. Face \& vertex transitive

$$
\mathrm{K}=\left\langle\mathrm{t}, \mathrm{R}_{1}\right\rangle
$$ Duarte, 2007; H., 2007

$\{4,4\}_{(a, 0)(0, b)}$,

$N=\langle t\rangle$
$N=\left\langle R_{1}, R_{2}\right\rangle$
$\left.N=\mathrm{R}_{1} \mathrm{R}_{2}\right\rangle$

Class 4. Face \& vertex transitive

$$
\mathbf{K}=\left\langle\mathrm{t}, \mathrm{R}_{2}\right\rangle
$$

H., Orbanič, Pellicer, Weiss 2012

$a>b>0, \quad c \geq a-b, \quad c \neq 2 a \neq 4 c$

and if $b \mid a, c$, then $\frac{c}{b} \nmid 1 \pm \frac{a^{2}}{b^{2}}$

$$
\{4,4\}_{(a, b)(c, 0)}
$$

$\mathbf{K}=\langle\mathrm{t}\rangle$
$\mathbf{K}=\left\langle\mathrm{R}_{1}, \mathrm{R}_{2}\right\rangle$

$\mathbf{K}=\left\langle\mathrm{R}_{1} \mathrm{R}_{2}\right\rangle$
$\mathbf{K}=\left\langle\mathrm{t}, \mathrm{R}_{1}\right\rangle$

R_{1} is a symmetry if and only if $b|a, b| c \& \frac{c}{b} \left\lvert\, 1-\frac{a^{2}}{b^{2}}\right.$. \mathbf{R}_{2} is a symmetry if and only if $c \mid 2 a$.
$\mathbf{R}_{1} \mathbf{R}_{\mathbf{2}}$ is a symmetry if and only if $\left.\quad b|a, b| c \& \frac{c}{b} \right\rvert\, 1+\frac{a^{2}}{b^{2}}$.

Class 4. Face \& vertex transitive

$$
\mathbf{K}=\langle\mathrm{t}\rangle
$$

H., Orbanič, Pellicer, Weiss 2012

$a>b>0, \quad c \geq a-b, \quad c \neq 2 a \neq 4 c$

and if $b \mid a, c$, then $\frac{c}{b} \nmid 1 \pm \frac{a^{2}}{b^{2}}$

$$
\{4,4\}_{(a, b)(c, 0)}
$$

$\mathbf{K}=\left\langle\mathrm{R}_{1}, \mathrm{R}_{2}\right\rangle \quad \mathbf{K}=\left\langle\mathrm{R}_{1} \mathrm{R}_{2}\right\rangle \quad \mathbf{K}=\left\langle\mathrm{t}, \mathrm{R}_{1}\right\rangle \quad \mathbf{K}=\left\langle\mathrm{t}, \mathrm{R}_{2}\right\rangle$

Motivation...

Highly symmetric polyhedra in Euclidean Spaces...

2007 McMullen
Classified $\{\{\underset{A}{ }$

What about finite chiral polyhedra in \mathbb{R}^{4} ?
What about $\{4,4\}$ toroids in \mathbb{R}^{4} ?

Regular toroids in \mathbb{R}^{4}

Regular

Chiral

Class 2_{1}

(0,2ab)

$(2 a b, 0)$

Class 21

Class 202

Class 202

Class 4

(bc,0)

Theorem (Bracho, H., Pellicer)

If you can realise every regular

toroid in some metric space, then you can realise every $\{4,4\}$ toroid in that space.

Thank you!

