Graph-restrictive permutation groups and the PSV Conjecture

Michael Giudici
joint work with Luke Morgan

Centre for the Mathematics of Symmetry and Computation
THE UNIVERSITY OF
(1) REPUBLIKA SLOVENIIA MINISTRSTVO ZA IZOBRAŽEVANJE ZNANOST IN ŠPORT

A Theorem of Tutte

$(1947,1959)$

Let Γ be a finite connected cubic graph with an arc-transitive group G of automorphisms. Then $\left|G_{v}\right| \leqslant 48$.
Corollary: $|G| \leqslant 48|V \Gamma|$.

Graph-restrictive

Γ a finite connected graph with $G \leqslant \operatorname{Aut}(\Gamma)$ transitive on vertices. $G_{v}^{\Gamma(v)}$ is the permutation group induced on $\Gamma(v)$ by G_{v}.

Given a permutation group L, we say that the pair (Γ, G) is locally L if $G_{v}^{\Gamma(v)} \cong L$ for all vertices v.

We say that L is graph-restrictive if there is a constant C such that for all locally L pairs (Γ, G), we have that $\left|G_{v}\right| \leqslant C$.

Tutte: C_{3} and S_{3} are graph-restrictive.

A nonexample

$\operatorname{Aut}(\Gamma)=S_{2} w r D_{2 n}$
$\operatorname{Aut}(\Gamma)_{v}^{\Gamma(v)}=D_{8}$
$\left|\operatorname{Aut}(\Gamma)_{v}\right|=2^{n-1} .2$

An equivalent definition

$G_{v}^{[i]}$ is the kernel of the action of G_{v} on the set of all vertices at distance at most i from v.
L is graph-restrictive if and only if there is some constant k such that for all locally L pairs (Γ, G) we have $G_{V}^{[k]}=1$.
Given an edge $\{v, w\}, G_{v w}^{[1]}$ is the kernel of the action of $G_{v w}$ on $\Gamma(v) \cup \Gamma(w)$.

Some graph-restrictive groups

- Any regular group.
- Gardiner (1973): Any transitive subgroup of S_{4} other than D_{8}.
- Sami (2006): $D_{2 n}$ for n odd.
- Trofimov, Weiss: any 2-transitive group.
- Verret (2009): Groups L such that $L=\left\langle L_{x}, L_{y}\right\rangle$ and L_{x} induces C_{p} on $y^{L_{x}}$ for some prime p (p-subregular).
$D_{2 n}$, for n odd, is 2-regular

Primitive groups and generalisations

Let $G \leqslant \operatorname{Sym}(\Omega)$.

- Call G primitive if the only partitions of Ω that it preserves are the trivial ones $\{\Omega\}$ and $\{\{\omega\} \mid \omega \in \Omega\}$.
- Call G quasiprimitive if every nontrivial normal subgroup is transitive.
- Call G semiprimitive if every nontrivial normal subgroup is transitive or semiregular.

Semiprimitive groups

Initially studied by Bereczky and Maróti.
Examples include:

- primitive and quasiprimitive groups;
- regular groups;
- Frobenius groups (that is, all nontrivial elements fix at most one point);
- GL (n, p) acting on the set of nonzero vectors of \mathbb{Z}_{p}^{n}.

Weiss Conjecture

Weiss Conjecture (1978): Every primitive group is graph-restrictive.
Weiss (1979): If L is a primitive permutation group of affine type on p^{d} points for $p \geq 5$, then L is graph-restrictive.

Praeger, Spiga, Verret (2012): Reduced to a problem about simple groups.

Praeger, Pyber, Spiga, Szabó (2012): Weiss conjecture is true if composition factors in G have bounded rank.

What is the correct setting?

Praeger Conjecture: Every quasiprimitive group is graph-restrictive.
Potočnik, Spiga, Verret (2012): If a transitive group is graph restrictive then it is semiprimitive.

PSV conjecture: A transitive group is graph-restrictive if and only if it is semiprimitive.
D_{8} is not semiprimitive as it contains a normal intransitive subgroup isomorphic to C_{2}^{2}.
Spiga, Verret (2014): An intransitive group is graph-restrictive if and only if it is semiregular.

Variation on Thompson-Wielandt

Spiga (2012): If (Γ, G) is a locally semiprimitive pair and $\{v, w\}$ is an edge such that $G_{V W}^{[1]} \neq 1$ then $G_{V W}^{[1]}$ is a p-group.

Regular nilpotent normal subgroups

Giudici and Morgan

Let L be a semiprimitive group with a regular normal nilpotent subgroup K.
(A group is nilpotent if and only if it is the direct product of its Sylow subgroups.)

Theorem Every transitive normal subgroup contains K, and every semiregular normal subgroup is contained in K.

Theorem Let (Γ, G) be a locally L pair with $|K|$ coprime to 6 . Then $G_{V W}^{[1]}=1$ and so L is graph-restrictive.

Semiprimitive groups of this type include:

- affine primitive groups on p^{n} points for $p \geq 5$;
- Frobenius groups of degree coprime to 6 ;
- $P \rtimes C_{2}$ with P a regular abelian p-group for $p \geq 5$ and C_{2} acting by inversion;
- $p_{+}^{1+2 m} \rtimes \operatorname{Sp}(2 m, q)$ with $p \geq 5$.
- $V=\mathrm{GF}(q)^{n}$ and $G=(V \oplus V \oplus \cdots \oplus V) \rtimes \mathrm{GL}(V)$

More detailed information

Also give detailed information about what a counterexample with order not coprime to 6 must look like.

Theorem Let (Γ, G) be a locally L pair where L is semiprimitive with a regular normal nilpotent subgroup K and suppose that $G_{v W}^{[1]} \neq 1$. Then L contains normal subgroups F and J such that $F<K<J$ and either

- $G_{x y}^{[1]}$ is a 2-group and $J / F \cong S_{3} \times \cdots \times S_{3}$, or
- $G_{x y}^{[1]}$ is a 3-group and $J / F \cong A_{4} \times \cdots \times A_{4}$.

Small groups

Potočnik, Spiga and Verret looked at all transitive groups of degree at most 13. The only ones whose status at the time were unknown were:

- S_{3} wr S_{2} on 9 points (primitive)
- $3^{2} \rtimes 2$ on 9 points (imprimitive)
- $\operatorname{Sym}(5)$ on 10 points (primitive)
- Sym(4) on 12 points (imprimitive)

A class of Frobenius groups

Let L be the Frobenius group $C_{3}^{n} \rtimes C_{2}$ acting on 3^{n} points with $n \geq 1$.
Theorem If (Γ, G) is a locally L pair then $G_{v}^{[4]}=1$ and so L is graph restrictive.

Tutte's Theorem is the case $n=1$.

