2-Arc-Transitive Metacyclic Covers of Complete Graphs

Wenqin Xu

School of Mathematical Sciences
Capital Normal University
Beijing, 100048, China

Joint Work with S.F. Du, J.H. Kwak and M.Y. Xu

Rogla, Slovenian, July 2, 2014

Outline

(1) Introduction

- Definitions
- Background
(2) Main Theorem
(3) Outline of proof

1. Introduction

Definitions

- Base graph and Covering graph:

A graph X is called a covering of a graph Y with the projection $p: X \rightarrow Y$ if there is a surjection $p: V(X) \rightarrow V(Y)$ such that $\left.p\right|_{N(x)}: N(x) \rightarrow N(y)$ is a bijection for any $y \in V(Y)$ and $x \in p^{-1}(y)$.
X : Covering graph; Y : base graph; A covering p is n-fold if $\left|p^{-1}(y)\right|=n$ for each $y \in V(Y)$.

- Fiber:

The fiber of an edge or a vertex is its preimage under p.

- Fiber preserving automorphism group:

An automorphism of X which maps a fiber to a fiber is said to be fiber-preserving.

- Covering transformation group:

The group K of all automorphisms of X which fix each of the fibers setwise is called the covering transformation group.

It is easy to see that if X is connected then the action of K on the fibers of X is necessarily semiregular; that is, $K_{v}=1$ for each $v \in V(X)$. In particular, if this action is regular we say that X is a regular cover of Y.

Lifting: $\alpha \in \operatorname{Aut}(Y)$ lifts to an automorphism $\bar{a} \in \operatorname{Aut}(X)$ if $\alpha p=$ $p \bar{a}$.

Question: Given a graph Y, a group K and $H \leq \operatorname{Aut}(Y)$, find all the connected regular coverings $Y \times_{f} K$ on which H lifts.

Combinatorial description of a covering

Voltage assignment f : graph Y, finite group K a function $f: A(Y) \rightarrow K$ s. t. $f_{u, v}=f_{v, u}^{-1}$ for each $(u, v) \in A(Y)$.

Voltage graph $Y \times_{f} K$: vertex set $V(Y) \times K$, arc-set $\left\{\left((u, g),\left(v, g f_{u, v}\right) \mid(u, v) \in A(Y), g \in K\right\}\right.$.

Remark:
Voltage graph $Y \times_{f} K$ is a covering of Y;

$$
\mathrm{f}: \mathrm{A}(\mathrm{Y}) \longrightarrow \mathrm{K}=\{1,0\}
$$

$\mathrm{Y}=\mathrm{K}_{3}$

$Y X_{f} K$

Classification of 2-arc-transitive Graphs

Praeger's Reduction Theorem

Every finite connected 2-arc-transitive graphs X is:
(1) Quasiprimitive Type: every non-trivial normal subgroup of Aut X acts transitively on $V(X)$,
(2) Bipartite Type: every non-trivial normal subgroup of $A u t X$ has at most two orbits on $V(X)$ and at least one of normal subgroups of Aut X has exactly two orbits on $V(X)$.
(3) Covering Type: covers of graphs in (1) and (2).

- C.E. Praeger, On a reduction theorem for finite, bipartite, 2-arctransitive graphs, Australas J. Combin. 7(1993), 21-36.

For the quasiprimitive type and bipartite type, a lot of results have appeared:

- A.A. Ivanov and C.E. Praeger, On finite affine 2-arc-transitive graphs, Europ. J. Combin. 14 (1993), 421-444.
- C.E. Praeger, An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2 -arc transitive graphs, J. London Math. Soc. 47(1993), 227-239.
- C.E. Praeger, Finite quasiprimitive graphs, in: Surveys in Combinatorics, London Mathematical Society Lecture Note Series, 260, Cambridge University Press, Cambridge, 1997, pp. 65-85.
- C.E. Praeger, Bipartite 2 -arc-transitive graphs, Australas J. Combin. 7(1993), 21-36.
- R. Baddeley, Two-arc transitive graphs and twisted wreath products, J.Algebr.Comb. 2(1993), 215-237.
- C.H. Li, On finite s-transitive graphs of odd order, J. Comb. Theory B 81(2001), 307-317.
- C.H. Li, Z.P. Lu, D. Marušič, On Primitive Permutation groups with small suborbits and their orbital graphs, J. Algebra 279(2004), 749-770.
- X.G. Fang, G. Havas and C.E. Praeger, On the automorphism groups of quasiprimitive almost simple graphs, J. Algebra 222(1999), 271-283.
- X.G. Fang, C.H. Li and C.E. Praeger, The locally 2 -arc transitive graphs admitting a Ree simple group, J. Algebra 282(2004), 638-666.

The results concerning the 2-arc-transitive regular covers of complete graphs

- S.F. Du, D. Marušič and A.O. Waller, On 2-arc-transitive covers of complete graphs, J. Comb. Theory, Ser. B, 74(1998), 276290. (for the covering transformation group is cyclic or \mathbb{Z}_{p}^{2})
- S.F. Du, J.H. Kwak and M.Y. Xu, On 2-arc-transitive covers of complete graphs with covering transformation group \mathbb{Z}_{p}^{3}, J. Combin. Theory, B 93 (2005), 73-93.

2. Metacyclic covers of complete graph

Any metacyclic group can be presented by

$$
K=\left\langle a, b \mid a^{d}=1, b^{m}=a^{t}, a^{b}=a^{r}\right\rangle
$$

where $r^{m} \equiv 1(\bmod d), t(r-1) \equiv 0(\bmod d)$.
If d is even, $m=2, r=-1$ and $t=d / 2$, then $K \cong Q_{2 d}$, so called the generalized quaternion group of order $2 d$;

If $m=2, r=-1$ and $t=0$, then $K \cong D_{2 d}$, the dihedral group of order $2 d$.

Note that $Q_{4} \cong \mathbb{Z}_{4}$ and $D_{4} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Theorem

Let X be a connected regular cover of the complete graph $K_{n}(n \geq 4)$ whose covering transformation group K is nontrivial metacyclic and whose fibre-preserving automorphism group acts 2-arc-transitively on X. Then X is isomorphic to one of covers below:
(1) The canonical double cover $K_{n, n}-n K_{2}$ with $K \cong \mathbb{Z}_{2}$;
(2) $n=4, A T_{D}(4,6)$ with $K \cong D_{6}$;
(3) $n=4, A T_{Q}(4,12)$ with $K \cong Q_{12}$;
(4) $n=5, A T_{D}(5,6)$ with $K \cong D_{6}$;
(5) $n=1+q \geq 4, A T_{Q}(1+q, 2 d)$ with $K \cong Q_{2 d}$, where $d \mid q-1$ and $d \nmid \frac{1}{2}(q-1)$;
(6) $n=1+q \geq 6, A T_{D}(1+q, 2 d)$ with $K \cong D_{2 d}$, where $d \left\lvert\, \frac{1}{2}(q-1)\right.$ and $d \geq 2$.

For the case $n=4$ the following are the two covers of K_{4} with respective covering transformation group $K=\langle a, b\rangle \cong D_{6}$ and Q_{12}, where $V\left(K_{4}\right)=\{1,2,3,4\}$:
(1) $A T_{D}(4,6)=K_{4} \times{ }_{f} D_{6}$, with the voltage assignment $f: A\left(K_{4}\right) \rightarrow$ D_{6} defined by

$$
f_{1,2}=b, f_{1,3}=b a, f_{1,4}=b a^{-1}, f_{2,3}=b a^{-1}, f_{2,4}=b a, f_{3,4}=b
$$

(2) $A T_{Q}(4,12)=K_{4} \times_{f} Q_{12}$, with the voltage assignment f : $A\left(K_{4}\right) \rightarrow Q_{12}$ defined by

$$
f_{1,2}=b, f_{1,3}=b a^{2}, f_{1,4}=b a^{4}, f_{2,3}=b, f_{2,4}=b a^{3}, f_{3,4}=b
$$

For the case $n=5$ this is one cover of K_{5} with the covering transformation group $K=\langle a, b\rangle \cong D_{6}$, where $V\left(K_{5}\right)=\{1,2,3,4,5\}$:
(3) $A T_{D}(5,6)=K_{5} \times{ }_{f} D_{6}$, with the voltage assignment $f: A\left(K_{5}\right) \rightarrow$ D_{6} defined by

$$
\begin{aligned}
& f_{1,2}=a b, f_{1,3}=b, f_{1,4}=b a, f_{1,5}=b, f_{2,3}=b a \\
& f_{2,4}=b, f_{2,5}=b, f_{3,4}=a b, f_{3,5}=b, f_{4,5}=b
\end{aligned}
$$

Next, let $\operatorname{GF}(q)$ be the field of order q where q is odd, and let $\mathrm{GF}(q)^{*}=\langle\theta\rangle$. We identify $V\left(K_{1+q}\right)$ with $\mathrm{PG}(1, q)=\mathrm{GF}(q) \cup\{\infty\}$. Then the following two families of 2-arc-transitive covers of K_{1+q} with the respective covering transformation groups $K=\langle a, b\rangle \cong Q_{2 d}$ and $D_{2 d}$:
(4) $A T_{Q}(1+q, 2 d)=K_{1+q} \times{ }_{f} Q_{2 d}$, where $d \mid q-1$ and $d \nmid \frac{1}{2}(q-1)$; (5) $A T_{D}(1+q, 2 d)=K_{1+q} \times{ }_{f} D_{2 d}$, where $d \left\lvert\, \frac{1}{2}(q-1)\right.$ and $d \geq 2$, and for both covers, the voltage assignments $f: A\left(K_{1+q}\right) \rightarrow K$ are given by:

$$
f_{\infty, i}=b ; \quad f_{i, j}=b a^{h} \text { if } j-i=\theta^{h} \text { for } i, j \neq \infty
$$

For the case K is cyclic or is isomorphic to \mathbb{Z}_{p}^{2}, we have the following remark:

- S.F. Du, D. Marušič and A.O. Waller, On 2-arc-transitive covers of complete graphs, J. Comb. Theory, B 74(1998), 276-290.

Remark

Suppose that X is a connected regular cover of the complete graph K_{n} ($n \geq 4$) whose covering transformation group K is either nontrivial cyclic or \mathbb{Z}_{p}^{2} and whose fibre-preserving automorphism group acts 2-arc-transitively on X. Then X is isomorphic to one of $K_{n, n}-n K_{2}$ with $K \cong \mathbb{Z}_{2} ; A T_{Q}(1+q, 4)$ with $K \cong \mathbb{Z}_{4}$ and $q \equiv 3(\bmod 4)$; and $A T_{D}(1+q, 4)$ with $K \cong \mathbb{Z}_{2}^{2}$ and $q \equiv 1(\bmod 4)$. Moreover, $\operatorname{Aut}\left(A T_{i}(1+q, 4)\right) / K \cong \mathrm{P} \Gamma \mathrm{L}(2, q)$, where $i \in\{Q, D\}$.

3. Outline of proof

Base graph $Y=K_{n}$,
covering graph X,
covering transformation group K is a metacyclic group:

$$
K=\left\langle a, b \mid a^{d}=1, b^{m}=a^{t}, b^{-1} a b=a^{r}\right\rangle
$$

where $t(r-1) \equiv 0(\bmod d), r^{m} \equiv 1(\bmod d)$
$\bar{A}=2$-arc-transitive subgroup of $\operatorname{Aut}(Y)$ which will be lifted,
\bar{A} is 3-transitive on $V(Y)$,
\bar{A} should satisfy one of the following cases:
(1) $\bar{A}=S_{4}$;
(2) $\bar{A}=\mathbb{Z}_{2}^{m} \rtimes \mathrm{GL}(m, 2)$ or $\bar{A}=\mathbb{Z}_{2}^{4} \rtimes A_{7}$;
(3) \bar{A} is an almost simple group, and the socle of \bar{A} is either 3transitive, or $\operatorname{PSL}(2, q)$.
$A=$ the fiber preserving subgroup of $\operatorname{Aut}(X)$,
$A / K=\bar{A}$,
\Longrightarrow the problem of group extension.

K is abelian

Lemma

Suppose that the covering transformation group K is abelian metacyclic. Then K is isomorphic to $\mathbb{Z}_{2}, \mathbb{Z}_{4}$, or $\mathbb{Z}_{s \cdot 2^{\ell}} \times \mathbb{Z}_{2^{\ell}}$, where $\ell \geq 1$ and $s \in\{1,2,4\}$. In particular, K is a 2 -group.

Lemma

For any positive integers t_{1} and $t_{2}, \operatorname{Aut}\left(\mathbb{Z}_{t_{1}} \times \mathbb{Z}_{t_{2}}\right)$ does not contain a nonabelian simple subgroup.

Key lemma

If the covering transformation group K is abelian metacyclic, then the covering graph X is isomorphic to one of $K_{n, n}-n K_{2}$ with $K \cong \mathbb{Z}_{2}$, $A T_{Q}(1+q, 4)$ with $K \cong \mathbb{Z}_{4}$, and $A T_{D}(1+q, 4)$ with $K \cong \mathbb{Z}_{2}^{2}$.

Proof: Set $K=\langle a\rangle \times\langle b\rangle$, where $|a|=s 2^{\ell},|b|=2^{\ell}$ and $s \in\{1,2,4\}$, and if $\ell=1$ then $s \neq 1$.
(1) Assume $\bar{A}=S_{4}$ with the degree $n=4$.

Let $K_{1}=\left\langle a^{2}, b^{2}\right\rangle$. Then K_{1} char K and $K / K_{1} \cong \mathbb{Z}_{2}^{2}$.
By the group K_{1} the projection $X \rightarrow K_{n}$ is factorized as
$X \rightarrow Y \rightarrow K_{n}$, where Y is a cover of K_{n} with the covering transformation group \mathbb{Z}_{2}^{2}.

By remark, we know that if $K / K_{1} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, then $Y \cong A T_{D}(1+q, 4)$ and $n=q+1$, where $q \equiv 1(\bmod 4)$.
(2) Let $\bar{A}=\mathbb{Z}_{2}^{m} \rtimes \mathrm{GL}(m, 2)$ with $m \geq 3$ or $\bar{A}=\mathbb{Z}_{2}^{4} \rtimes A_{7}$.(Aut K contains a nonabelian simple subgroup, which is impossible)
(3) Suppose that \bar{A} is an almost simple group.(K is cyclic or is isomorphic \mathbb{Z}_{2}^{2}, which contradicts our hypothesis too.)

K is nonabelian

Key lemma

If K is nonabelian, then it is one of the following two cases:
(1) K contains a cyclic subgroup N of index 2 such that $N \triangleleft A$;
(2) $K=\left\langle a, b \mid a^{d}=b^{4}=1, a^{b}=a^{r}\right\rangle$, where d is odd, $r^{4} \equiv$ $1(\bmod d), r^{2} \not \equiv 1(\bmod d)$ and $(d, r-1)=1$.

Case 1: K contains a cyclic subgroup N of index 2 such that $N \triangleleft A$;

Lemma

Suppose that there exists a cyclic subgroup N of K of index 2 such that $N \triangleleft A$. Then X is the cyclic regular cover of $K_{n, n}-n K_{2}$ with the covering transformation group N, whose fibre (N-orbits) preserving automorphism group acts 2 -arc-transitively.

Proposition

Let X be a connected regular cover of $K_{n, n}-n K_{2}(n \geq 4)$ with a nontrivial cyclic covering transformation group \mathbb{Z}_{d} whose fiber-preserving automorphism group acts 2-arc-transitively. Then one of the following holds:
(1) $n=4$ and X is isomorphic to the unique \mathbb{Z}_{d}-cover, where $d=$ 2, 3, 6 ;
(2) $n=5$ and X is isomorphic to the unique \mathbb{Z}_{3}-cover;
(3) $n=q+1 \geq 5$ and $X \cong K_{1+q}^{2 d}$, defined just below.

Graphs $K_{1+q}^{2 d}$: Let $q=r^{l}$ for an odd prime r and $\mathrm{GF}(q)^{*}=\langle\theta\rangle$ the multiple group of the field $\mathrm{GF}(q)$ of order q.
$V\left(K_{q+1, q+1}-(q+1) K_{2}\right)=\left\{i, i^{\prime} \mid i \in \operatorname{PG}(1, q)\right\}$, the missing matching consists of all pairs $\left[i, i^{\prime}\right]$.

Define a voltage graph $K_{q+1}^{2 d}=\left(K_{1+q, 1+q}-(1+q) K_{2}\right) \times_{f} \mathbb{Z}_{d}$, where $f_{\infty^{\prime}, i}=f_{\infty, j^{\prime}}=\overline{0}$ for $i, j \neq \infty ; f_{i, j^{\prime}}=\bar{h}$ if $j-i=\theta^{h}$, for $i, j \neq \infty$.

Key lemma

Suppose that $n=4$. Then X is isomorphic to $A T_{D}(4,6)$ or $A T_{Q}(4,12)$.

Proof:

Since there exists a unique \mathbb{Z}_{d}-cover of $K_{4,4}-4 K_{2}$ satisfying our condition with $d=3$ or 6 , it suffices to define a $2 d$-fold cover of K_{4} directly, which also satisfies our condition and is a \mathbb{Z}_{d}-cover of $K_{4,4}-4 K_{2}$.

Step 1

We give the structure of A directly.

Step 2

Determination of point stabilizers $H:=A_{\widetilde{u}} \cong \bar{A}_{u}$

Step 3

Determination of coset graphs $X(A, H ; D)$
(i) Undirected property : $D^{-1}=D$
(ii) The Length of the suborbit is $n-1$
(iii)Connected property : $A=\langle D\rangle$

Step 4

Show that the coset graph is isomorphic to a voltage graph

Key lemma

Suppose that $n=5$. Then X is isomorphic to $A T_{D}(5,6)$.

Key lemma

Suppose that $n \geqslant 5$. Then X is isomorphic to $A T_{Q}(1+q, 2 d)$ or $A T_{D}(1+q, 2 d)$, where $d \geq 3$.

Case 2: $K=\left\langle a, b \mid a^{d}=b^{4}=1, a^{b}=a^{r}\right\rangle$, where d is odd, $r^{4} \equiv$ $1(\bmod d), r^{2} \not \equiv 1(\bmod d)$ and $(d, r-1)=1$.

Proof:

Let T be a lift of $\operatorname{PSL}(2, q)$, that is, $T / K \cong \operatorname{PSL}(2, q)$.
On the one hand, by the structure of K, we get

$$
\begin{equation*}
T / K^{\prime}=\left(C_{T}(K) K^{\prime} / K^{\prime}\right) \times\left(K / K^{\prime}\right) \cong \operatorname{PSL}(2, q) \times \mathbb{Z}_{4} . \tag{1}
\end{equation*}
$$

On the other hand, let Z be the quotient graph of X induced by K^{\prime}.

In particular, $\left(T / K^{\prime}\right) /\left(K / K^{\prime}\right) \cong \operatorname{PSL}(2, q)$ lifts. (Note that in this case $K / K^{\prime} \cong \mathbb{Z}_{4}$)

All such covers have been determined: these are $A T_{Q}(1+q, 4)$, where $q \equiv 3(\bmod 4)$.

In particular, $\mathrm{PSL}(2, q)$ is lifted to be the following group

$$
\begin{equation*}
T / K^{\prime} \cong S L(2, q) \mathbb{Z}_{4} \tag{2}
\end{equation*}
$$

The contradiction between $\mathrm{Eq}(1)$ and $\mathrm{Eq}(2)$ shows that case (2) is impossible.

Thank You Very Much ！

