

REPUBLIKA SLOVENIJA MINISTRSTVO ZA IZOBRAŽEVANJE, ZNANOST IN ŠPORT

(日) (部) (目) (日)

æ

2-Arc-Transitive Metacyclic Covers of Complete Graphs

Wenqin Xu

School of Mathematical Sciences Capital Normal University Beijing, 100048, China

Joint Work with S.F. Du, J.H. Kwak and M.Y. Xu

Rogla, Slovenian, July 2, 2014

Outline

- Definitions
- Background
- 2 Main Theorem

Outline of proof

1. Introduction

Definitions

• Base graph and Covering graph:

A graph X is called a covering of a graph Y with the projection $p: X \to Y$ if there is a surjection $p: V(X) \to V(Y)$ such that $p|_{N(x)}: N(x) \to N(y)$ is a bijection for any $y \in V(Y)$ and $x \in p^{-1}(y)$.

X: Covering graph; *Y*: base graph; A covering *p* is *n*-fold if $|p^{-1}(y)| = n$ for each $y \in V(Y)$.

伺 ト く ヨ ト く ヨ ト

X=Q3

 $Y = K_4$

P

< E ► < E

æ

Wenqin Xu 2-Arc-Transitive Metacyclic Covers of Complete Graphs

<ロ> (日) (日) (日) (日) (日)

3

• Fiber:

The *fiber* of an edge or a vertex is its preimage under p.

- Fiber preserving automorphism group: An automorphism of X which maps a fiber to a fiber is said to be *fiber-preserving*.
- Covering transformation group:

The group K of all automorphisms of X which fix each of the fibers setwise is called the *covering transformation group*.

It is easy to see that if X is connected then the action of K on the fibers of X is necessarily semiregular; that is, $K_v = 1$ for each $v \in V(X)$. In particular, if this action is regular we say that X is a *regular cover* of Y.

• • • • • • •

Lifting: $\alpha \in Aut(Y)$ *lifts* to an automorphism $\overline{a} \in Aut(X)$ if $\alpha p = p\overline{a}$.

Question: Given a graph Y, a group K and $H \leq Aut(Y)$, find all the connected regular coverings $Y \times_f K$ on which H lifts.

Combinatorial description of a covering

Voltage assignment f: graph Y, finite group K a function $f : A(Y) \to K$ s. t. $f_{u,v} = f_{v,u}^{-1}$ for each $(u, v) \in A(Y)$.

Voltage graph $Y \times_f K$: vertex set $V(Y) \times K$, arc-set $\{((u,g), (v,gf_{u,v}) \mid (u,v) \in A(Y), g \in K\}.$

Remark: Voltage graph $Y \times_f K$ is a covering of Y;

< 1 →

<- ₹ € ► < ₹ €

æ

Classification of 2-arc-transitive Graphs

Praeger's Reduction Theorem

Every finite connected 2-arc-transitive graphs X is:

- (1) Quasiprimitive Type: every non-trivial normal subgroup of AutX acts transitively on V(X),
- (2) Bipartite Type: every non-trivial normal subgroup of AutX has at most two orbits on V(X) and at least one of normal subgroups of AutX has exactly two orbits on V(X).
- (3) Covering Type: covers of graphs in (1) and (2).
 - C.E. Praeger, On a reduction theorem for finite, bipartite, 2-arc-transitive graphs, *Australas J. Combin.* **7**(1993), 21-36.

伺 ト イヨト イヨト

For the quasiprimitive type and bipartite type, a lot of results have appeared:

- A.A. Ivanov and C.E. Praeger, On finite affine 2-arc-transitive graphs, *Europ. J. Combin.* **14** (1993), 421–444.
- C.E. Praeger, An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, *J. London Math. Soc.* **47**(1993), 227-239.
- C.E. Praeger, Finite quasiprimitive graphs, in: *Surveys in Combinatorics, London Mathematical Society Lecture Note Series,* **260**, Cambridge University Press, Cambridge, 1997, pp. 65–85.
- C.E. Praeger, Bipartite 2-arc-transitive graphs, *Australas J. Combin.* **7**(1993), 21–36.
- R. Baddeley, Two-arc transitive graphs and twisted wreath products, *J.Algebr.Comb.* **2**(1993), 215–237.

< ロ > < 同 > < 回 > < 回 >

- C.H. Li, On finite *s*-transitive graphs of odd order, *J. Comb. Theory B* **81**(2001), 307–317.
- C.H. Li, Z.P. Lu, D. Marušič, On Primitive Permutation groups with small suborbits and their orbital graphs, *J. Algebra* 279(2004), 749–770.
- X.G. Fang, G. Havas and C.E. Praeger, On the automorphism groups of quasiprimitive almost simple graphs, *J. Algebra* **222**(1999), 271–283.
- X.G. Fang, C.H. Li and C.E. Praeger, The locally 2-arc transitive graphs admitting a Ree simple group, *J. Algebra* **282**(2004), 638–666.

- 4 同 2 4 回 2 4 回 2 4

The results concerning the 2-arc-transitive regular covers of complete graphs

- S.F. Du, D. Marušič and A.O. Waller, On 2-arc-transitive covers of complete graphs, *J. Comb. Theory, Ser. B*, **74**(1998), 276–290. (for the covering transformation group is cyclic or Z²_p)
- S.F. Du, J.H. Kwak and M.Y. Xu, On 2-arc-transitive covers of complete graphs with covering transformation group Z³_p, J. Combin. Theory, B 93 (2005), 73–93.

2. Metacyclic covers of complete graph

Any metacyclic group can be presented by

$$K = \langle a, b \mid a^d = 1, b^m = a^t, a^b = a^r \rangle$$

where $r^m \equiv 1 \pmod{d}, t(r-1) \equiv 0 \pmod{d}$.

If d is even, m = 2, r = -1 and t = d/2, then $K \cong Q_{2d}$, so called the generalized quaternion group of order 2d;

If m = 2, r = -1 and t = 0, then $K \cong D_{2d}$, the dihedral group of order 2d.

Note that $Q_4 \cong \mathbb{Z}_4$ and $D_4 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Theorem

Let X be a connected regular cover of the complete graph K_n $(n \ge 4)$ whose covering transformation group K is nontrivial metacyclic and whose fibre-preserving automorphism group acts 2-arc-transitively on X. Then X is isomorphic to one of covers below: (1) The canonical double cover $K_{n,n} - nK_2$ with $K \cong \mathbb{Z}_2$; (2) n = 4, $AT_D(4, 6)$ with $K \cong D_6$; (3) n = 4, $AT_O(4, 12)$ with $K \cong Q_{12}$; (4) n = 5, $AT_D(5, 6)$ with $K \cong D_6$; (5) $n = 1 + q \ge 4$, $AT_Q(1 + q, 2d)$ with $K \cong Q_{2d}$, where $d \mid q - 1$ and $d \nmid \frac{1}{2}(q-1)$; (6) $n = 1 + q \ge 6$, $AT_D(1+q, 2d)$ with $K \cong D_{2d}$, where $d \mid \frac{1}{2}(q-1)$ and $d \geq 2$.

・ロト ・同ト ・ヨト ・ヨト

-

For the case n = 4 the following are the two covers of K_4 with respective covering transformation group $K = \langle a, b \rangle \cong D_6$ and Q_{12} , where $V(K_4) = \{1, 2, 3, 4\}$:

(1) $AT_D(4,6) = K_4 \times_f D_6$, with the voltage assignment $f : A(K_4) \to D_6$ defined by

$$f_{1,2} = b, f_{1,3} = ba, f_{1,4} = ba^{-1}, f_{2,3} = ba^{-1}, f_{2,4} = ba, f_{3,4} = b;$$

(2) $AT_Q(4, 12) = K_4 \times_f Q_{12}$, with the voltage assignment $f : A(K_4) \to Q_{12}$ defined by

$$f_{1,2} = b, f_{1,3} = ba^2, f_{1,4} = ba^4, f_{2,3} = b, f_{2,4} = ba^3, f_{3,4} = b.$$

伺下 イヨト イヨト ニヨ

For the case n = 5 this is one cover of K_5 with the covering transformation group $K = \langle a, b \rangle \cong D_6$, where $V(K_5) = \{1, 2, 3, 4, 5\}$:

(3) $AT_D(5,6) = K_5 \times_f D_6$, with the voltage assignment $f : A(K_5) \to D_6$ defined by

$$f_{1,2} = ab, f_{1,3} = b, f_{1,4} = ba, f_{1,5} = b, f_{2,3} = ba, \\ f_{2,4} = b, f_{2,5} = b, f_{3,4} = ab, f_{3,5} = b, f_{4,5} = b.$$

Next, let GF(q) be the field of order q where q is odd, and let $GF(q)^* = \langle \theta \rangle$. We identify $V(K_{1+q})$ with $PG(1,q) = GF(q) \cup \{\infty\}$. Then the following two families of 2-arc-transitive covers of K_{1+q} with the respective covering transformation groups $K = \langle a, b \rangle \cong Q_{2d}$ and D_{2d} :

(4) $AT_Q(1+q, 2d) = K_{1+q} \times_f Q_{2d}$, where $d \mid q-1$ and $d \nmid \frac{1}{2}(q-1)$; (5) $AT_D(1+q, 2d) = K_{1+q} \times_f D_{2d}$, where $d \mid \frac{1}{2}(q-1)$ and $d \geq 2$, and for both covers, the voltage assignments $f : A(K_{1+q}) \to K$ are given by:

$$f_{\infty,i} = b; \ f_{i,j} = ba^h \text{ if } j - i = \theta^h \text{ for } i, j \neq \infty.$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □

For the case K is cyclic or is isomorphic to \mathbb{Z}_p^2 , we have the following remark:

• S.F. Du, D. Marušič and A.O. Waller, On 2-arc-transitive covers of complete graphs, *J. Comb. Theory*, *B* **74**(1998), 276–290.

Remark

Suppose that X is a connected regular cover of the complete graph K_n $(n \ge 4)$ whose covering transformation group K is either nontrivial cyclic or \mathbb{Z}_p^2 and whose fibre-preserving automorphism group acts 2arc-transitively on X. Then X is isomorphic to one of $K_{n,n} - nK_2$ with $K \cong \mathbb{Z}_2$; $AT_Q(1 + q, 4)$ with $K \cong \mathbb{Z}_4$ and $q \equiv 3 \pmod{4}$; and $AT_D(1 + q, 4)$ with $K \cong \mathbb{Z}_2^2$ and $q \equiv 1 \pmod{4}$. Moreover, $\operatorname{Aut}(AT_i(1 + q, 4))/K \cong \operatorname{P\GammaL}(2, q)$, where $i \in \{Q, D\}$.

イロト イポト イヨト イヨト 二日

3. Outline of proof

Base graph $Y = K_n$,

covering graph X,

covering transformation group \boldsymbol{K} is a metacyclic group:

$$K = \langle a, b \mid a^d = 1, b^m = a^t, b^{-1}ab = a^r \rangle,$$

where $t(r-1) \equiv 0 \pmod{d}$, $r^m \equiv 1 \pmod{d}$

 \overline{A} =2-arc-transitive subgroup of Aut(Y) which will be lifted, \overline{A} is 3-transitive on V(Y), \overline{A} should satisfy one of the following cases:

(1)
$$\overline{A} = S_4;$$

(2)
$$\overline{A} = \mathbb{Z}_2^m \rtimes \operatorname{GL}(m, 2)$$
 or $\overline{A} = \mathbb{Z}_2^4 \rtimes A_7$;

(3) \overline{A} is an almost simple group, and the socle of \overline{A} is either 3-transitive, or PSL(2,q).

A = the fiber preserving subgroup of Aut(X),

 $A/K = \overline{A}$,

 \implies the problem of group extension.

K is abelian

Lemma

Suppose that the covering transformation group K is abelian metacyclic. Then K is isomorphic to \mathbb{Z}_2 , \mathbb{Z}_4 , or $\mathbb{Z}_{s \cdot 2^{\ell}} \times \mathbb{Z}_{2^{\ell}}$, where $\ell \geq 1$ and $s \in \{1, 2, 4\}$. In particular, K is a 2-group.

Lemma

For any positive integers t_1 and t_2 , $Aut(\mathbb{Z}_{t_1} \times \mathbb{Z}_{t_2})$ does not contain a nonabelian simple subgroup.

Key lemma

If the covering transformation group K is abelian metacyclic, then the covering graph X is isomorphic to one of $K_{n,n} - nK_2$ with $K \cong \mathbb{Z}_2$, $AT_Q(1+q,4)$ with $K \cong \mathbb{Z}_4$, and $AT_D(1+q,4)$ with $K \cong \mathbb{Z}_2^2$.

Proof: Set
$$K = \langle a \rangle \times \langle b \rangle$$
, where $|a| = s2^{\ell}$, $|b| = 2^{\ell}$ and $s \in \{1, 2, 4\}$, and if $\ell = 1$ then $s \neq 1$.

(1) Assume
$$\overline{A} = S_4$$
 with the degree $n = 4$.

Let $K_1 = \langle a^2, b^2 \rangle$. Then $K_1 \ char \ K$ and $K/K_1 \cong \mathbb{Z}_2^2$.

By the group K_1 the projection $X \to K_n$ is factorized as

 $X \to Y \to K_n$, where Y is a cover of K_n with the covering transformation group \mathbb{Z}_2^2 .

伺 と く ヨ と く ヨ と … ヨ

By remark, we know that if $K/K_1 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$,

then $Y \cong AT_D(1+q,4)$ and n = q+1, where $q \equiv 1 \pmod{4}$.

(2) Let $\overline{A} = \mathbb{Z}_2^m \rtimes \operatorname{GL}(m, 2)$ with $m \ge 3$ or $\overline{A} = \mathbb{Z}_2^4 \rtimes A_7$.(Aut*K* contains a nonabelian simple subgroup, which is impossible)

(3) Suppose that \overline{A} is an almost simple group.(K is cyclic or is isomorphic \mathbb{Z}_2^2 , which contradicts our hypothesis too.)

伺 ト イ ヨ ト イ ヨ ト

K is nonabelian

Key lemma

If K is nonabelian, then it is one of the following two cases: (1) K contains a cyclic subgroup N of index 2 such that $N \triangleleft A$; (2) $K \equiv \langle a, b \mid a^d = b^4 = 1, a^b = a^r \rangle$, where d is odd, $r^4 \equiv 1 \pmod{d}$, $r^2 \not\equiv 1 \pmod{d}$ and (d, r - 1) = 1.

同 ト イ ヨ ト イ ヨ ト

Case 1: K contains a cyclic subgroup N of index 2 such that $N \triangleleft A$;

Lemma

Suppose that there exists a cyclic subgroup N of K of index 2 such that $N \triangleleft A$. Then X is the cyclic regular cover of $K_{n,n}-nK_2$ with the covering transformation group N, whose fibre (N-orbits) preserving automorphism group acts 2-arc-transitively.

Proposition

Let X be a connected regular cover of $K_{n,n}-nK_2$ $(n \ge 4)$ with a nontrivial cyclic covering transformation group \mathbb{Z}_d whose fiber-preserving automorphism group acts 2-arc-transitively. Then one of the following holds:

(1) n = 4 and X is isomorphic to the unique \mathbb{Z}_d -cover, where d = 2, 3, 6;

(2) n = 5 and X is isomorphic to the unique \mathbb{Z}_3 -cover;

(3) $n = q + 1 \ge 5$ and $X \cong K_{1+q}^{2d}$, defined just below.

伺 ト イ ヨ ト イ ヨ ト

Graphs
$$K_{1+q}^{2d}$$
: Let $q = r^l$ for an odd prime r
and $GF(q)^* = \langle \theta \rangle$ the multiple group of the field $GF(q)$ of order q .
 $V(K_{q+1,q+1} - (q+1)K_2) = \{i, i' | i \in PG(1,q)\},$
the missing matching consists of all pairs $[i, i']$.
Define a voltage graph $K_{q+1}^{2d} = (K_{1+q,1+q} - (1+q)K_2) \times_f \mathbb{Z}_d$, where
 $f_{\infty',i} = f_{\infty,j'} = \overline{0}$ for $i, j \neq \infty$; $f_{i,j'} = \overline{h}$ if $j-i = \theta^h$, for $i, j \neq \infty$.

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ● ● ●

Key lemma

Suppose that n = 4. Then X is isomorphic to $AT_D(4,6)$ or $AT_Q(4,12)$.

Proof:

Since there exists a unique \mathbb{Z}_d -cover of $K_{4,4} - 4K_2$ satisfying our condition with d = 3 or 6, it suffices to define a 2d-fold cover of K_4 directly, which also satisfies our condition and is a \mathbb{Z}_d -cover of $K_{4,4} - 4K_2$.

伺 ト イ ヨ ト イ ヨ ト

We give the structure of A directly.

□ ▶ ▲ 臣 ▶ ▲ 臣

э

Determination of point stabilizers $H := A_{\widetilde{u}} \cong \overline{A}_u$

御 と く ヨ と く ヨ と

э

Determination of coset graphs X(A, H; D)

(i) Undirected property : $D^{-1} = D$

(ii) The Length of the suborbit is n-1

(iii)Connected property : $A = \langle D \rangle$

伺 ト イヨト イヨト

-

Show that the coset graph is isomorphic to a voltage graph

個 と く き と く き と

э

Key lemma

Suppose that n = 5. Then X is isomorphic to $AT_D(5,6)$.

Key lemma

Suppose that $n \ge 5$. Then X is isomorphic to $AT_Q(1+q,2d)$ or $AT_D(1+q,2d)$, where $d \ge 3$.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Case 2: $K = \langle a, b \mid a^d = b^4 = 1, a^b = a^r \rangle$, where d is odd, $r^4 \equiv 1 \pmod{d}$, $r^2 \not\equiv 1 \pmod{d}$ and (d, r-1) = 1. **Proof:**

Let T be a lift of PSL(2,q), that is, $T/K \cong PSL(2,q)$.

On the one hand, by the structure of K, we get

 $T/K' = (C_T(K)K'/K') \times (K/K') \cong PSL(2,q) \times \mathbb{Z}_4.$ (1)

On the other hand, let Z be the quotient graph of X induced by K'.

In particular, $(T/K')/(K/K') \cong PSL(2,q)$ lifts. (Note that in this case $K/K' \cong \mathbb{Z}_4$)

All such covers have been determined: these are $AT_Q(1+q, 4)$, where $q \equiv 3 \pmod{4}$.

In particular, PSL(2,q) is lifted to be the following group

 $T/K' \cong SL(2,q)\mathbb{Z}_4.$ (2)

The contradiction between Eq(1) and Eq(2) shows that case (2) is impossible.

・ 同 ト ・ ヨ ト ・ ヨ ト

∃ <\0<</p>

Thank You Very Much !

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで