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Definitions

All graphs mentioned in this talk are simple, connected
and undirected, unless otherwise stated.

An automorphism of a graph Γ = (V ,E) is a permutation
on the vertex set V preserving the adjacency.

All automorphisms of a graph Γ = (V ,E) forms the
automorphism group of Γ, denoted by Aut(Γ).

An s-arc in a graph Γ is an ordered (s + 1)-tuple
(v0, v1, · · · , vs−1, vs) of vertices of Γ such that vi−1 is
adjacent to vi for 1 ≤ i ≤ s, and vi−1 6= vi+1 for
1 ≤ i ≤ s − 1.
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Transitivity of graphs

Let Γ is a connected graph, and let G ≤ Aut(Γ) be a subgroup of
Aut(Γ).

Γ is (G, s)-arc-transitive or (G, s)-regular if G acts transitively
or regularly on s-arcs.

A (G, s)-arc-transitive graph is (G, s)-transitive if G acts
transitively on s-arcs but not on (s + 1)-arcs.

A graph Γ is said to be s-arc-transitive, s-regular or
s-transitive if it is (Aut(Γ), s)-arc-transitive, (Aut(Γ), s)-regular or
(Aut(Γ), s)-transitive.

0-arc-transitive means vertex-transitive, and 1-arc-transitive
means arc-transitive or symmetric.
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Normal cover

Let Γ be a symmetric graph, and let N E Aut(Γ) be a normal subgroup
of Aut(Γ).

The quotient graph ΓN of Γ relative to N is defined as the graph
with vertices the orbits of N on V (Γ) and with two orbits adjacent
if there is an edge in Γ between those two orbits.

If Γ and ΓN have the same valency, Γ is a normal cover (also
regular cover) of ΓN , and ΓN is a normal quotient of Γ.

A graph Γ is called basic if Γ has no proper normal quotient.

ΓN is simple, but the covering theory works for non-simple graph
when we take the quotient by a semiregular subgroup: an arc of
ΓN corresponds to an orbits of arcs under the semiregular
subgroup, which produces multiedges, semiedges, loops.
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Research plan for symmetric graph

There are often two steps to study a symmetric graph Γ:

(1) Investigating quotient graph ΓN for some normal
subgroup N of Aut(Γ);

(2) Reconstructing the original graph Γ from the normal
quotient ΓN by using covering techniques.

It is usually done by taking N as large as possible, and
then the graph Γ is reduced a ‘basic graph’.

This idea was first introduced by Praeger [27, 28, 29] for
locally primitive graphs.
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Basic graphs

A locally primitive graph is a vertex-transitive graph with
a vertex stabilizer acting primitively on its neighbors.

A locally primitive graph Γ is basic⇔ every nontrivial
normal subgroup of Aut(Γ) has one or two orbits.

A graph Γ is quasiprimitive if every nontrivial normal
subgroup of Aut(Γ) is transitive, and is biquasiprimitive if
Aut(Γ) has a nontrivial normal subgroup with two orbits but
no such subgroup with more than two orbits.

For locally primitive graphs, basic graphs are equivalent
to quasiprimitive or biquasiprimitive graphs.
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Basic graphs

Some known results about basic graphs.

Baddeley [2] gave a detailed description of 2-arc-transitive
quasiprimitive graphs of twisted wreath type.

Ivanov and Praeger [13] completed the classification of
2-arc-transitive quasiprimitive graphs of affine type.

Li [15, 16, 17] classified quasiprimitive 2-arc-transitive graphs of
odd order and prime power order.

Symmetric graphs of diameter 2 admitting an affine-type
quasiprimitive group were investigated by Amarra et al [1].

.........
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Cubic symmetric basic graphs of order 2pn

D.Ž. Djoković and G.L. Miller [6, Propositions 2-5]

Let Γ be a cubic (G, s)-transitive graph for some group G ≤ Aut(Γ)
and integer s ≥ 1, and let v ∈ V (X ). Then s ≤ 5 and Gv ∼= Z3, S3,
S3 × Z2, S4 or S4 × Z2 for s = 1, 2, 3, 4 or 5, respectively.

Y.-Q. Feng and J.H. Kwak in [Cubic symmetric graphs of order
twice an odd prime-power, J. Aust. Math. Soc. 81 (2006),
153-164] determined all the cubic symmetric basic graphs of
order 2pn.

In 2012, Devillers et al [5] constructed an infinite family of
biquasiprimitive 2-arc transitive cubic graphs.
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Tetravalent symmetric basic graphs of order 2pn

Potočnik [26], for partial results also see [19, 18, 15]

Let Γ be a connected (G, s)-transitive tetravalent graph, and let v be a
vertex in Γ. Then

(1) s = 1, Gv is a 2-group;
(2) s = 2, Gv ∼= A4 or S4;
(3) s = 3, Gv ∼= A4 × Z3, (A4 × Z3) o Z2 with A4 o Z2 = S4 and

Z3 o Z2 = S3, or S4 × S3;
(4) s = 4, Gv ∼= Z2

3 o GL(2,3) = AGL(2,3);
(5) s = 7, Gv ∼= [35] o GL(2,3).

J.-X. Zhou and Y.-Q. Feng in [Tetravalent s-transitive graphs of
order twice a prime power, J. Aust. Math. Soc. 88 (2010)
277-288] classified all the tetravalent symmetric basic graphs of
order 2pn.
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Pentavalent symmetric basic graphs of order 2pn

S.-T. Guo and Y.-Q. Feng [11, Theorem 1.1]

Let Γ be a connected pentavalent (G, s)-transitive graph for some
group G ≤ Aut(Γ) and integer s ≥ 1, and let v ∈ V (Γ). Then

(1) s = 1, Gv ∼= Z5, D5 or D10;
(2) s = 2, Gv ∼= F20, F20 × Z2 A5 or S5;
(3) s = 3, Gv ∼= F20 × Z4, A4 × A5, S4 × S5, or (A4 × A5) o Z2 with

A4 o Z2 ∼= S4 and A5 o Z2 ∼= S5;
(4) s = 4, Gv ∼= ASL(2,4), AGL(2,4), AΣL(2,4) or AΓL(2,4);
(5) s = 5, Gv ∼= Z6

2 o ΓL(2,4).

Problem
Determining pentavalent symmetric basic graphs of order 2pn.
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Pentavalent symmetric basic graphs of order 2pn

Main Theorem
Each basic graph of connected pentavalent symmetric graphs
of order 2pn is isomorphic to one graph in the following table.

Γ Aut(Γ) p Normal Cayley graph
K6 S6 p = 3 No
FQ4 Z4

2 o S5 p = 2 Yes

CDp

S5 wrZ2 p = 5 No
PGL(2, 11) p = 11 No
Dp o Z5 5 | (p − 1) Yes

CGDp3 Dih(Z3
p) o Z5 p = 5 Yes

CGD[2]

p2 Dih(Z2
p) o D5 5 | (p ± 1) Yes

CGDp4 Dih(Z4
p) o S5 p 6= 2 or 5 Yes
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Pentavalent symmetric graphs of order 2pn

Reduction Theorem
Let p be a prime and let Γ be a connected pentavalent symmetric
graph of order 2pn with n ≥ 1. Then Γ is a normal cover of one graph
in the following table.

Γ Aut(Γ) p Normal Cayley graph
K6 S6 p = 3 No
FQ4 Z4

2 o S5 p = 2 Yes

CDp

S5 wrZ2 p = 5 No
PGL(2, 11) p = 11 No
Dp o Z5 5 | (p − 1) Yes

CGD[1]

p2
(Dih(Z2

5) o F20)Z4 p = 5 No
Dih(Z2

p) o Z5 5 | (p − 1) Yes

CGD[2]

p2 Dih(Z2
p) o D5 5 | (p ± 1) Yes

CGDp3 Dih(Z3
p) o Z5 5 | (p − 1) Yes

CGDp4 Dih(Z4
p) o S5 Yes
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Graph Constructions

Let Dp = 〈a,b | ap = b2 = 1,b−1ab = a−1〉 be the dihedral group
of order 2p. For p = 5, let ` = 1 and for 5 | (p − 1), let ` be an
element of order 5 in Z∗

p.

CDp = Cay(Dp, {b,ab,a`+1b,a`
2+`+1b,a`

3+`2+`+1b}) (1)

Aut(CDp) was given by Cheng and Oxley [4].

Let Dih(Z2
p) = 〈a,d ,h | ap = dp = h2 = [a,d ] = 1,h−1ah =

a−1,h−1dh = d−1〉. For p = 5, let ` = 1, and for 5 | (p − 1), let `
be an element of order 5 in Z∗

p. Define

CGD[1]

p2 = Cay(Dih(Z2
p), {h,ah,a`(`+1)−1

d`
−1

h,a`d (`+1)−1
h,dh}).

(2)

For 5 | (p± 1), let λ be an element in Z∗
p such that λ2 = 5. Define

CGD[2]

p2 = Cay(Dih(Z2
p), {h,ah,a2−1(1+λ)dh,ad2−1(1+λ)h,dh}).

(3)
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Graph Constructions

Let Dih(Z3
p) = 〈a,b,d ,h | ap = bp = dp = h2 = [a,b] = [a,d ] =

[b,d ] = 1,h−1ah = a−1,h−1bh = b−1,h−1dh = d−1〉. For p = 5,
let ` = 1, and for 5 | (p − 1), let ` be an element of order 5 in Z∗

p.
Define

CGDp3 = Cay(Dih(Z3
p), {h,ah,bh,a−`2

b−`d−`−1
h,dh}). (4)

Let Dih(Z4
p) = 〈a,b, c,d ,h | ap = bp = cp = dp = h2 = [a,b] =

[a, c] = [a,d ] = [b, c] = [b,d ] = [c,d ] = 1,h−1ah =
a−1,h−1bh = b−1,h−1ch = c−1,h−1dh = d−1〉. Define

CGDp4 = Cay(Dih(Z4
p), {h,ah,bh, ch,dh}). (5)
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Automorphisms from Cayley graphs

Theorem

Let Γ = Cay(G,S) be one of the graphs defined in Eqs (2)-(5). Let P
be a Sylow p-subgroup of R(G) and let A = Aut(Γ). Then Γ is
NA(P)-arc-transitive.

(1) Let Γ = CGD[1]

p2 (p = 5 or 5 | (p − 1)). If p = 5 then NA(R(Dih(Z2
5)) ∼= R(Dih(Z2

5)) o F20 and if

5 | (p − 1) then NA(R(Dih(Z2
p))) ∼= R(Dih(Z2

p)) o Z5. Furthermore, |NA(P)| 6= 20p2.

(2) Let Γ = CGD[2]

p2 (5 | (p ± 1)). Then NA(R(Dih(Z2
p))) ∼= R(Dih(Z2

p)) o D10 and |NA(P)| has a divisor

20p2.

(3) Let Γ = CGDp3 (p = 5 or 5 | (p − 1)). If p = 5 then NA(R(Dih(Z3
5))) ∼= R(Dih(Z3

5)) o S5 and if

5 | (p − 1) then R(Dih(Z3
p)) o Z5 ≤ NA(R(Dih(Z3

p))).

(4) Let Γ = CGDp4 . Then NA(R(Dih(Z4
p))) ∼= R(Dih(Z4

p)) o S5.

Let A = Aut(Cay(G,S)). Then NA(R(G)) = R(G) o Aut(G,S)
by Godsil [12], where Aut(G,S) = {α ∈ Aut(G) | Sα = S}.
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Idea for the proof of Reduction Theorem

Key Lemma
Let p be a prime, and let Γ be a connected pentavalent
G-arc-transitive graph of order 2pn with n ≥ 2, where
G ≤ Aut(Γ). Then every minimal normal subgroup of G is
an elementary abelian p-group.

Let M be a maximal normal subgroup of A = Aut(Γ) which has
more than two orbits on V (Γ). Then by Lorimer’s result [22], ΓM
is a connected pentavalent A/M-arc-transitive graph of order
2pm for some integer m ≤ n. In particular, ΓM ∼= K6 or CDp by
Cheng and Oxley [4] if m = 1.

Assume that m ≥ 2. Let N be a minimal normal subgroup of
A/M. Then by Key Lemma, N is an elementary abelian p-group
and by the maximality of M, N has at most two orbits on V (ΓM).
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Idea for the proof of Reduction Theorem

N is transitive: As N is abelian, N is regular, that is, ΓM is a
connected symmetric Cayley graph on the elementary abelian
p-group N. Hence, p = 2 and m ≤ 4. For m = 4, N ∼= Z5

2 and
ΓM ∼= Q5 ∼= CGD24 . For m ≤ 3, by McKay [25], ΓM ∼= FQ4.

N has two orbits on V (ΓM): ΓM is a bipartite graph with the two
orbits of N as its partite sets and N acts regularly on each
partite set. In this case, ΓM is an elementary abelian
symmetric covers of the Dipole Dip5.
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Elementary abelian covers are Cayley graphs

Lemma
Let Γ be a bipartite graph and H an abelian semiregular
automorphism group of Γ with the two partite sets of Γ as
its orbits. Then Γ is a Cayley graph on Dih(H).

Idea for the proof:

Γ = B1 ∪ B2, B1 = {h | h ∈ H} and B2 = {h′ | h ∈ H}.

For any h,g ∈ H, hg = hg and (h′)g = (hg)′.

Define α: h 7→ (h−1)′, h′ 7→ h−1, h ∈ H. Then α ∈ Aut(Γ) and
o(α) = 2. In particular, αgα = g−1 and 〈H, α〉 ∼= Dih(H).

Γ is a Cayley graph on Dih(H).
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Idea for the proof of Reduction Theorem

To prove the Reduction Theorem, we need:

Prove the Key Lemma.

Classify elementary abelian symmetric covers of Dip5.
Determine isomorphic problems between these
covers.
Determine full automorphism groups of these covers.

The first is proved by group theory analysis

The last three are proved by covering theory, together with
the automorphism information from Cayley graphs.
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Idea for proof of the Key Lemma

Key Lemma
Let p be a prime, and let Γ be a connected pentavalent
G-arc-transitive graph of order 2pn with n ≥ 2, where
G ≤ Aut(Γ). Then every minimal normal subgroup of G is
an elementary abelian p-group.

Idea for the proof:

By Guo and Feng’s result about vertex stabilizer, |Gv | | 29 · 32 · 5
and thus |G| | 210 · 32 · 5 · pn.

Let N be a minimal normal subgroup of G. It suffices to prove
that N is solvable.
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Idea for the proof of the Key Lemma

Suppose N is insolvable. Then N = T s for some integer s ≥ 1,
where T is a non-abelian simple {2,3,5,p}-group. As
|N| | 210 · 32 · 5 · pn, we have N ∼= A5 with p = 2, A6 with
p ∈ {2,3} or PSU(4,2) with p = 3.

Suppose N ∼= A5 or A6. Then |V (Γ)| = 8,16 or 18 and by
McKay [25], Γ ∼= FQ4 which is impossible because
Aut(Γ) ∼= Z4

2 o S5.

Suppose N ∼= PSU(4,2). Then |V (Γ)| = 2 · 33 or 2 · 34 and
|Nv | = 26 · 3 · 5, 26 · 5, 25 · 3 · 5 or 25 · 5. Since Nv E Gv and Gv is
known, Nv ∼= ASL(2,4), which is impossible by MAGMA.
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Elementary abelian symmetric covers of the Dipole Dip5

Theorem

Let p be a prime and Zn
p an elementary abelian group with n ≥ 2. Let

Γ be a connected symmetric Zn
p-cover of the dipole Dip5. Then

2 ≤ n ≤ 4 and

(1) For n = 2, Γ ∼= CGD1
p2 (p = 5 or 5 | (p − 1)) or CGD2

p2

(5 | (p ± 1)), which are unique for a given order;
Aut(CGD1

52 ) = (R(GD52 ) o F20)Z4 ∼= Z5 · ((F20 × F20) o Z2) with
NA(R(GD52 )) = R(GD52 ) o F20, Aut(CGD1

p2 ) = R(GDp2 ) o Z5 for
5 | (p − 1), and Aut(CGD2

p2 ) = R(GDp2 ) o D10;

(2) For n = 3, Γ ∼= CGDp3 (p = 5 or 5 | (p − 1)), which are unique for
a given order; Aut(CGD53 ) = R(GD53 ) o S5 and
Aut(CGDp3 ) = R(GDp3 ) o Z5 for 5 | (p − 1);

(3) For n = 4, Γ ∼= CGDp4 and Aut(CGDp4 ) = R(GDp4 ) o S5.
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Elementary abelian symmetric covers of the Dipole Dip5

Together with others, the full automorphism groups are
computed by the following result.

Malnič[23, Theorem 4.2]

Let P : Γ̃ = Cov(Γ; ζ) 7→ Γ be a regular N-covering projection. Then
an automorphism α of Γ lifts if and only if α extends to an
automorphism of N.

Together with others, the isomorphic problems are solved by the
following result.

Malnič, Marušič, Potočnik [24, Corollary 3.3(a)]

Let P1 : Cov(Γ; ζ1) 7→ Γ and P2 : Cov(Γ; ζ2) 7→ Γ be two regular
N-covering projections of a graph Γ. Then P1 and P2 are isomorphic
if and only if there is an automorphism δ ∈ Aut(Γ) and an
automorphism η ∈ Aut(N) such that (ζ1(W ))η = ζ2(W δ) for all
fundamental closed walks W at some base vertex of Γ.
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Classifications of pentavalent symmetric graphs of order 2p2

Classification of 2p2

Let p be a prime and let Γ be a connected pentavalent
G-arc-transitive graph of order 2p2. Then G is isomorphic to
one of the following graphs.

Γ Aut(Γ) p

CGD[1]

p2
(Dih(Z2

5) o F20)Z4 p = 5
Dih(Z2

p) o Z5 5 | (p − 1)

CGD[2]

p2 Dih(Z2
p) o D5 5 | (p ± 1)

CDp2 Dp2 o Z5 5 | (p − 1)
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Proof for classification of 2p2

For p = 2 or 3, |V (Γ)| = 8 or 18. There does not exists such a
graph by McKay [25].

Assume that p ≥ 5. Then A = Aut(Γ) has a semiregular
subgroup L of order p2 such that Γ is NA(L)-arc-transitive.

For L ∼= Z2
p, Γ ∼= CGD[1]

p2 or CGD[2]

p2 .

For L ∼= Zp2 , Γ ∼= CDp2 by Kwak et al. [14].
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Classifications of pentavalent symmetric graphs of order 2p3

Classification of order 2p3

Let p be a prime and let Γ be a connected pentavalent
G-arc-transitive graph of order 2p3. Then G is isomorphic to
one of the following graphs.

Γ Aut(Γ) p
FQ4 Z4

2 o S5 p = 2
CDp3 Dp3 o Z5 5 | (p − 1)

CGDp3
Dih(Z3

p) o S5 p = 5
Dih(Z3

p) o Z5 5 | (p − 1)

CGD[i]
p2×p

(i = 1, 2, 3) Dih(Z2
p × Zp) o Z5 5 | (p − 1)

CN [1]

2p3 (G1(p) o Z2) o D5 5 | (p ± 1)

CN [2]

2p3 (G1(p) o Z2) o Z5 5 | (p − 1)
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Proof for classification of order 2p3

Aut(Γ) has a semiregular subgroup of order p3, say P.

Γ is NA(P)-arc-transitive.

Constructed graphs by considering regular covers of the Dipole
Dip5 with covering transformation group of order p3.
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[24] A. Malnič, D. Marušič and P. Potočnik, Elementary abelian covers of graphs, J. Algebraic Combin. 20
(2004) 71-97. 20 (2004) 99-113.

[25] B.D. McKay, Transitive graphs with fewer than twenty vertices, Math. Comput. 33 (1979) 1101-1121.
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