## Colorings of affine and projective spaces

György Kiss<br>Dept. of Geometry and MTA-ELTE GAC Research Group,<br>ELTE, Budapest

SYGN IV, July 4, 2014, Rogla


## Coauthors

# Gabriela Araujo-Pardo, Amanda Montejano, Christian Rubio-Montiel, Adrian Vázquez-Ávila 

Instituto de Matemáticas, Universidad Nacional Autónoma de México (UNAM)

## Hypergraph coloring

A C-hypergraph $\mathcal{H}=(X, \mathcal{C})$ has an underlying vertex set $X$ and a set system $\mathcal{C}$ over $X$. A vertex coloring of $\mathcal{H}$ is a mapping $\phi$ from $X$ to a set of colors $\{1,2, \ldots, k\}$.
A rainbow-free $k$-coloring is a mapping $\phi: X \rightarrow\{1, \ldots, k\}$ such that each $\mathcal{C}$-edge $C \in \mathcal{C}$ has at least two vertices with the common color.
The upper chromatic number of $\mathcal{H}$, denoted by $\bar{\chi}(\mathcal{H})$, is the largest $k$ admitting a rainbow-free $k$-coloring.

## Coloring of projective spaces

Let $\Pi$ be an $n$-dimensional projective space and $0<d<n$ be an integer. Then $\Pi$ may be considered as a hypergraph, whose vertices and hyperedges are the points and the $d$-dimensional subspaces of the space, respectively.

## Upper chromatic number of finite planes

## Theorem (Bacsó, Tuza (2007))

(1) As $q \rightarrow \infty$, any projective plane $\Pi_{q}$ of order $q$ satisfies

$$
\bar{\chi}\left(\Pi_{q}\right) \leq q^{2}-q-\sqrt{q} / 2+o(\sqrt{q}) .
$$

(2) If $q$ is a square, then the Galois plane of order q satisfies

$$
\bar{\chi}(\mathrm{PG}(2, q)) \geq q^{2}-q-2 \sqrt{q} .
$$

## Best known result

## Theorem (Bacsó, Héger, Szőnyi (2012))

Let $q=p^{h}, p$ prime. Let $\tau_{2}=2(q+1)+c$ denote the size of the smallest double blocking set in $\mathrm{PG}(2, q)$. Suppose that one of the following two conditions holds:
(1) $206 \leq c \leq c_{0} q-13$, where $0<c_{0}<2 / 3$,
$q \geq q\left(c_{0}\right)=2\left(c_{0}+2\right) /\left(2 / 3-c_{0}\right)-1$, and
$p \geq p\left(c_{0}\right)=50 c_{0}+24$.
(2) $q>256$ is a square.

Then $\operatorname{dec}(\operatorname{PG}(2, q))=\tau_{2}-1$, and equality is reached if and only if the only color class having more than one point is a smallest double blocking set.

## Best known result

## Theorem (Bacsó, Héger, Szőnyi (2012))

Let $q=p^{h}, p$ prime. Let $\tau_{2}=2(q+1)+c$ denote the size of the smallest double blocking set in $\mathrm{PG}(2, q)$. Suppose that one of the following two conditions holds:
(1) $206 \leq c \leq c_{0} q-13$, where $0<c_{0}<2 / 3$,
$q \geq q\left(c_{0}\right)=2\left(c_{0}+2\right) /\left(2 / 3-c_{0}\right)-1$, and
$p \geq p\left(c_{0}\right)=50 c_{0}+24$.
(2) $q>256$ is a square.

Then $\operatorname{dec}(\operatorname{PG}(2, q))=\tau_{2}-1$, and equality is reached if and only if the only color class having more than one point is a smallest double blocking set.

For arbitrary finite projective planes this result may be false or hopeless to prove.

## Balanced colorings

Usually a rainbow-free coloring has a lot of color classes with one element each, and one big color class.

## Balanced colorings

Usually a rainbow-free coloring has a lot of color classes with one element each, and one big color class.
Let $\phi: X \rightarrow\{1, \ldots, k\}$ be a rainbow-free $k$-coloring. If $X_{i}=\phi^{-1}(i)$. then $X_{1} \cup \cdots \cup X_{k}=X$ is called color partition. The coloring $\phi$ is called balanced, if

$$
-1 \leq\left|X_{i}\right|-\left|X_{j}\right| \leq 1
$$

holds for all $i, j \in\{1,2, \ldots, k\}$.
The balanced upper chromatic number of $\mathcal{H}$, denoted by $\bar{\chi}_{b}(\mathcal{H})$, is the largest $k$ admitting a balanced rainbow-free $k$-coloring.

## Balanced colorings

$\Pi_{q}$ a projective plane of order $q, v=q^{2}+q+1$.

## Theorem

All balanced rainbow-free colorings of any projective plane of order $q$ satisfies that each color class contains at least three points. Thus

$$
\bar{\chi}_{b}\left(\Pi_{q}\right) \leq \frac{q^{2}+q+1}{3}
$$

## The cyclic model

Example in the case $q=3$.
The projective plane of order 3 have $3^{2}+3+1=13$ points and 13 lines. Take the vertices of a regular 13 -gon $P_{1} P_{2} \ldots P_{13}$. The chords obtained by joining distinct vertices of the polygon have 6 $(=3(3+1) / 2)$ different lengths. Choose $4(=3+1)$ vertices of the regular 13 -gon so that all the chords obtained by joining pairs of these points have different lengths. Four vertices define $4 \times 3 / 2=6$ chords. The vertices $P_{1}, P_{2}, P_{5}$ and $P_{7}$ form a good subpolygon, $\Lambda_{0}$.

The points of the plane are the vertices of the regular 13-gon.

The points of the plane are the vertices of the regular 13-gon. The lines of the plane are the sub-quadrangles $\Lambda_{i}=\left\{P_{1+i}, P_{2+i}, P_{5+i}, P_{7+i}\right\}$.

The points of the plane are the vertices of the regular 13-gon. The lines of the plane are the sub-quadrangles $\Lambda_{i}=\left\{P_{1+i}, P_{2+i}, P_{5+i}, P_{7+i}\right\}$. The incidence is the set theoretical inclusion.

## Cyclic model



We can construct a projective plane of order $q$, if we are able to choose $q+1$ vertices of the regular $\left(q^{2}+q+1\right)$-gon in such a way that no two chords spanned by the choosen vertices have the same length.

We can construct a projective plane of order $q$, if we are able to choose $q+1$ vertices of the regular $\left(q^{2}+q+1\right)$-gon in such a way that no two chords spanned by the choosen vertices have the same length.
One can find easily such sets of vertices if $q$ is a prime power (algebraic method, points of $\operatorname{PG}(2, q) \leftrightarrow$ elements of the cyclic group $\mathrm{GF}^{\star}\left(q^{3}\right) / \mathrm{GF}^{\star}(q)$.
Each known cyclic plane has prime power order.

## Balanced colorings

## Theorem

Let $\Pi_{q}$ be a cyclic projective plane of order $q$ and let $p$ be the smallest nontrivial divisor of $v=q^{2}+q+1$. Then $\Pi_{q}$ has a balanced rainbow-free coloring with $\frac{v}{p}$ color classes. Thus

$$
\bar{\chi}_{b}\left(\Pi_{q}\right) \geq \frac{q^{2}+q+1}{p}
$$

## Balanced colorings

## Theorem

Let $\Pi_{q}$ be a cyclic projective plane of order $q$ and let $p$ be the smallest nontrivial divisor of $v=q^{2}+q+1$. Then $\Pi_{q}$ has a balanced rainbow-free coloring with $\frac{v}{p}$ color classes. Thus

$$
\bar{\chi}_{b}\left(\Pi_{q}\right) \geq \frac{q^{2}+q+1}{p}
$$

Define the color classes as:

$$
C_{i}=\left\{i, i+\frac{v}{p}, \ldots, i+(p-1) \frac{v}{p}\right\}
$$

Each line contains a pair of points of the form $\left\{j, j+\frac{v}{p}\right\}$.

## Balanced colorings

## Corollary

If $q \equiv 1(\bmod 3)$ then each cyclic plane of order $q$ has a balanced rainbow-free coloring with $\frac{v}{3}$ color classes. Therefore, in this case

$$
\bar{\chi}_{b}\left(\Pi_{q}\right)=\frac{q^{2}+q+1}{3}
$$

## Balanced colorings

## Proposition

If $\mathbb{Z}_{v}$ has a difference set $D$ containing the subset $\{0,1,3\}$, then the corresponding cyclic plane of order $q$ has a balanced rainbow-free coloring with $\left\lfloor\frac{v}{3}\right\rfloor$ color classes. Hence, in this case

$$
\bar{\chi}_{b}\left(\Pi_{q}\right)=\left\lfloor\frac{q^{2}+q+1}{3}\right\rfloor .
$$

## Balanced colorings

## Theorem

Each cyclic projective plane of order $q$ has a balanced rainbow-free coloring with at least $\frac{v}{6}$ color classes. Thus

$$
\bar{\chi}_{b}\left(\Pi_{q}\right) \geq \frac{q^{2}+q+1}{6} .
$$

## Balanced colorings

## Theorem

Each cyclic projective plane of order $q$ has a balanced rainbow-free coloring with at least $\frac{v}{6}$ color classes. Thus

$$
\bar{\chi}_{b}\left(\Pi_{q}\right) \geq \frac{q^{2}+q+1}{6} .
$$

## Corollary

Let $\Pi_{q}$ be a cyclic projective plane of order $q$. Then

$$
\frac{q^{2}+q+1}{6} \leq \bar{\chi}_{b}\left(\Pi_{q}\right) \leq \frac{q^{2}+q+1}{3}
$$

## Spreads in PG $(n, q)$

A $k$-spread of $\operatorname{PG}(n, q)$ is a set of pairwise disjoint $k$-dimensional subspaces which gives a partition of the points of the geometry.

## Theorem

There exists a $k$-spread in $\mathrm{PG}(n, q)$ if and only if $(k+1) \mid(n+1)$.

## Spreads in $\operatorname{PG}(n, q)$

A $k$-spread of $\operatorname{PG}(n, q)$ is a set of pairwise disjoint $k$-dimensional subspaces which gives a partition of the points of the geometry.

## Theorem

There exists a $k$-spread in $\mathrm{PG}(n, q)$ if and only if $(k+1) \mid(n+1)$.

## Proposition

Let $\mathcal{S}$ be an $(n-1) / 2$-spread in $\operatorname{PG}(n, q)$. Then each hyperplane of $\mathrm{PG}(n, q)$ contains exactly one element of $\mathcal{S}$.

## Balanced colorings in $\mathrm{PG}(n, q)$

Let $H(q, n, d)$ be the hypergraph whose vertex-set is the set of points of $\operatorname{PG}(n, q)$ and the edges are the $d$-dimensional subspaces of $\operatorname{PG}(n, q)$.

## Balanced colorings in PG( $n, q)$

Let $H(q, n, d)$ be the hypergraph whose vertex-set is the set of points of $\operatorname{PG}(n, q)$ and the edges are the $d$-dimensional subspaces of $\operatorname{PG}(n, q)$.

## Theorem

Let $n \geq 3$ be an odd number. Then $H(q, n, n-1)$ has a balanced rainbow-free coloring with $\frac{q^{n+1}-1}{q-1}-q^{\frac{n+1}{2}}-1$ color classes. Thus

$$
\bar{\chi}_{b}(H(q, n, n-1)) \geq \frac{q^{n+1}-1}{q-1}-q^{\frac{n+1}{2}}-1 .
$$

## Balanced colorings in PG $(3, q)$

## Theorem

Each balanced rainbow-free coloring of $H(q, 3,2)$ has at most $q^{3}+q$ color classes. Hence

$$
\bar{\chi}_{b}(H(q, 3,2))=q^{3}+q .
$$

## Balanced colorings in PG(n,q)

## Theorem

If $H(q, n, d)$ has a balanced rainbow-free coloring with the additional property that each color class has the same size, say $k$ ), then $H(q, n+1, d)$ also has a balanced rainbow-free coloring with $\left(q^{n+1}-1\right) / k(q-1)$ color classes.

## Balanced colorings in PG( $n, q)$

## Theorem

If $H(q, n, d)$ has a balanced rainbow-free coloring with the additional property that each color class has the same size, say $k$ ), then $H(q, n+1, d)$ also has a balanced rainbow-free coloring with $\left(q^{n+1}-1\right) / k(q-1)$ color classes.

## Corollary

Let $p$ be the smallest nontrivial divisor of $v=q^{2}+q+1$. Then $H(q, 3,1)$ has a balanced rainbow-free coloring with $\frac{v}{p}$ color classes. In particular if $q \equiv 1(\bmod 3)$ then

$$
\bar{\chi}_{b}(H(q, 3,1)) \geq \frac{q^{2}+q+1}{3} .
$$

## Balanced colorings in PG(3,q)

## Theorem

The size of the larger color classes in a balanced rainbow-free coloring of the points with respect to the lines in $\mathrm{PG}(3, q)$ is at least $2 q+2$, hence

$$
\bar{\chi}_{b}(H(q, 3,1)) \leq \frac{q^{2}+1}{2}
$$

## Balanced colorings in PG(3,q)

## Theorem

The size of the larger color classes in a balanced rainbow-free coloring of the points with respect to the lines in $\mathrm{PG}(3, q)$ is at least $2 q+2$, hence

$$
\bar{\chi}_{b}(H(q, 3,1)) \leq \frac{q^{2}+1}{2}
$$

## Corollary

If $q \equiv 1(\bmod 3)$ then

$$
\frac{q^{2}+q+1}{3} \leq \bar{\chi}_{b}(H(q, 3,1)) \leq \frac{q^{2}+1}{2}
$$

## END OF PART I

## John Cleese



## Graph decomposition

## Definition

A decomposition of a simple graph $G=(V(G), E(G))$ is a pair $[G, \mathcal{D}]$ where $\mathcal{D}$ is a set of induced subgraphs of $G$, such that every edge of $G$ belongs to exactly one subgraph in $\mathcal{D}$.

## Graph decomposition

## Definition

A decomposition of a simple graph $G=(V(G), E(G))$ is a pair $[G, \mathcal{D}]$ where $\mathcal{D}$ is a set of induced subgraphs of $G$, such that every edge of $G$ belongs to exactly one subgraph in $\mathcal{D}$.


## Graph decomposition



## Graph decomposition



## Graph decomposition

## Definition

A decomposition of a simple graph $G=(V(G), E(G))$ is a pair $[G, \mathcal{D}]$ where $\mathcal{D}$ is a set of induced subgraphs of $G$, such that every edge of $G$ belongs to exactly one subgraph in $\mathcal{D}$.


## Coloring

## Definition

A coloring of a decomposition $[G, \mathcal{D}]$ with $k$ colors is a surjective function that assigns to edges of $G$ a color from a $k$-set of colors, such that all edges of $H \in \mathcal{D}$ have the same color. A coloring of $[G, \mathcal{D}]$ with $k$ colors is proper, if for all $H_{1}, H_{2} \in \mathcal{D}$ with $H_{1} \neq H_{2}$ and $V\left(H_{1}\right) \cap V\left(H_{2}\right) \neq \emptyset$, then $E\left(H_{1}\right)$ and $E\left(H_{2}\right)$ have different colors.

## Definition

The chromatic index $\chi^{\prime}([G, \mathcal{D})]$ of a decomposition is the smallest number $k$ for which there exists a proper coloring of $[G, \mathcal{D}]$ with $k$ colors.

## Coloring

## Definition

A coloring of $[G, \mathcal{D}]$ with $k$ colors is complete if each pair of colors appears on at least a vertex of $G$. The pseudoachromatic index $\psi^{\prime}([G, \mathcal{D}])$ of a decomposition is the largest number $k$ for which there exist a complete coloring with $k$ colors.

## Definition

The achromatic index $\alpha^{\prime}([G, \mathcal{D}])$ of a decomposition is the largest number $k$ for which there exist a proper and complete coloring with $k$ colors.

## Coloring

If $\mathcal{D}=E(G)$ then $\chi^{\prime}([G, E]), \alpha^{\prime}([G, E])$ and $\psi^{\prime}([G, E])$ are the usual chromatic, achromatic and pseudoachromatic indices of $G$, respectively.

## Coloring

If $\mathcal{D}=E(G)$ then $\chi^{\prime}([G, E]), \alpha^{\prime}([G, E])$ and $\psi^{\prime}([G, E])$ are the usual chromatic, achromatic and pseudoachromatic indices of $G$, respectively.

Clearly we have that

$$
\chi^{\prime}([G, \mathcal{D}]) \leq \alpha^{\prime}([G, \mathcal{D}]) \leq \psi^{\prime}([G, \mathcal{D}])
$$

## Motivation

## Conjecture (Erdős-Faber-Lovász)

For any decomposition $\mathcal{D}$ of $K_{v}$, given by complete graphs, satisfies the inequality

$$
\chi^{\prime}\left(\left[K_{v}, \mathcal{D}\right]\right) \leq v
$$

## Decompositions of complete graphs and designs

Designs define decompositions of the corresponding complete graphs in the natural way. Identify the points of a $(v, \kappa)$-design $D=(\mathcal{V}, \mathcal{B})$ with the set of vertices of the complete graph $K_{v}$. Then the set of points of each block of $D$ induces in $K_{v}$ a subgraph isomorphic to $K_{\kappa}$ and these subgraphs give a decomposition of $K_{v}$.

## Known results

$\operatorname{PG}(n, q)$ can be regarded as a $\left(\frac{q^{n+1}-1}{q-1}, q+1\right)$-design, where the set of blocks are the set of lines of $\operatorname{PG}(n, q)$.

Theorem (Beutelspacher, A. - Jungnickel, D. - Vanstone, S.A.)
If $\mathcal{D}$ is the $n$-dimensional finite projective space, then

$$
\chi^{\prime}(\mathcal{D}) \leq v,
$$

the EFL Conjecture is true for finite projective spaces.

## Projective planes

Let $\Pi_{q}$ be any finite projective plane of order $q$. Then
$v=q^{2}+q+1$ is the number of points in $\Pi_{q}$. It is not hard to see that

$$
\chi^{\prime}\left(\Pi_{q}\right)=\alpha^{\prime}\left(\Pi_{q}\right)=\psi^{\prime}\left(\Pi_{q}\right)=v
$$

## Achromatic index

## Theorem

$\alpha^{\prime}(\operatorname{PG}(5, q)) \geq c \frac{v^{1.4}}{\kappa-1}$, where $v=\frac{q^{6}-1}{q-1}$, and $c$ a fixed constant

## Pseudoachromatic index

## Theorem

Let $\mathcal{D}$ be a $(v, \kappa)$-design. Then

$$
\psi^{\prime}(\mathcal{D}) \leq \frac{\sqrt{v}(v-1)}{\kappa-1}<\frac{v^{1.5}}{\kappa-1} .
$$

Theorem
Let $A_{q}$ be any affine plane of order $q$. Then

$$
\psi^{\prime}\left(\mathrm{A}_{q}\right)=\left\lfloor\frac{(q+1)^{2}}{2}\right\rfloor .
$$

## 3-dimensional affine space

## Theorem

Let $\operatorname{AG}(3, q)$ be the 3-dimensional affine space of order $q$. Then

- $\frac{\left(q^{2}+q\right)(q+1)+2}{2} \leq \alpha^{\prime}(\operatorname{AG}(3, q)) \leq\left\lfloor\left(q^{3}+q^{2}+q\right) \sqrt{q}-\frac{1}{2} q^{3}\right\rfloor$,
- $q^{3}+1 \leq \psi^{\prime}(\operatorname{AG}(3, q)) \leq\left\lfloor\left(q^{3}+q^{2}+q\right) \sqrt{q}-\frac{1}{2} q^{3}\right\rfloor$.


## 3-dimensional affine space

## Theorem

Let $\operatorname{AG}(3, q)$ be the 3-dimensional affine space of order $q$. Then

- $\frac{\left(q^{2}+q\right)(q+1)+2}{2} \leq \alpha^{\prime}(\operatorname{AG}(3, q)) \leq\left\lfloor\left(q^{3}+q^{2}+q\right) \sqrt{q}-\frac{1}{2} q^{3}\right\rfloor$,
- $q^{3}+1 \leq \psi^{\prime}(\operatorname{AG}(3, q)) \leq\left\lfloor\left(q^{3}+q^{2}+q\right) \sqrt{q}-\frac{1}{2} q^{3}\right\rfloor$.

Upper estimate: a refinement of the General Upper Bound Theorem.
Lower estimates: clever constructions.

## 4-dimensional affine space

## Theorem

Let $\mathrm{AG}(4, q)$ be the 4-dimensional affine space of order $q$. Then

$$
\frac{q^{5}+q^{4}+q^{3}+q}{2} \leq \alpha^{\prime}(\operatorname{AG}(4, q)) \leq\left\lfloor\frac{q^{6}-q^{2}}{q-1}\right\rfloor
$$

## 4-dimensional affine space

## Theorem

Let $\mathrm{AG}(4, q)$ be the 4-dimensional affine space of order $q$. Then

$$
\frac{q^{5}+q^{4}+q^{3}+q}{2} \leq \alpha^{\prime}(\operatorname{AG}(4, q)) \leq\left\lfloor\frac{q^{6}-q^{2}}{q-1}\right\rfloor
$$

## Theorem

Let $\operatorname{AG}(4, q)$ be the 4-dimensional affine space of order $q$. Then

$$
\frac{q^{5}+q^{4}+q^{3}+q^{2}}{2} \leq \psi^{\prime}(\mathrm{AG}(4, q)) \leq\left\lfloor\frac{q^{6}-q^{2}}{q-1}\right\rfloor
$$

## Work in progress

If the dimension is even:

## Theorem

- $\frac{q^{3 k-1}}{2}<\alpha^{\prime}(\operatorname{AG}(2 k, q))<\frac{q^{3 k}-q^{k}}{q-1}$,
- $\frac{q^{3 k-1}}{2}<\psi^{\prime}(\operatorname{AG}(2 k, q))<\frac{q^{3 k}-q^{k}}{q-1}$.


## Work in progress

If the dimension is odd:
Theorem

- $\frac{q^{3 k}}{2}<\alpha^{\prime}(\operatorname{AG}(2 k+1, q))<q^{3 k} \sqrt{q}$,
- $q^{3 k}<\psi^{\prime}(\operatorname{AG}(2 k+1, q))<q^{3 k} \sqrt{q}$.


## THANKS FOR YOUR ATTENTION!

