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Hypergraph coloring

A C-hypergraph H = (X , C) has an underlying vertex set X and a
set system C over X . A vertex coloring of H is a mapping φ from
X to a set of colors {1, 2, . . . , k}.
A rainbow-free k-coloring is a mapping φ : X → {1, . . . , k} such
that each C-edge C ∈ C has at least two vertices with the common
color.
The upper chromatic number of H, denoted by χ̄(H), is the
largest k admitting a rainbow-free k-coloring.
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Coloring of projective spaces

Let Π be an n-dimensional projective space and 0 < d < n be an
integer. Then Π may be considered as a hypergraph, whose
vertices and hyperedges are the points and the d-dimensional
subspaces of the space, respectively.
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Upper chromatic number of finite planes

Theorem (Bacsó, Tuza (2007))

1 As q →∞, any projective plane Πq of order q satisfies

χ̄(Πq) ≤ q2 − q −√q/2 + o(
√

q).

2 If q is a square, then the Galois plane of order q satisfies

χ̄(PG(2, q)) ≥ q2 − q − 2
√

q.
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Best known result

Theorem (Bacsó, Héger, Szőnyi (2012))

Let q = ph, p prime. Let τ2 = 2(q + 1) + c denote the size of the
smallest double blocking set in PG(2, q). Suppose that one of the
following two conditions holds:

1 206 ≤ c ≤ c0q − 13, where 0 < c0 < 2/3,
q ≥ q(c0) = 2(c0 + 2)/(2/3− c0)− 1, and
p ≥ p(c0) = 50c0 + 24.

2 q > 256 is a square.

Then dec(PG(2, q)) = τ2 − 1, and equality is reached if and only if
the only color class having more than one point is a smallest
double blocking set.

For arbitrary finite projective planes this result may be false or
hopeless to prove.
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Balanced colorings

Usually a rainbow–free coloring has a lot of color classes with one
element each, and one big color class.

Let φ : X → {1, . . . , k} be a rainbow-free k-coloring. If
Xi = φ−1(i). then X1 ∪ · · · ∪ Xk = X is called color partition . The
coloring φ is called balanced, if

−1 ≤ |Xi | − |Xj | ≤ 1

holds for all i , j ∈ {1, 2, . . . , k}.
The balanced upper chromatic number of H, denoted by χ̄b(H), is
the largest k admitting a balanced rainbow-free k-coloring.

gyk Colorings of affine and projective spaces



Balanced colorings

Usually a rainbow–free coloring has a lot of color classes with one
element each, and one big color class.
Let φ : X → {1, . . . , k} be a rainbow-free k-coloring. If
Xi = φ−1(i). then X1 ∪ · · · ∪ Xk = X is called color partition . The
coloring φ is called balanced, if

−1 ≤ |Xi | − |Xj | ≤ 1

holds for all i , j ∈ {1, 2, . . . , k}.
The balanced upper chromatic number of H, denoted by χ̄b(H), is
the largest k admitting a balanced rainbow-free k-coloring.

gyk Colorings of affine and projective spaces



Balanced colorings

Πq a projective plane of order q, v = q2 + q + 1.

Theorem

All balanced rainbow-free colorings of any projective plane of order
q satisfies that each color class contains at least three points. Thus

χb(Πq) ≤ q2 + q + 1

3
.
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The cyclic model

Example in the case q = 3.
The projective plane of order 3 have 32 + 3 + 1 = 13 points and 13
lines. Take the vertices of a regular 13-gon P1P2 . . .P13. The
chords obtained by joining distinct vertices of the polygon have 6
(= 3(3 + 1)/2) different lengths. Choose 4 (= 3 + 1) vertices of
the regular 13–gon so that all the chords obtained by joining pairs
of these points have different lengths. Four vertices define
4× 3/2 = 6 chords. The vertices P1,P2,P5 and P7 form a good
subpolygon, Λ0.
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The cyclic model

The points of the plane are the vertices of the regular 13-gon.

The lines of the plane are the sub-quadrangles
Λi = {P1+i ,P2+i ,P5+i ,P7+i}.
The incidence is the set theoretical inclusion.
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Cyclic model
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The cyclic model

We can construct a projective plane of order q, if we are able to
choose q + 1 vertices of the regular (q2 + q + 1)-gon in such a way
that no two chords spanned by the choosen vertices have the same
length.

One can find easily such sets of vertices if q is a prime power
(algebraic method, points of PG(2, q) ↔ elements of the cyclic
group GF?(q3)/GF?(q).
Each known cyclic plane has prime power order.
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Balanced colorings

Theorem

Let Πq be a cyclic projective plane of order q and let p be the
smallest nontrivial divisor of v = q2 + q + 1. Then Πq has a
balanced rainbow–free coloring with v

p color classes. Thus

χb(Πq) ≥ q2 + q + 1

p
.

Define the color classes as:

Ci = {i , i +
v

p
, ..., i + (p − 1)

v

p
}.

Each line contains a pair of points of the form {j , j + v
p}.
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Balanced colorings

Corollary

If q ≡ 1 (mod 3) then each cyclic plane of order q has a balanced
rainbow–free coloring with v

3 color classes. Therefore, in this case

χb(Πq) =
q2 + q + 1

3
.
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Balanced colorings

Proposition

If Zv has a difference set D containing the subset {0, 1, 3}, then
the corresponding cyclic plane of order q has a balanced
rainbow–free coloring with b v3 c color classes. Hence, in this case

χb(Πq) =

⌊
q2 + q + 1

3

⌋
.
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Balanced colorings

Theorem

Each cyclic projective plane of order q has a balanced rainbow-free
coloring with at least v

6 color classes. Thus

χb(Πq) ≥ q2 + q + 1

6
.

Corollary

Let Πq be a cyclic projective plane of order q. Then

q2 + q + 1

6
≤ χb(Πq) ≤ q2 + q + 1

3
.
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Balanced colorings
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Spreads in PG(n, q)

A k-spread of PG(n, q) is a set of pairwise disjoint k-dimensional
subspaces which gives a partition of the points of the geometry.

Theorem

There exists a k-spread in PG(n, q) if and only if (k + 1)|(n + 1).

Proposition

Let S be an (n − 1)/2-spread in PG(n, q). Then each hyperplane
of PG(n, q) contains exactly one element of S.
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Balanced colorings in PG(n, q)

Let H(q, n, d) be the hypergraph whose vertex-set is the set of
points of PG(n, q) and the edges are the d-dimensional subspaces
of PG(n, q).

Theorem

Let n ≥ 3 be an odd number. Then H(q, n, n − 1) has a balanced

rainbow-free coloring with qn+1−1
q−1 − q

n+1
2 − 1 color classes. Thus

χb(H(q, n, n − 1)) ≥ qn+1 − 1

q − 1
− q

n+1
2 − 1.
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Balanced colorings in PG(3, q)

Theorem

Each balanced rainbow-free coloring of H(q, 3, 2) has at most
q3 + q color classes. Hence

χb(H(q, 3, 2)) = q3 + q.
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Balanced colorings in PG(n, q)

Theorem

If H(q, n, d) has a balanced rainbow-free coloring with the
additional property that each color class has the same size, say k),
then H(q, n + 1, d) also has a balanced rainbow-free coloring with
(qn+1 − 1)/k(q − 1) color classes.

Corollary

Let p be the smallest nontrivial divisor of v = q2 + q + 1. Then
H(q, 3, 1) has a balanced rainbow-free coloring with v

p color
classes. In particular if q ≡ 1 (mod 3) then

χb(H(q, 3, 1)) ≥ q2 + q + 1

3
.
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Balanced colorings in PG(3, q)

Theorem

The size of the larger color classes in a balanced rainbow-free
coloring of the points with respect to the lines in PG(3, q) is at
least 2q + 2, hence

χb(H(q, 3, 1)) ≤ q2 + 1

2
.

Corollary

If q ≡ 1 (mod 3) then

q2 + q + 1

3
≤ χb(H(q, 3, 1)) ≤ q2 + 1

2
.
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END OF PART I
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John Cleese
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Graph decomposition

Definition

A decomposition of a simple graph G = (V (G ),E (G )) is a pair
[G ,D] where D is a set of induced subgraphs of G, such that every
edge of G belongs to exactly one subgraph in D.

K6

1
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Coloring

Definition

A coloring of a decomposition [G ,D] with k colors is a surjective
function that assigns to edges of G a color from a k-set of colors,
such that all edges of H ∈ D have the same color. A coloring of
[G ,D] with k colors is proper, if for all H1,H2 ∈ D with H1 6= H2

and V (H1) ∩ V (H2) 6= ∅, then E (H1) and E (H2) have different
colors.

Definition

The chromatic index χ′([G ,D)] of a decomposition is the smallest
number k for which there exists a proper coloring of [G ,D] with k
colors.
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Coloring

Definition

A coloring of [G ,D] with k colors is complete if each pair of colors
appears on at least a vertex of G . The pseudoachromatic index
ψ′([G ,D]) of a decomposition is the largest number k for which
there exist a complete coloring with k colors.

Definition

The achromatic index α′([G ,D]) of a decomposition is the largest
number k for which there exist a proper and complete coloring
with k colors.
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Coloring

If D = E (G ) then χ′([G ,E ]), α′([G ,E ]) and ψ′([G ,E ]) are the
usual chromatic, achromatic and pseudoachromatic indices of G ,
respectively.

Clearly we have that

χ′([G ,D]) ≤ α′([G ,D]) ≤ ψ′([G ,D]).
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Motivation

Conjecture (Erdős-Faber-Lovász)

For any decomposition D of Kv , given by complete graphs,
satisfies the inequality

χ′([Kv ,D]) ≤ v .
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Decompositions of complete graphs and designs

Designs define decompositions of the corresponding complete
graphs in the natural way. Identify the points of a (v , κ)-design
D = (V,B) with the set of vertices of the complete graph Kv .
Then the set of points of each block of D induces in Kv a subgraph
isomorphic to Kκ and these subgraphs give a decomposition of Kv .
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Known results

PG(n, q) can be regarded as a (q
n+1−1
q−1 , q + 1)–design, where the

set of blocks are the set of lines of PG(n, q).

Theorem (Beutelspacher, A. – Jungnickel, D. – Vanstone, S.A.)

If D is the n-dimensional finite projective space, then

χ′(D) ≤ v ,

the EFL Conjecture is true for finite projective spaces.
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Projective planes

Let Πq be any finite projective plane of order q. Then
v = q2 + q + 1 is the number of points in Πq. It is not hard to see
that

χ′(Πq) = α′(Πq) = ψ′(Πq) = v .

gyk Colorings of affine and projective spaces



Achromatic index

Theorem

α′(PG(5, q)) ≥ c
v1.4

κ− 1
, where v =

q6 − 1

q − 1
, and c a fixed constant

gyk Colorings of affine and projective spaces



Pseudoachromatic index

Theorem

Let D be a (v , κ)–design. Then

ψ′(D) ≤
√

v(v − 1)

κ− 1
<

v1.5

κ− 1
.
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Theorem

Let Aq be any affine plane of order q. Then

ψ′(Aq) =
⌊
(q+1)2

2

⌋
.

Upper estimate: by the Pigeonhole Principle.
Lower estimate: easy construction.
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3-dimensional affine space

Theorem

Let AG(3, q) be the 3-dimensional affine space of order q. Then
(q2+q)(q+1)+2

2 ≤ α′(AG(3, q)) ≤
⌊
(q3 + q2 + q)

√
q − 1

2q3
⌋
,

q3 + 1 ≤ ψ′(AG(3, q)) ≤
⌊
(q3 + q2 + q)

√
q − 1

2q3
⌋
.

Upper estimate: a refinement of the General Upper Bound
Theorem.
Lower estimates: clever constructions.
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4-dimensional affine space

Theorem

Let AG(4, q) be the 4-dimensional affine space of order q. Then

q5 + q4 + q3 + q

2
≤ α′(AG(4, q)) ≤

⌊
q6 − q2

q − 1

⌋
.

Theorem

Let AG(4, q) be the 4-dimensional affine space of order q. Then

q5 + q4 + q3 + q2

2
≤ ψ′(AG(4, q)) ≤

⌊
q6 − q2

q − 1

⌋
.
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4-dimensional affine space
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Work in progress

If the dimension is even:

Theorem

q3k−1

2 < α′(AG(2k , q)) < q3k−qk
q−1 ,

q3k−1

2 < ψ′(AG(2k, q)) < q3k−qk
q−1 .
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Work in progress

If the dimension is odd:

Theorem

q3k

2 < α′(AG(2k + 1, q)) < q3k√q,

q3k < ψ′(AG(2k + 1, q)) < q3k√q.
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THANKS FOR YOUR ATTENTION!
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