Irreducibility of configurations

Klara Stokes

Table of Contents

(1) Introduction
(2) Augmentations and reductions of configurations: background
(3) Augmenting configurations with $r, k \geq 3$
4) Reducing configurations with $r, k \geq 3$

Table of Contents

(1) Introduction
(2) Augmentations and reductions of configurations: background
(3) Augmenting configurations with $r, k \geq 3$
4. Reducing configurations with $r, k \geq 3$

Incidence geometry

An incidence geometry is a triple (P, L, I) where

- P is a set of 'points',
- L is a set of 'blocks',
- I is an incidence relation between the elements in P and L.

When there are at most one block containing p_{i} and p_{j} for all pairs of points, then we call the blocks lines.

Incidence graph of an incidence geometry

We can use a graph to represent the incidences of points and blocks.
The incidence graph of the incidence structure (P, L, I) is the bipartite graph with vertex set $P \cup L$ and an edge between the vertices p and b if p is a point on b.

Combinatorial configurations

A combinatorial (v, b, r, k)-configuration is an incidence structure with v points and b lines/blocks such that

- every point appears on r lines,
- every line has k points,
- every pair of points is in at most one line, or equivalently,
- every pair of lines intersect in at most one point.

The four parameters (v, b, r, k) are redundant.
We only need the three parameters (d, r, k) with

$$
d:=\frac{v \operatorname{gcd}(r, k)}{k}=\frac{b \operatorname{gcd}(r, k)}{r}=\frac{v r}{\operatorname{Icm}(r, k)}=\frac{b k}{\operatorname{Icm}(r, k)} .
$$

Reduced parameters: (d, r, k)-configuration.
A combinatorial (v, b, r, k) configuration is also called an r-regular and k-uniform partial linear space.

Balanced configurations

We say that a combinatorial configuration is balanced if $r=k$. This implies that the number of points equals the number of lines and also, the associated integer, so $d=v=b$.

The Fano plane,

$$
\begin{aligned}
(v, b, r, k) & =(7,7,3,3) \\
(d, r, k) & =(7,3,3)
\end{aligned}
$$

The Desargues' configuration $(v, b, r, k)=(10,10,3,3)$
$(d, r, k)=(10,3,3)$

Non-balanced configurations

When $r \neq k$, then $v \neq b$ and $d=\frac{v \operatorname{gcd}(r, k)}{k}$.

- The affine plane $A G(2, q)$ over the finite field \mathbb{F}_{q} has parameters $\left(q^{2}, q^{2}+q, q+1, q\right)$ so $d=q$.
Reduced parameters: $(q, q+1, q)$.
- A Steiner triple systems of order $v(S T S(v))$ has parameters $(v, v(v-1) / 6,(v-1) / 2,3)$.
Reduced parameters: $(v \operatorname{gcd}(v-1,3) / 3,(v-1) / 2,3)$.

$$
\begin{array}{ll}
A G(2,3) / \operatorname{STS}(9) \\
(v, b, r, k) & =(9,12,4,3) \\
(d, r, k) & =(3,4,3)
\end{array}
$$

Necessary conditions for existence of configurations

The following necessary conditions for existence of configurations are well-known.

Lemma.
Suppose that there exists a (v, b, r, k)-configuration. Then
(1) $v \geq r(k-1)+1$ and $b \geq k(r-1)+1$, and
(2) $v r=b k$.

We say that parameters satisfying these conditions are admissible.
What about sufficient conditions?

Sufficent conditions

- When $r=3$, the necessary conditions are sufficent [Gropp (1994)].
- When $r=4$, it is conjectured that the necessary conditions are sufficient [Gropp (2001)].
- When $r=5$, the necessary conditions are not sufficent. Sufficient conditions are not known for $k>r$.
- In general sufficient conditions are not known.

Table of Contents

(1) Introduction

(2) Augmentations and reductions of configurations: background
(3) Augmenting configurations with $r, k \geq 3$
4) Reducing configurations with $r, k \geq 3$

Augmenting balanced configurations [Martinetti, 1886]

Given a ($v, v, 3,3$)-configuration, add a point and a line to construct a $(v+1, v+1,3,3)$-configuration.

How?
Assume that there are two parallel lines $\{a, b, c\}$ and $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$, with a and a^{\prime} noncollinear.

Add a point p and replace the two parallel lines with the lines $\{p, b, c\}$, $\left\{p, b^{\prime}, c^{\prime}\right\},\left\{p, a, a^{\prime}\right\}$.

The result is a $(v+1, v+1,3,3)$-configuration.

The Martinetti augmentation

Reduction of configurations I [Martinetti, 1886]

A configuration is called irreducible if it cannot be constructed from a smaller configuration using the augmentation construction.

Theorem. [Martinetti- Boben]
The irreducible configurations à la Martinetti are:

- Cyclic configurations with base line $\{0,1,3\}$ (starting with the Fano plane).
- Three infinite families $T_{1}(n), T_{2}(n), T_{3}(n)$, on $10 n$ points. The smallest configuration in $T_{1}(n)$ is the Desargues' configuration.
- The Pappus' configuration.

Reduction of configurations II [Carstens et al., 2001]

Given a $(v, v, 3,3)$-configuration, remove a point and a line to construct a ($v-1, v-1,3,3$)-configuration.

How?

A complicated family of several Martinetti-like reductions defined on the incidence graph.

Their goal was to show that the only irreducible configuration was the Fano plane.

Unfortunately, in 2005, Ravnik used a computer to show that they failed to reduce at least the Desargues' configuration.

Reduction of configurations III [Boben, 2005]

In the incidence graph of a $(v, v, 3,3)$-configuration, remove a point-vertex p and a line-vertex ℓ and connect their neighbors so that the result is an incidence graph of a ($v-1, v-1,3,3$)-configuration.

The incidence graph of a $(v, v, 3,3)$-configuration is a bipartite cubic graph of girth at least 6 . The result is a ($v-1, v-1,3,3$)-configuration.

Martinetti's reduction is a special case of this reduction.

Irreducible configurations

Theorem. [Boben (2005)] Boben's irreducible configurations are:

- The Fano plane.
- The Pappus' configuration.

Table of Contents

(1) Introduction

(2) Augmentations and reductions of configurations: background
(3) Augmenting configurations with $r, k \geq 3$
(4) Reducing configurations with $r, k \geq 3$

Augmenting balanced configurations with $r=k \geq 3$

Theorem.

Assume there is

- a (balanced) (d, k, k)-configuration (P, L, I) with k points $Q \subseteq P$ and k lines $M \subseteq L$, and
- a bijection $f: Q \rightarrow M$ defined as follows:
- the image of a point $q \in Q$ is a line $f(q) \in M$ through that point,
- two points $q, q^{\prime} \in Q$ can be collinear only on the line $f(q)$ or $f\left(q^{\prime}\right)$,
- two lines $m, m^{\prime} \in M$ can meet only in the point $f^{-1}(m)$ or $f^{-1}\left(m^{\prime}\right)$.

Then there is a $(d+1, k, k)$-configuration constructed from C through an augmentation procedure.

Augmenting balanced configurations with $r=k \geq 3$

Theorem.

Assume there is

- a (balanced) (d, k, k)-configuration (P, L, I) with k points $Q \subseteq P$ and k lines $M \subseteq L$, and
- a bijection $f: Q \rightarrow M$ defined as follows:
- the image of a point $q \in Q$ is a line $f(q) \in M$ through that point,
- two points $q, q^{\prime} \in Q$ can be collinear only on the line $f(q)$ or $f\left(q^{\prime}\right)$,
- two lines $m, m^{\prime} \in M$ can meet only in the point $f^{-1}(m)$ or $f^{-1}\left(m^{\prime}\right)$.

Then there is a $(d+1, k, k)$-configuration constructed from C through an augmentation procedure.

- Disconnect all incidences $(q, f(q)) \in I$.
- Add a new line ℓ and the incidences (q, ℓ) for all points $q \in Q$.
- Add a new point p and the incidences (p, m) for all lines $m \in M$.

The result is a configuration with parameters $(d+1, k, k)$.

Example: Augmenting ($v, v, 3,3$,)-configurations

Lemma. Every ($v, v, 3,3$)-configuration admits an augmentation.

Proof.

- If the configuration contains a triangle, take Q and M the three points and the three lines in the triangle.
- If the configuration contains no triangle, there are still three points a, b, c such that (a, b) and (b, c) are collinear on the two lines A, B, and a third line C through a not meeting A nor B.

This implies the following well-known result.
Corollary. There is a $(v, v, 3,3)$ configuration whenever the parameters are admissible.

Augmenting ($v, v, 3,3$)-configurations

Deficiency of a configuration

The distance between two points is the number of lines in a "shortest path" between them.

In a (d, r, k)-configuration all points have the same number $r(k-1)$ of points at distance 1.

The deficiency of a configuration is the number of points at distance at least 2 from a given point.

Augmenting ($v, v, 4,4$)-configurations

Lemma. A (d, 4, 4)-configuration admits an augmentation if and only if it has deficiency at least 1 .

Proof.

- If deficiency is 0 then it is the finite projective plane of order 3 , which is not augmentable.
- If deficiency is ≥ 1 then there are always points a, b, c, d such that the pairs $(a, b),(b, c),(c, d)$ are collinear on the lines A, B, C, and the pairs $(a, c),(b, d)$ are at distance at least two. The forth line D can be taken as the line through a and d if there is such a choice of points and lines. Otherwise D can be taken through d such that it does not meet A, B, C.

There are ($v, 4,4$)-configuration with deficiency 0 and 1 , so we get the following well-known result.

Corollary. There is a $(v, v, 4,4)$-configuration whenever the parameters are admissible.

Augmenting configurations with $r, k \geq 3$

Theorem. Let $t=r k / \operatorname{gcd}(r, k)$. Assume there is

- a (d, r, k)-configuration (P, L, I) with t points $Q \subseteq P$ and t lines $M \subseteq L$, and
- a bijection $f: Q \rightarrow M$ defined as follows:
- the image of a point $q \in Q$ is a line $f(q) \in M$ through that point,
- $Q=\bigcup_{i=1}^{r / \operatorname{gcd}(r, k)} Q_{i}$ such that $\left|Q_{i}\right|=k, Q_{i} \cap Q_{j}=\emptyset$, and two points $q_{i}, q_{i}^{\prime} \in Q_{i}$ can be collinear only on the line $f\left(q_{i}\right)$ or $f\left(q_{i}^{\prime}\right)$,
- $M=\bigcup_{i=1}^{k / \operatorname{gcd}(r, k)} M_{i}$ such that $\left|M_{i}\right|=r, M_{i} \cap M_{j}=\emptyset$, and two lines $m_{i}, m_{i}^{\prime} \in M_{i}$ can meet only in the point $f^{-1}\left(m_{i}\right)$ or $f^{-1}\left(m_{i}^{\prime}\right)$.

Then there is a $(d+1, r, k)$-configuration constructed from C through an augmentation procedure.

Augmenting configurations with $r, k \geq 3$

Proof.

- Disconnect all incidences $(q, f(q)) \in I$.
- For each Q_{i} add a new line ℓ_{i} and the incidences $\left(q_{i}, \ell_{i}\right)$ for all points $q_{i} \in Q_{i}$.
- For each M_{i} add a new point p_{i} and the incidences $\left(p_{i}, m_{i}\right)$ for all lines $m_{i} \in M_{i}$.
The result is a configuration with parameters $(d+1, r, k)$.

$$
\begin{array}{ll}
(d, r, k) & \rightarrow(d+1, r, k) \\
(v, b, r, k) & \rightarrow(v+k / \operatorname{gcd}(r, k), b+r / \operatorname{gcd}(r, k), r, k)
\end{array}
$$

Table of Contents

(1) Introduction

(2) Augmentations and reductions of configurations: background
(3) Augmenting configurations with $r, k \geq 3$
4) Reducing configurations with $r, k \geq 3$

Reduction of balanced configurations with $r=k \geq 3$

A reduction of a balanced configuration (P, L, I) is a triple (p, ℓ, f) where

- p is a point,
- ℓ is a line,
- f^{\prime} is a bijection $f^{\prime}: Q^{\prime} \rightarrow M^{\prime}$, where
- $Q^{\prime}=\{q: q \in \ell$ and $q \neq p\}$, and
- $M^{\prime}=\{m: p \in m$ and $m \neq \ell\}$,
such that q is not collinear with $s \in f^{\prime}(q)$ except possibly through ℓ or with p.
Now delete p and I (and their incidences) and add incidences $\left(q, f^{\prime}(q)\right)$ for $q \in Q^{\prime}$.

A balanced configuration is irreducible if it does not admit a reduction.
Lemma. The reduction is the inverse operation of the augmentation.

Reduction of configurations with $r, k \geq 3$

A reduction of a configuration (P, L, I) is a triple $\left(R, N, f^{\prime}\right)$ where

- R is a set of points,
- N is a set of lines,
- f^{\prime} is a pairing between the elements of two multisets $f: Q^{\prime} \rightarrow M^{\prime}$, where
- $Q^{\prime}=\{q: q \in P$ and $\exists \ell \in N$ such that $q \in \ell$ and $q \notin R\}$,
- $M^{\prime}=\{m: m \in L$ and $\exists p \in R$ such that $p \in m$ and $m \notin N\}$,
such that q is not collinear with $s \in f(q)$ except possibly through one of the lines in N or with one of the points in R.
Now delete R and N and their incidences and add incidences $\left(q, f^{\prime}(q)\right)$ for $q \in Q^{\prime}$.

A configuration is irreducible if it does not admit a reduction.
Lemma. The reduction is the inverse operation of the augmentation.

Reduction of (d, 3, 3)-configurations

In the case $(d, 3,3)$ this definition has the same implications as Boben's reduction.

Lemma There are only two irreducible ($d, 3,3$)-configurations:

- The Fano plane,
- The Pappus' configuration.

The Pappus' configuration as a transversal design

What is the analog of the Pappus' configuration for other values of r and k ?

The Pappus' configuration is a resolvable transversal design.
A transversal design $T D_{\lambda}(k, n)$ is a (k-uniform) incidence geometry on $v=k n$ points partitioned into k groups of n elements, such that

- any group and any block contain exactly one common point, and
- every pair of points from distinct groups is contained in exactly λ blocks.

A transversal design is resolvable if the line set can be partitioned in parallel classes and it is a ($k n, n^{2}, n, k$)-configuration if $\lambda=1$.

Example: There is a resolvable $T D_{1}(k, n)$ whenever there is an affine plane of order n and $k \leq n$. Take the points on k lines in a parallel class and restrict the rest of the lines to these points.

Irreducibility of resolvable transversal designs

Lemma. A resolvable transversal design $T D_{1}(k, n)$ is irreducible if $k \geq(k+r) / \operatorname{gcd}(r, k)+1$.

Proof.

- Let p be a point in $T=T D_{1}(k, n)$ and $\ell_{1}, \ldots, \ell_{n}$ the lines through p.
- Then $\ell_{1}, \ldots, \ell_{n}$ are in different parallel classes.
- Let ℓ be a line in T and q a point on ℓ.
- Then q is collinear with all points on the lines $\ell_{1}, \ldots, \ell_{n}$ except one on each line.
- At most $(r+k) / \operatorname{gcd}(r, k)$ of these incidences can be removed by a reduction and do (perhaps) not obstruct reduction.
- More than $(r+k) / \operatorname{gcd}(r, k)$ such incidences will obstruct reduction.

Large configurations are reducible

Lemma. A (v, b, r, k)-configuration is reducible if $b \geq 1+r+r(k-1)(r-1)+r(k-1)^{2}(r-1)^{2}$.

However this bound is not sharp.

Thank you for listening!

