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Incidence geometry

An incidence geometry is a triple (P , L, I ) where

P is a set of ’points’,

L is a set of ’blocks’,

I is an incidence relation between the elements in P and L.

When there are at most one block containing pi and pj for all pairs of
points, then we call the blocks lines.
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Incidence graph of an incidence geometry

We can use a graph to represent the incidences of points and blocks.

The incidence graph of the incidence structure (P , L, I ) is the bipartite
graph with vertex set P ∪ L and an edge between the vertices p and b if p
is a point on b.
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Combinatorial configurations

A combinatorial (v , b, r , k)-configuration is an incidence structure with
v points and b lines/blocks such that

every point appears on r lines,

every line has k points,

every pair of points is in at most one line, or equivalently,

every pair of lines intersect in at most one point.

The four parameters (v , b, r , k) are redundant.
We only need the three parameters (d , r , k) with

d :=
v gcd(r , k)

k
=

b gcd(r , k)

r
=

vr

lcm(r , k)
=

bk

lcm(r , k)
.

Reduced parameters: (d , r , k)-configuration.

A combinatorial (v , b, r , k) configuration is also called an r -regular and
k-uniform partial linear space.
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Balanced configurations

We say that a combinatorial configuration is balanced if r = k . This
implies that the number of points equals the number of lines and also, the
associated integer, so d = v = b.
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The Fano plane, The Desargues’ configuration
(v , b, r , k) = (7, 7, 3, 3) (v , b, r , k) = (10, 10, 3, 3)
(d , r , k) = (7, 3, 3) (d , r , k) = (10, 3, 3)
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Non-balanced configurations
When r 6= k , then v 6= b and d = v gcd(r ,k)

k
.

The affine plane AG (2, q) over the finite field Fq has parameters
(q2, q2 + q, q + 1, q) so d = q.
Reduced parameters: (q, q + 1, q).

A Steiner triple systems of order v (STS(v)) has parameters
(v , v(v − 1)/6, (v − 1)/2, 3).
Reduced parameters: (v gcd(v − 1, 3)/3, (v − 1)/2, 3).
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AG (2, 3) / STS(9)

(v , b, r , k) = (9, 12, 4, 3)
(d , r , k) = (3, 4, 3)
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Necessary conditions for existence of configurations

The following necessary conditions for existence of configurations are
well-known.

Lemma.

Suppose that there exists a (v , b, r , k)-configuration. Then

1 v ≥ r(k − 1) + 1 and b ≥ k(r − 1) + 1, and

2 vr = bk .

We say that parameters satisfying these conditions are admissible.

What about sufficient conditions?
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Sufficent conditions

When r = 3, the necessary conditions are sufficent [Gropp (1994)].

When r = 4, it is conjectured that the necessary conditions are
sufficient [Gropp (2001)].

When r = 5, the necessary conditions are not sufficent. Sufficient
conditions are not known for k > r .

In general sufficient conditions are not known.
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Augmenting balanced configurations [Martinetti, 1886]

Given a (v , v , 3, 3)-configuration, add a point and a line to construct a
(v + 1, v + 1, 3, 3)-configuration.

How?

Assume that there are two parallel lines {a, b, c} and {a′, b′, c ′}, with a

and a′ noncollinear.

Add a point p and replace the two parallel lines with the lines {p, b, c},
{p, b′, c ′}, {p, a, a′}.

The result is a (v + 1, v + 1, 3, 3)-configuration.
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The Martinetti augmentation
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Reduction of configurations I [Martinetti, 1886]

A configuration is called irreducible if it cannot be constructed from a
smaller configuration using the augmentation construction.

Theorem. [Martinetti- Boben]
The irreducible configurations à la Martinetti are:

Cyclic configurations with base line {0, 1, 3} (starting with the Fano
plane).

Three infinite families T1(n), T2(n), T3(n), on 10n points. The
smallest configuration in T1(n) is the Desargues’ configuration.

The Pappus’ configuration.
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Reduction of configurations II [Carstens et al., 2001]

Given a (v , v , 3, 3)-configuration, remove a point and a line to construct a
(v − 1, v − 1, 3, 3)-configuration.

How?

A complicated family of several Martinetti-like reductions defined on the
incidence graph.

Their goal was to show that the only irreducible configuration was the
Fano plane.

Unfortunately, in 2005, Ravnik used a computer to show that they failed
to reduce at least the Desargues’ configuration.

Klara Stokes



Reduction of configurations III [Boben, 2005]

In the incidence graph of a (v , v , 3, 3)-configuration, remove a point-vertex
p and a line-vertex ℓ and connect their neighbors so that the result is an
incidence graph of a (v − 1, v − 1, 3, 3)-configuration.

The incidence graph of a (v , v , 3, 3)-configuration is a bipartite cubic
graph of girth at least 6. The result is a (v − 1, v − 1, 3, 3)-configuration.

Martinetti’s reduction is a special case of this reduction.
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Irreducible configurations

Theorem. [Boben (2005)] Boben’s irreducible configurations are:

The Fano plane.

The Pappus’ configuration.
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Augmenting balanced configurations with r = k ≥ 3
Theorem.

Assume there is

a (balanced) (d , k , k)-configuration (P , L, I ) with k points Q ⊆ P and
k lines M ⊆ L, and

a bijection f : Q → M defined as follows:

◮ the image of a point q ∈ Q is a line f (q) ∈ M through that point,

◮ two points q, q′ ∈ Q can be collinear only on the line f (q) or f (q′),

◮ two lines m,m′ ∈ M can meet only in the point f −1(m) or f −1(m′).

Then there is a (d + 1, k , k)-configuration constructed from C through an
augmentation procedure.
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Augmenting balanced configurations with r = k ≥ 3
Theorem.

Assume there is

a (balanced) (d , k , k)-configuration (P , L, I ) with k points Q ⊆ P and
k lines M ⊆ L, and

a bijection f : Q → M defined as follows:

◮ the image of a point q ∈ Q is a line f (q) ∈ M through that point,

◮ two points q, q′ ∈ Q can be collinear only on the line f (q) or f (q′),

◮ two lines m,m′ ∈ M can meet only in the point f −1(m) or f −1(m′).

Then there is a (d + 1, k , k)-configuration constructed from C through an
augmentation procedure.

Disconnect all incidences (q, f (q)) ∈ I .

Add a new line ℓ and the incidences (q, ℓ) for all points q ∈ Q.

Add a new point p and the incidences (p,m) for all lines m ∈ M.

The result is a configuration with parameters (d + 1, k , k).
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Example: Augmenting (v , v , 3, 3, )-configurations

Lemma. Every (v , v , 3, 3)-configuration admits an augmentation.

Proof.

If the configuration contains a triangle, take Q and M the three
points and the three lines in the triangle.

If the configuration contains no triangle, there are still three points a,
b, c such that (a, b) and (b, c) are collinear on the two lines A, B ,
and a third line C through a not meeting A nor B . �

This implies the following well-known result.

Corollary. There is a (v , v , 3, 3) configuration whenever the parameters
are admissible.
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Augmenting (v , v , 3, 3)-configurations
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Deficiency of a configuration

The distance between two points is the number of lines in a “shortest
path” between them.

In a (d , r , k)-configuration all points have the same number r(k − 1) of
points at distance 1.

The deficiency of a configuration is the number of points at distance at
least 2 from a given point.
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Augmenting (v , v , 4, 4)-configurations
Lemma. A (d , 4, 4)-configuration admits an augmentation if and only if it
has deficiency at least 1.

Proof.

If deficiency is 0 then it is the finite projective plane of order 3, which
is not augmentable.

If deficiency is ≥ 1 then there are always points a, b, c , d such that
the pairs (a, b), (b, c), (c , d) are collinear on the lines A, B , C , and
the pairs (a, c), (b, d) are at distance at least two. The forth line D

can be taken as the line through a and d if there is such a choice of
points and lines. Otherwise D can be taken through d such that it
does not meet A, B , C . �

There are (v , 4, 4)-configuration with deficiency 0 and 1, so we get the
following well-known result.

Corollary. There is a (v , v , 4, 4)-configuration whenever the parameters
are admissible.

Klara Stokes



Augmenting configurations with r , k ≥ 3

Theorem. Let t = rk/ gcd(r , k). Assume there is

a (d , r , k)-configuration (P , L, I ) with t points Q ⊆ P and t lines
M ⊆ L, and

a bijection f : Q → M defined as follows:

◮ the image of a point q ∈ Q is a line f (q) ∈ M through that point,

◮ Q =
⋃r/ gcd(r ,k)

i=1 Qi such that |Qi | = k , Qi ∩ Qj = ∅, and two points
qi , q

′

i ∈ Qi can be collinear only on the line f (qi ) or f (q
′

i ),

◮ M =
⋃k/ gcd(r ,k)

i=1 Mi such that |Mi | = r , Mi ∩Mj = ∅, and two lines
mi ,m

′

i ∈ Mi can meet only in the point f −1(mi ) or f
−1(m′

i ).

Then there is a (d + 1, r , k)-configuration constructed from C through an
augmentation procedure.
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Augmenting configurations with r , k ≥ 3

Proof.

Disconnect all incidences (q, f (q)) ∈ I .

For each Qi add a new line ℓi and the incidences (qi , ℓi ) for all points
qi ∈ Qi .

For each Mi add a new point pi and the incidences (pi ,mi ) for all
lines mi ∈ Mi .

The result is a configuration with parameters (d + 1, r , k).

(d , r , k) → (d + 1, r , k)
(v , b, r , k) → (v + k/ gcd(r , k), b + r/ gcd(r , k), r , k)

�
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Reduction of balanced configurations with r = k ≥ 3

A reduction of a balanced configuration (P , L, I ) is a triple (p, ℓ, f ) where

p is a point,

ℓ is a line,

f ′ is a bijection f ′ : Q ′ → M ′,
where

◮ Q ′ = {q : q ∈ ℓ and q 6= p}, and
◮ M ′ = {m : p ∈ m and m 6= ℓ},

such that q is not collinear with s ∈ f ′(q) except possibly through ℓ
or with p.

Now delete p and l (and their incidences) and add incidences (q, f ′(q)) for
q ∈ Q ′.

A balanced configuration is irreducible if it does not admit a reduction.

Lemma. The reduction is the inverse operation of the augmentation.
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Reduction of configurations with r , k ≥ 3

A reduction of a configuration (P , L, I ) is a triple (R ,N, f ′) where

R is a set of points,

N is a set of lines,

f ′ is a pairing between the elements of two multisets f : Q ′ → M ′,
where

◮ Q ′ = {q : q ∈ P and ∃ℓ ∈ N such that q ∈ ℓ and q 6∈ R},
◮ M ′ = {m : m ∈ L and ∃p ∈ R such that p ∈ m and m 6∈ N},

such that q is not collinear with s ∈ f (q) except possibly through one
of the lines in N or with one of the points in R .

Now delete R and N and their incidences and add incidences (q, f ′(q)) for
q ∈ Q ′.

A configuration is irreducible if it does not admit a reduction.

Lemma. The reduction is the inverse operation of the augmentation.
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Reduction of (d , 3, 3)-configurations

In the case (d , 3, 3) this definition has the same implications as Boben’s
reduction.

Lemma There are only two irreducible (d , 3, 3)-configurations:

The Fano plane,

The Pappus’ configuration.
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The Pappus’ configuration as a transversal design

What is the analog of the Pappus’ configuration for other values of r and
k?

The Pappus’ configuration is a resolvable transversal design.

A transversal design TDλ(k , n) is a (k-uniform) incidence geometry on
v = kn points partitioned into k groups of n elements, such that

any group and any block contain exactly one common point, and

every pair of points from distinct groups is contained in exactly λ
blocks.

A transversal design is resolvable if the line set can be partitioned in
parallel classes and it is a (kn, n2, n, k)-configuration if λ = 1.

Example: There is a resolvable TD1(k , n) whenever there is an affine
plane of order n and k ≤ n. Take the points on k lines in a parallel class
and restrict the rest of the lines to these points.
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Irreducibility of resolvable transversal designs

Lemma. A resolvable transversal design TD1(k , n) is irreducible if
k ≥ (k + r)/ gcd(r , k) + 1.

Proof.

Let p be a point in T = TD1(k , n) and ℓ1, . . . , ℓn the lines through p.

Then ℓ1, . . . , ℓn are in different parallel classes.

Let ℓ be a line in T and q a point on ℓ.

Then q is collinear with all points on the lines ℓ1, . . . , ℓn except one
on each line.

At most (r + k)/ gcd(r , k) of these incidences can be removed by a
reduction and do (perhaps) not obstruct reduction.

More than (r + k)/ gcd(r , k) such incidences will obstruct reduction.
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Large configurations are reducible

Lemma. A (v , b, r , k)-configuration is reducible if
b ≥ 1 + r + r(k − 1)(r − 1) + r(k − 1)2(r − 1)2.

However this bound is not sharp.
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Thank you for listening!
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