Transitive combinatorial structures constructed from finite groups

Andrea Švob (asvob@math.uniri.hr) Dean Crnković (deanc@math.uniri.hr) Vedrana Mikulić Crnković (vmikulic@math.uniri.hr)

Department of Mathematics, University of Rijeka, Croatia

2014 PhD Summer School in Discrete Mathematics and SYGN IV, Rogla, Slovenia

July 2, 2014

- An incidence structure is an ordered triple $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ where \mathcal{P} and \mathcal{B} are non-empty disjoint sets and $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{B}$.
- The elements of the set \mathcal{P} are called points, the elements of the set \mathcal{B} are called blocks and \mathcal{I} is called an incidence relation.

- An isomorphism from one incidence structure to other is a bijective mapping of points to points and blocks to blocks which preserves incidence.
- An isomorphism from an incidence structure $\mathcal D$ onto itself is called an automorphism of $\mathcal D$.
- The set of all automorphisms forms a group called the full automorphism group of \mathcal{D} and is denoted by $Aut(\mathcal{D})$.

A $t - (v, k, \lambda)$ design is a finite incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ satisfying the following requirements:

- $|\mathcal{P}| = v,$
- **2** every element of \mathcal{B} is incident with exactly k elements of \mathcal{P} ,
- **(**) every *t* elements of \mathcal{P} are incident with exactly λ elements of \mathcal{B} .

A 2 – (v, k, λ) design is called a block design.

Note that this definition allows \mathcal{B} to be a multiset. If \mathcal{B} is a set then \mathcal{D} is called a simple design. If the design \mathcal{D} consists of k copies of some simple design \mathcal{D}' than \mathcal{D} is nonsimple design and it is denoted $\mathcal{D} = k\mathcal{D}'$

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a $t - (v, k, \lambda)$ design, with $0 \le s \le t$. \mathcal{D} is also an $s - (v, k, \lambda_s)$ design where

$$\lambda_s \binom{k-s}{t-s} = \lambda \binom{v-s}{t-s}.$$

Every *t*-design is also an *s*-design for $s \leq t$.

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{I})$ be a finite incidence structure. \mathcal{G} is a graph if each element of \mathcal{E} is incident with exactly two elements of \mathcal{V} . The elements of \mathcal{V} are called vertices and the elements of \mathcal{E} are called edges.

Two vertices u and v are called adjacent or neighbours if they are incident with the same edge. The number of neighbours of a vertex v is called the degree of v. If all the vertices of the graph \mathcal{G} have the same degree k, then \mathcal{G} is called k-regular.

A graph \mathcal{G} is called a strongly regular graph with parameters (n, k, λ, μ) , and denoted by $SRG(n, k, \lambda, \mu)$, if \mathcal{G} is k-regular graph with n vertices and if any two adjacent vertices have λ common neighbours and any two non-adjacent vertices have μ common neighbours.

- J. D. Key, J. Moori, Codes, Designs and Graphs from the Janko Groups J_1 and J_2 , J. Combin. Math. Combin. Comput. 40 (2002), 143–159.
 - The construction method of primitive symmetric designs and regular graphs for which a stabilizer of a point and a stabilizer of a block are conjugate.

- D. Crnković, V. Mikulić, Unitals, projective planes and other combinatorial structures constructed from the unitary groups U(3, q), q = 3, 4, 5, 7, Ars Combin. 110 (2013), 3–13.
 - The construction method of primitive designs and regular graphs for which a stabilizer of a point and a stabilizer of a block are not necessarily conjugate.

 D. Crnković, V. Mikulić, A. Švob, On some transitive combinatorial structures constructed from the unitary group U(3,3), *J. Statist. Plann. Inference* 144 (2014), 19-40.

Theorem

Let G be a finite permutation group acting transitively on the sets Ω_1 and Ω_2 of size m and n, respectively. Let $\alpha \in \Omega_1$ and $\Delta_2 = \bigcup_{i=1}^s G_{\alpha}.\delta_i$, where $\delta_1, ..., \delta_s \in \Omega_2$ are representatives of distinct G_{α} -orbits. If $\Delta_2 \neq \Omega_2$ and

$$\mathcal{B} = \{g.\Delta_2 : g \in G\},\$$

then $\mathcal{D}(G, \alpha, \delta_1, ..., \delta_s) = (\Omega_2, \mathcal{B})$ is a $1 - (n, |\Delta_2|, \frac{|G_\alpha|}{|G_{\Delta_2}|} \sum_{i=1}^s |G_{\delta_i}.\alpha|)$ design with $\frac{m \cdot |G_\alpha|}{|G_{\Delta_2}|}$ blocks. The group $H \cong G / \bigcap_{x \in \Omega_2} G_x$ acts as an automorphism group on (Ω_2, \mathcal{B}) , transitively on points and blocks of the design.

Corollary

If a group G acts transitively on the points and the blocks of a 1-design \mathcal{D} , then \mathcal{D} can be obtained as described in the Theorem, i.e., such that Δ_2 is a union of \mathcal{G}_{α} -orbits.

We can use the Theorem to construct 1-design as follows. Let M be a finite group and H_1 , H_2 , and G be subgroups of M. G acts transitively on the class $ccl_G(H_i)$, i = 1, 2, by conjugation and

$$|ccl_G(H_1)| = [G:N_G(H_1)] = m,$$

$$|ccl_G(H_2)| = [G : N_G(H_2)] = n.$$

Let us denote the elements of $ccl_G(H_1)$ by $H_1^{g_1}, H_1^{g_2}, \ldots, H_1^{g_m}$, and the elements of $ccl_G(H_2)$ by $H_2^{h_1}, H_2^{h_2}, \ldots, H_2^{h_n}$.

We can construct a 1-design such that:

- the point set of the design is $ccl_G(H_2)$,
- the block set is $ccl_G(H_1)$,
- the block $H_1^{g_i}$ is incident with the point $H_2^{h_j}$ if and only if $H_2^{h_j} \cap H_1^{g_i} \cong G_i$, i = 1, ..., k, where $\{G_1, ..., G_k\} \subset \{H_2^x \cap H_1^y \mid x, y \in G\}.$

We denote a 1-design constructed in this way by $\mathcal{D}(G, H_2, H_1; G_1, ..., G_k)$.

Let M be a finite group and H and G be subgroups of M. One can construct regular graph in the following way:

- the vertex set of the graph is $ccl_G(H)$,
- the vertex H^{g_i} is adjacent to the vertex H^{g_j} if and only if $H^{g_i} \cap H^{g_j} \cong G_i$, i = 1, ..., k, where $\{G_1, ..., G_k\} \subset \{H^x \cap H^y \mid x, y \in G\}.$

We denote a regular graph constructed in this way by $\mathcal{G}(G, H; G_1, ..., G_k)$.

We consider transitive structures constructed from a simple group isomorphic to the unitary group $G \cong U(3,3)$. We describe structures constructed on the conjugacy classes of the maximal and second maximal subgroups of the group G.

Table: Maximal subgroups of the group U(3,3) (up to conjugation)

Subgroup	Structure	Size	Size of
	of the group		G-conjugacy class
<i>M</i> ₁	$(E_9:Z_3):Z_8$	216	28
<i>M</i> ₂	L(2,7)	168	36
<i>M</i> ₃	$(Z_4 \times Z_4) : S_3$	96	63
M_4	$Z_4.S_4$	96	63

Table: Second maximal subgroups of the group U(3,3) (up to conjugation)

Subgroup	Structure	Size	Size of
	of the group		G-conjugacy class
H_1	$Ex_{27}^+: Z_4$	108	28
H_2	$E_4.A_4$	48	63
H ₃	$Z_4.A_4$	48	63
H ₄	$(Z_4:Z_2):Z_2$	32	189
H_5	<i>S</i> ₄	24	252
H_6	$Z_3: Z_8$	24	252
H ₇	$Z_7: Z_3$	21	288

In the following table we give a list of the 2-designs constructed on G-conjugacy classes of maximal and second maximal subgroups and some of their properties. The group G acts on all constructed designs, primitively on points and transitively but imprimitively on blocks.

Block design \mathcal{D}	Parameters	Simple	Corresponding	$Aut\mathcal{D}$
	of ${\mathcal D}$	design	simple design	
$\mathcal{D}(G, M_1, H_4; Z_8)$	(28, 4, 3)	no	(28, 4, 1)	$U(3, 3) : Z_2$
$\mathcal{D}(G, M_1, H_4; Z_4)$	(28, 8, 14)	yes		$U(3, 3) : Z_2$
$\mathcal{D}(G, M_1, H_4; Z_4, Z_8)$	(28, 12, 33)	no	(28, 12, 11)	S(6, 2)
$\mathcal{D}(G, M_1, H_5; S_3)$	(28, 4, 4)	yes		$U(3, 3) : Z_2$
$\mathcal{D}(G, M_1, H_6; Z_8)$	(28, 3, 2)	yes		$U(3, 3) : Z_2$
$\mathcal{D}(G, M_1, H_6; Z_8, Z_3 : Z_8)$	(28, 4, 4)	no	(28, 4, 1)	$U(3, 3) : Z_2$
$\mathcal{D}(G, M_1, H_7; Z_3)$	(28, 7, 16)	yes		S(6, 2)
$\mathcal{D}(G, M_2, H_4; Z_2)$	(36, 16, 36)	no	(36, 16, 12)	S(6, 2)
$\mathcal{D}(G, M_2, H_5; Z_2, S_3)$	(36, 16, 48)	no	(36, 16, 12)	S(6, 2)
$\mathcal{D}(G, M_2, H_7; Z_3, Z_7 : Z_3)$	(36, 15, 48)	no	(36, 15, 6)	$U(3, 3) : Z_2$
$\mathcal{D}(G, M_3, H_4; Z_2, Z_4, Z_2 \times Z_4, Z_4 \times Z_2, (Z_4 : Z_2) : Z_2)$	(63, 31, 45)	no	(63, 31, 15)	$U(3, 3) : Z_2$

Table: Transitive block designs constructed from the group U(3,3)

• We did not obtain any strongly regular graph from *G*-conjugacy classes of second maximal subgroups (whose *G*-normalizer is not a maximal subgroup).

- The group *U*(3,3) has 190 maximal subgroups, and has four distinct *U*(3,3)-conjugacy classes of the maximal subgroups *M*₁, *M*₂, *M*₃, *M*₄.
- We consider structures constructed on the conjugacy classes of the maximal subgroups of the group U(3,3) under the action of the four not conjugate maximal subgroups.
- We do not need to consider conjugacy classes of all maximal subgroups, we can eliminate some of them.

- Finally, after elimination, we got 7 maximal subgroups of the U(3,3) which are not conjugate under the action of the group M_1 ,
- 11 maximal subgroups of the U(3,3) which are not conjugate under the action of the group M_2 ,
- 11 maximal subgroups of the U(3,3) which are not conjugate under the action of the group M_3 ,
- 14 maximal subgroups of the U(3,3) which are not conjugate under the action of the group M_4 .

Table: Block designs constructed from the group U(3,3), from the conjugacy classes of maximal subgroups under the action of the maximal subgroups

Block design \mathcal{D}	Parameters	Simple	Corresponding	Aut \mathcal{D}
	of \mathcal{D}	design	simple design	
$\mathcal{D}(M_2, (Z_4 \times Z_4) : S_3, (Z_4 \times Z_4) : S_3; D_8 : Z_2)$	(7, 3, 1)	yes		L(2,7)
$\mathcal{D}(M_2, (Z_4 \times Z_4) : S_3, (Z_4 \times Z_4) : S_3; E_4)$	(7, 3, 3)	no	(7, 3, 1)	L(2,7)
$\mathcal{D}(M_2, (Z_4 \times Z_4) : S_3, (Z_9 : Z_3) : Z_8; Z_8)$	(7, 3, 4)	no	(7, 3, 1)	L(2,7)
$\mathcal{D}(M_2, L(2, 7), (Z_4 \times Z_4) : S_3; S_3)$	(7, 3, 4)	yes		L(2,7)
$\mathcal{D}(M_1, Z_4, S_4, L(2, 7); Z_4)$	(9, 3, 3)	no	(9, 3, 1)	$(E_9: Z_2).S_4$
$\mathcal{D}(M_1, Z_4, S_4, Z_4, S_4; Z_4 \times Z_4)$	(9, 4, 9)	no	(9, 4, 3)	$(E_9:D_8).Z_2$
$\mathcal{D}(M_4, (Z_4 \times Z_4) : S_3, (Z_4 \times Z_4) : S_3; S_3)$	(16, 6, 2)	yes		$E_{16}: S_6$
$\mathcal{D}(M_1, L(2, 7), L(2, 7); D_8)$	(36, 15, 6)	yes		$U(3,3): Z_2$
$\mathcal{D}(M_1, (Z_4 \times Z_4) : S_3, (Z_4 \times Z_4) : S_3; E_4, S_3)$	(36, 15, 6)	yes		$U(4, 2) : Z_2$

Table: Strongly regular graphs constructed from the group U(3,3) from the conjugacy classes of maximal subgroups under the action of the maximal subgroups

Graph \mathcal{G}	Parameters of ${\cal G}$	AutG
$\mathcal{G}(M_4,(Z_4 \times Z_4):S_3;S_3)$	(16, 6, 2, 2)	$(Z_4 \times Z_4) : D_{12}$
$G(M_1, (Z_4 \times Z_4) : S_3; E_4, D_8 : Z_2)$	(27, 10, 1, 5)	$U(4,2): Z_2$
$\mathcal{G}(M_2,(Z_4 \times Z_4) : S_3;S_3)$	(28, 12, 6, 4)	S_8
$G(M_1, L(2,7); S_4)$	(36, 14, 4, 6)	$U(3,3): Z_2$
$\mathcal{G}(M_1, (Z_4 \times Z_4) : S_3; E_4, D_8 : Z_2)$	(36, 15, 6, 6)	$U(4,2): Z_2$

Up to U(3,3)-conjugation, the group U(3,3) has 7 second maximal subgroups.

We consider structures constructed on the conjugacy classes of the second maximal subgroups of the group U(3,3) under the action of the maximal subgroups M_1 , M_2 , M_3 and M_4 .

- After elimination, we got 17 second maximal subgroups of the U(3,3) which are not conjugate under the action of the group M_1 ,
- 26 maximal subgroups of the U(3,3) which are not conjugate under the action of the group M_2 ,
- 29 maximal subgroups of the U(3,3) which are not conjugate under the action of the group M_3 ,
- 36 maximal subgroups of the U(3,3) which are not conjugate under the action of the group M_4 .

Table: Block designs constructed from the group U(3,3) from the conjugacy classes of maximal and second maximal subgroups under the action of the maximal subgroups

Block design \mathcal{D}	Parameters of \mathcal{D}	Simple	Corresponding	$Aut\mathcal{D}$
$\mathcal{D}(M = M^3 = \mu^{14}, \tau = \tau, \tau)$	(7 2 1)	ucsign	simple design	1(2,7)
$D(M_2, M_2, H_2; Z_2 \times Z_4)$	(7, 5, 1)	yes	(7.0.1)	L(2, 7)
$D(M_2, M_2, H_2; Z_2 \times Z_4, Z_2)$	(7, 3, 3)	no	(7, 3, 1)	L(2, 7)
$\mathcal{D}(M_2, M_2^3, H_2^0; Z_2)$	(7, 3, 4)	no	(7, 3, 1)	L(2, 7)
$\mathcal{D}(M_2, M_2^3, H_2^4; E_4, D_8)$	(7, 3, 6)	no	(7, 3, 1)	L(2, 7)
$\mathcal{D}(M_2, M_2^7, H_2^{25}; I)$	(7, 3, 8)	no	(7, 3, 1)	L(2,7)
$\mathcal{D}(M_2, M_2^3, H_2^{22}; I)$	(7, 3, 8)	no	(7, 3, 4)	L(2,7)
$\mathcal{D}(M_2, M_2^3, H_2^{19}; Z_8, Z_2)$	(7, 3, 12)	no	(7, 3, 1)	L(2,7)
$\mathcal{D}(M_2, M_2^7, H_2^8; E_4)$	(7, 3, 12)	no	(7, 3, 4)	L(2,7)
$\mathcal{D}(M_2, M_2^7, H_2^{23}; Z_3)$	(7, 3, 24)	no	(7, 3, 1)	L(2,7)
$\mathcal{D}(M_1, M_1^3, H_1^5; Z_4)$	(9, 3, 3)	no	(9, 3, 1)	E_9 : (SL(2, 3): Z_2)
$\mathcal{D}(M_1, H_1^{g}, H_1^{7}; Z_4, I)$	(9, 3, 9)	no	(9, 3, 1)	E_9 : (SL(2, 3): Z ₂)
$\mathcal{D}(M_1, M_1^3, H_1^7; Z_4, I)$	(9, 4, 18)	no	(9, 4, 3)	$(E_9: D_8).Z_2$
$\mathcal{D}(M_4, M_4^{14}, \tilde{H}_4^{31}; Z_3)$	(16, 5, 8)	yes		E_{16} : S_6
$\mathcal{D}(M_4, M_4^3, H_4^{10}; Z_3)$	(16, 6, 2)	yes		E_{16} : S_6
$\mathcal{D}(M_4, M_4^{10}, H_4^{32}; Z_3)$	(16, 6, 4)	no	(16, 6, 2)	E_{16} : S_6
$\mathcal{D}(M_4, M_4^{10}, H_4^{12}; S_3, Z_2)$	(16, 6, 6)	no	(16, 6, 2)	E_{16} : S_6
$\mathcal{D}(M_4, H_4^{10}, H_4^7; Z_3, Z_2)$	(16, 6, 6)	yes		E ₁₆ .S ₄
$\mathcal{D}(M_4, H_4^{13}, H_4^5; I)$	(16, 6, 6)	yes		E ₁₆ .S ₄
$\mathcal{D}(M_4, M_4^{10}, H_4^{31}; Z_3)$	(16, 6, 12)	no	(16, 6, 2)	E_{16} : S_6
$\mathcal{D}(M_1, M_1^2, H_1^5; Z_2, Z_2 \times Z_4)$	(36, 15, 6)	yes		$U(4, 2) : Z_2$
$\mathcal{D}(M_1, M_1^5, H_1^{15}; Z_7 : Z_3, Z_3)$	(36, 15, 12)	no	(36, 15, 6)	$U(3, 3) : Z_2$
$\mathcal{D}(M_1, M_1^5, H_1^{14}; Z_7 : Z_3, Z_3)$	(36, 15, 36)	no	(36, 15, 6)	$U(3, 3) : Z_2$

Fransitive combinatorial structures constructed from finite groups

Table: Strongly regular graphs constructed from the group U(3,3) from the conjugacy classes of second maximal subgroups under the action of the maximal subgroups

Graph ${\cal G}$	Parameters of ${\cal G}$	AutG
$G(M_4, H_4^{10}; Z_3)$	(16, 6, 2, 2)	$(Z_4 \times Z_4) : D_{12}$
$G(M_1, H_1^1; I, Z_4)$	(27, 10, 1, 5)	$U(4,2): Z_2$
$\mathcal{G}(M_1, H_1^6; I, E_4)$	(36, 15, 6, 6)	$U(4,2): Z_2$

We consider transitive structures constructed from a simple group G isomorphic to the symplectic group S(6,2). We describe structures constructed on the conjugacy classes of the maximal and second maximal subgroups of the group G.

Table: Maximal subgroups of the group S(6,2) (up to conjugation)

Subgroup	Structure	Size	Size of
	of the subgroup		G-conjugacy class
M ₈	$U(4, 2) : Z_2$	51840	28
M7	5 ₈	40320	36
M ₆	$E_{32}: S_6$	23040	63
M5	$U(3, 3) : Z_2$	12096	120
M4	E_{64} : $L(3, 2)$	10752	135
M ₃	$((E_{16}: Z_2) \times E_4): (S_4 \times S_4)$	4608	315
M ₂	$S_3 \times S_6$	4320	336
<i>M</i> ₁	$L(2, 8) : Z_3$	1512	960

Table: Second maximal subgroups of the group S(6,2) (up to conjugation)

Subgroup	Structure	Size	Size of
	of the group		G-conjugacy class
H_1	$(E_{16}: A_5): Z_2$	1920	378
H_2	$((Z_2 \times D_8) : Z_2) : (S_3 \times S_3)$	1152	1260
H_3	$Z_2 \times S_6$	1440	1008
H_4	$(E_9:Z_3):GL(2,3)$	1296	1120
H_5	$E_{27}: (Z_2 \times S_4)$	1296	1120
H ₆	$(S_4 \times S_4) : Z_2$	1152	1260
H_7	S ₇	5040	288
H ₈	$E_8:(Z_2 \times S_4)$	384	3780
H_9	$S_5 \times S_3$	720	2016
H_{10}	$PSL(32) : Z_2$	336	4320
H_{11}	$(E_{32}: A_5): Z_2$	3840	378
H ₁₂	$Z_2 \times ((E_{16} : A_5) : Z_2)$	3840	378
H ₁₃	$Z_2 \times ((S_4 \times S_4) : Z_2)$	2304	630
H_{14}	$E_{32}:(Z_2:S_4)$	1536	945
H_{15}	$E_8:(D_8\times S_4)$	1536	945
H ₁₆	$Z_2 \times S_6$	1440	1008
H ₁₇	$(E_9:Z_3):QD_{16}$	432	3360
H ₁₈	$(SL(23) : Z_4) : Z_2$	192	7560
H_{19}	$E_4:(Z_2\times S_4)$	192	7560
H_{20}	$E_{32}: (Z_2 \times S_4)$	1536	945

Table: Second maximal subgroups of the group S(6,2) (up to conjugation) (continued from the previous page)

Subgroup	Structure	Size	Size of
	of the group		G-conjugacy class
H ₂₁	$(E_{64}: Z_7): Z_3$	1344	1080
H ₂₂	$E_8.PSL(32)$	1344	1080
H ₂₃	$E_8 : PSL(32)$	1344	1080
H ₂₄	$Z_2 \times S_3 \times S_4$	288	5040
H ₂₅	$S_5 \times S_3$	720	2016
H ₂₆	$((S_3 \times S_3) : Z_2) \times S_3$	432	3360
H ₂₇	$Z_2 \times S_4 \times S_3$	288	5040
H ₂₈	$(E_8 : Z_7) : Z_3$	168	8640
H ₂₉	$(Z_9:Z_3):Z_2$	54	26880
H ₃₀	$E_{21}: Z_2$	42	34560

- We describe 2-designs and strongly regular graphs obtained from *G*-conjugacy classes of the maximal and second maximal subgroups.
- The group G acts transitively on all constructed designs.

Table: Transitive block designs constructed from the group S(6,2), v = 28

Block design \mathcal{D}	Parameters	Simple	Corresponding	$\operatorname{Aut}(\mathcal{D})$
	of ${\cal D}$	design	simple design	
$\mathcal{D}(G, M_8, H_6; P^1_{8,6})$	(28, 12, 110)	no	(28, 12, 11)	S(6, 2)
$\mathcal{D}(G, M_8, H_7; P^1_{8,7})$	(28, 7, 16)	yes		S(6, 2)
$\mathcal{D}(G, M_8, H_8; P^{1}_{8,8})$	(28, 4, 60)	no	(28, 4, 5)	S(6, 2)
$\mathcal{D}(G, M_8, H_9; P^{1}_{8,9})$	(28, 3, 16)	yes		S(6, 2)
$\mathcal{D}(G, M_8, H_9; P_{8,9}^2)$	(28, 10, 240)	no	(28, 10, 40)	S(6, 2)
$\mathcal{D}(G, M_8, H_9; P_{8,9}^1, P_{8,9}^2)$	(28, 13, 416)	yes		S(6, 2)
$\mathcal{D}(G, M_8, H_{11}; P^1_{8,11})$	(28, 12, 66)	no	(28, 12, 11)	S(6, 2)
$\mathcal{D}(G, M_8, H_{14}; P^1_{8, 14})$	(28, 12, 165)	no	(28, 12, 11)	S(6, 2)
$\mathcal{D}(G, M_8, H_{15}; P_{8,15}^{1'})$	(28, 4, 15)	no	(28, 4, 5)	S(6, 2)
$\mathcal{D}(G, M_8, H_{15}; P_{8,15}^2)$	(28, 8, 70)	yes		S(6, 2)
$\mathcal{D}(G, M_8, H_{16}; P^1_{8,16})$	(28, 10, 120)	no	(28, 10, 40)	S(6, 2)
$\mathcal{D}(G, M_8, H_{16}; P_{8,16}^2)$	(28, 12, 176)	no	(28, 12, 11)	S(6, 2)
$\mathcal{D}(G, M_8, H_{16}; P_{8,16}^3)$	(28, 6, 40)	yes		S(6, 2)
$\mathcal{D}(G, M_8, H_{18}; P^{1'}_{8,18})$	(28, 4, 120)	no	(28, 4, 5)	S(6, 2)

Table: Transitive block designs constructed from the group S(6,2), v = 28 (continued from the previous page)

Block design \mathcal{D}	Parameters of ${\cal D}$	Simple design	Corresponding simple design	$\operatorname{Aut}(\mathcal{D})$
$\mathcal{D}(G, M_8, H_{19}; P^1_{8,19})$	(28, 12, 660)	no	(28, 12, 11)	S(6, 2)
$\mathcal{D}(G, M_8, H_{24}; P^1_{8,24})$	(28, 6, 200)	yes		S(6, 2)
$\mathcal{D}(G, M_8, H_{24}; P_{8,24}^{2'})$	(28, 4, 80)	no	(28, 4, 5)	S(6, 2)
$\mathcal{D}(G, M_8, H_{24}; P_{8,24}^1, P_{8,24}^2)$	(28, 10, 600)	no	(28, 10, 40)	S(6, 2)
$\mathcal{D}(G, M_8, H_{26}; P^1_{8,26})$	(28, 9, 320)	yes		S(6, 2)
$\mathcal{D}(G, M_8, H_{26}; P^{1}_{8,26}, P^{2}_{8,26})$	(28, 10, 400)	no	(28, 10, 40)	S(6, 2)
$\mathcal{D}(G, M_8, H_{27}; P^1_{8,27})$	(28, 4, 80)	yes		S(6, 2)
$\mathcal{D}(G, M_8, H_{27}; P^{2}_{8,27}, P^{3}_{8,27})$	(28, 12, 880)	no	(28, 12, 11)	S(6, 2)
$\mathcal{D}(G, M_8, H_{27}; P_{8,27}^4)$	(28, 12, 880)	yes		S(6, 2)
$\mathcal{D}(G, M_8, H_1; P_{8,1}^1)$	(28, 10, 45)	yes		S(6, 2)
$\mathcal{D}(G, M_8, H_2; P_{8,2}^1)$	(28, 3, 10)	yes		S(6, 2)
$\mathcal{D}(G, M_8, H_2; P_{8,2}^1, P_{8,2}^2)$	(28, 4, 20)	no	(28, 4, 5)	S(6, 2)
$\mathcal{D}(G, M_8, H_3; P_{8,3}^{1'}, P_{8,3}^{2'})$	(28, 13, 208)	yes		S(6, 2)
$\mathcal{D}(G, M_8, H_{30}; P^1_{8,30})$	(28, 7, 1920)	no	(28, 7, 16)	S(6, 2)

Block design \mathcal{D}	Parameters of \mathcal{D}	Simple design	Corresponding simple design	$\operatorname{Aut}(\mathcal{D})$
$\mathcal{D}(G, M_7, H_1; P_{7,1}^1)$	(36, 16, 72)	no	(36, 16, 12)	S(6, 2)
$\mathcal{D}(G, M_7, H_2; P_{7,2}^1)$	(36, 12, 132)	no	(36, 12, 33)	S(6, 2)
$\mathcal{D}(G, M_7, H_5; P_{7,5}^1)$	(36, 9, 64)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_8; P^1_{7,8})$	(36, 3, 18)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_8; P_{7,8}^1, P_{7,8}^2)$	(36, 4, 36)	no	(36, 4, 9)	S(6, 2)
$\mathcal{D}(G, M_7, H_8; P_{7,8}^3)$	(36, 8, 168)	no	(36, 8, 6)	S(6, 2)
$\mathcal{D}(G, M_7, H_8; P_{7,8}^2, P_{7,8}^3)$	(36, 9, 216)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_8; P_{7,8}^1, P_{7,8}^3)$	(36, 11, 330)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_8; P_{7,8}^1, P_{7,8}^2, P_{7,8}^3)$	(36, 12, 396)	no	(36, 12, 33)	S(6, 2)
$\mathcal{D}(G, M_7, H_9; P^1_{7,9})$	(36, 5, 32)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_9; P_{7,9}^1, P_{7,9}^2)$	(36, 6, 48)	no	(36, 6, 8)	S(6, 2)
$\mathcal{D}(G, M_7, H_{10}; P^1_{7, 10})$	(36, 14, 624)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_{10}; P^1_{7,10}, P^2_{7,10})$	(36, 15, 720)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_{14}; P_{7,14}^1)$	(36, 8, 42)	no	(36, 8, 6)	S(6, 2)
$\mathcal{D}(G, M_7, H_{14}; P_{7,14}^{2'})$	(36, 12, 99)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_{14}; P_{7,14}^3)$	(36, 16, 180)	no	(36, 16, 12)	S(6, 2)
$\mathcal{D}(G, M_7, H_{15}; P_{7,15}^1)$	(36, 12, 99)	no	(36, 12, 33)	S(6, 2)
$\mathcal{D}(G, M_7, H_{15}; P_{7,15}^2)$	(36, 8, 42)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_{16}; P_{7,16}^1)$	(36, 6, 24)	no	(36, 6, 8)	S(6, 2)

Table: Transitive block designs constructed from the group S(6,2), v = 36

Table: Transitive block designs constructed from the group S(6,2), v = 36 (continued from the previous page)

Block design ${\mathcal D}$	Parameters of \mathcal{D}	Simple design	Corresponding simple design	$\operatorname{Aut}(\mathcal{D})$
$\mathcal{D}(G, M_7, H_{16}; P_{7,16}^2)$	(36, 10, 72)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_{16}; P_{1,16}^1, P_{7,16}^2)$	(36, 16, 192)	no	(36, 16, 12)	S(6, 2)
$\mathcal{D}(G, M_7, H_{18}; P_{7,18}^1)$	(36, 12, 792)	no	(36, 12, 33)	S(6, 2)
$\mathcal{D}(G, M_7, H_{19}; P^1_{7, 19})$	(36, 16, 720)	no	(36, 16, 12)	S(6, 2)
$\mathcal{D}(G, M_7, H_{19}; P_{7,19}^2)$	(36, 12, 396)	no	(36, 12, 99)	S(6, 2)
$\mathcal{D}(G, M_7, H_{20}; P^{1}_{7,20})$	(36, 4, 9)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_{21}; P_{7,21}^1)$	(36, 8, 48)	no	(36, 8, 6)	S(6, 2)
$\mathcal{D}(G, M_7, H_{24}; P_{7,24}^1)$	(36, 6, 120)	no	(36, 6, 8)	S(6, 2)
$\mathcal{D}(G, M_7, H_{24}; P_{7,24}^2)$	(36, 12, 528)	no	(36, 12, 33)	S(6, 2)
$\mathcal{D}(G, M_7, H_{24}; P_{7,24}^1, P_{7,24}^2)$	(36, 18, 1224)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_{24}; P_{7,24}^3)$	(36, 18, 1224)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_{26}; P_{7,26}^{1'})$	(36, 6, 80)	no	(36, 6, 8)	S(6, 2)
$\mathcal{D}(G, M_7, H_{26}; P_{7,26}^2)$	(36, 3, 16)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_{26}; P_{7,26}^1, P_{7,26}^2)$	(36, 9, 192)	no	(36, 9, 64)	S(6, 2)

Table: Transitive block designs constructed from the group S(6,2), v = 36 (continued from the previous page)

Block design \mathcal{D}	Parameters	Simple	Corresponding	$\operatorname{Aut}(\mathcal{D})$
	of ${\cal D}$	design	simple design	
$\mathcal{D}(G, M_7, H_{27}; P^1_{7,27})$	(36, 4, 48)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_{27}; P_{7,27}^2)$	(36, 12, 528)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_{27}; P_{7,27}^{2'}, P_{7,27}^{3})$	(36, 14, 728)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_{27}; P_{7,27}^{2'}, P_{7,27}^{1'})$	(36, 16, 960)	no	(36, 16, 12)	S(6, 2)
$\mathcal{D}(G, M_7, H_{27}; P_{7,27}^2, P_{7,27}^1, P_{7,27}^3)$	(36, 18, 1224)	no	(36, 18, 153)	S(6, 2)
$\mathcal{D}(G, M_7, H_{27}; P_{7,27}^4)$	(36, 18, 1224)	no	(36, 18, 153)	S(6, 2)
$\mathcal{D}(G, M_7, H_{28}; P_{7,28}^1)$	(36, 8, 384)	no	(36, 8, 6)	S(6, 2)
$\mathcal{D}(G, M_7, H_3; P^{1}_{7,3})$	(36, 15, 168)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_6; P_{7,6}^1)$	(36, 16, 120)	no	(36, 16, 12)	S(6, 2)
$\mathcal{D}(G, M_7, H_6; P_{7,6}^1, P_{7,6}^2)$	(36, 18, 153)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_6; P_{7,6}^3)$	(36, 18, 153)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_{23}; P^1_{7,23})$	(36, 7, 36)	yes		S(6, 2)
$\mathcal{D}(G, M_7, H_{29}; P_{7,29}^1)$	(36, 9, 1536)	no	(36, 9, 64)	S(6, 2)
$\mathcal{D}(G, M_7, H_{30}; P^1_{7,30})$	(36, 14, 4992)	no	36, 14, 624	S(6, 2)
$\mathcal{D}(G, M_7, H_{30}; P^{1}_{7,30}, P^{2}_{7,30})$	(36, 15, 5760)	no	(36, 15, 720)	S(6, 2)

Table: Transitive block designs constructed from the group S(6, 2), v = 63, 120, 378

Block design \mathcal{D}	Parameters	Simple	Corresponding	$\operatorname{Aut}(\mathcal{D})$
	of \mathcal{D}	design	simple design	
$\mathcal{D}(G, M_6, H_1; P_{6,1}^1, P_{6,1}^2, P_{6,1}^3)$	(63, 31, 90)	no	(63, 31, 15)	PGL(6, 2)
$\mathcal{D}(G, M_6, H_3; P_{6,3}^1, P_{6,3}^2)$	(63, 31, 240)	no	(63, 31, 15)	PGL(6, 2)
$\mathcal{D}(G, M_6, H_6; P_{6,6}^1, P_{6,6}^2, P_{6,6}^3)$	(63, 31, 150)	no	(63, 31, 15)	PGL(6, 2)
$\mathcal{D}(G, M_6, H_{14}; P^1_{6,14}, P^2_{6,14}, P^3_{6,14})$	(63, 31, 225)	no	(63, 31, 15)	PGL(6, 2)
$\mathcal{D}(G, M_6, H_{19}; P_{6,19}^1, P_{6,19}^2, P_{6,19}^3)$	(63, 31, 900)	no	(63, 31, 15)	PGL(6, 2)
$\mathcal{D}(G, M_6, H_{27}; P_{6,27}^{1'}, P_{6,27}^{2'}, P_{6,27}^{3'}, P_{6,27}^{4})$	(63, 31, 1200)	no	(63, 31, 15)	PGL(6, 2)
$\mathcal{D}(G, M_5, H_{10}; P_{5,10}^1, P_{5,10}^2)$	(120, 35, 360)	yes		$O^+(8,2):Z_2$
$\mathcal{D}(G, H_1, H_{12}; P_{1,12}^1, P_{1,12}^2, P_{1,12}^3)$	(378, 117, 36)	yes		$O(7, 3) : Z_2$

Table: Strongly regular graphs constructed from the group S(6,2) from the conjugacy classes of the second maximal subgroups

Graph \mathcal{G}	Parameters of ${\cal G}$	Aut(G)
$\mathcal{G}(G_2, H_{12}; P_{12}^1, P_{12}^2)$	(378, 52, 26, 4)	S ₂₈
$\mathcal{G}(G_2, H_{12}; P_{12}^1, P_{12}^3, P_{12}^4)$	(378, 117, 36, 36)	$O_7(3): Z_2$
$\mathcal{G}(G_2, H_{13}; P_{13}^1, P_{13}^2)$	(630, 68, 34, 4)	S ₃₆
$\mathcal{G}(G_2, H_4; P_4^1, P_4^2, P_4^3, P_4^4)$	(1120, 390, 146, 130)	$O_8^+(3).D_8$

Thank you for your attention!

Transitive combinatorial structures constructed from finite groups

Andrea Švob (asvob@math.uniri.hr) Department of Mathematics, University of Rijeka, Croatia

REPUBLIKA SLOVENIJA MINISTRSTVO ZA IZOBRAŽEVANJE, ZNANOST IN ŠPORT

