Transitive combinatorial structures constructed from finite groups

Andrea Švob (asvob@math.uniri.hr)
Dean Crnković (deanc@math.uniri.hr)
Vedrana Mikulić Crnković (vmikulic@math.uniri.hr)
Department of Mathematics, University of Rijeka, Croatia

2014 PhD Summer School in Discrete Mathematics and SYGN IV, Rogla, Slovenia

$$
\text { July 2, } 2014
$$

An incidence structure is an ordered triple $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ where \mathcal{P} and \mathcal{B} are non-empty disjoint sets and $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{B}$.

The elements of the set \mathcal{P} are called points, the elements of the set \mathcal{B} are called blocks and \mathcal{I} is called an incidence relation.

- An isomorphism from one incidence structure to other is a bijective mapping of points to points and blocks to blocks which preserves incidence.
- An isomorphism from an incidence structure \mathcal{D} onto itself is called an automorphism of \mathcal{D}.
- The set of all automorphisms forms a group called the full automorphism group of \mathcal{D} and is denoted by $\operatorname{Aut}(\mathcal{D})$.

A $t-(v, k, \lambda)$ design is a finite incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ satisfying the following requirements:
(1) $|\mathcal{P}|=v$,
(2) every element of \mathcal{B} is incident with exactly k elements of \mathcal{P},
(3) every t elements of \mathcal{P} are incident with exactly λ elements of \mathcal{B}.

A $2-(v, k, \lambda)$ design is called a block design.
Note that this definition allows \mathcal{B} to be a multiset. If \mathcal{B} is a set then \mathcal{D} is called a simple design. If the design \mathcal{D} consists of k copies of some simple design \mathcal{D}^{\prime} than \mathcal{D} is nonsimple design and it is denoted $\mathcal{D}=k \mathcal{D}^{\prime}$

Let $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a $t-(v, k, \lambda)$ design, with $0 \leq s \leq t . \mathcal{D}$ is also an $s-\left(v, k, \lambda_{s}\right)$ design where

$$
\lambda_{s}\binom{k-s}{t-s}=\lambda\binom{v-s}{t-s}
$$

Every t-design is also an s-design for $s \leq t$.

Let $\mathcal{G}=(\mathcal{V}, \mathcal{E}, \mathcal{I})$ be a finite incidence structure. \mathcal{G} is a graph if each element of \mathcal{E} is incident with exactly two elements of \mathcal{V}. The elements of \mathcal{V} are called vertices and the elements of \mathcal{E} are called edges.

Two vertices u and v are called adjacent or neighbours if they are incident with the same edge. The number of neighbours of a vertex v is called the degree of v. If all the vertices of the graph \mathcal{G} have the same degree k, then \mathcal{G} is called k-regular.

A graph \mathcal{G} is called a strongly regular graph with parameters (n, k, λ, μ), and denoted by $\operatorname{SRG}(n, k, \lambda, \mu)$, if \mathcal{G} is k-regular graph with n vertices and if any two adjacent vertices have λ common neighbours and any two non-adjacent vertices have μ common neighbours.
J. D. Key, J. Moori, Codes, Designs and Graphs from the Janko Groups J_{1} and J_{2}, J. Combin. Math. Combin. Comput. 40 (2002), 143-159.

- The construction method of primitive symmetric designs and regular graphs for which a stabilizer of a point and a stabilizer of a block are conjugate.
D. Crnković, V. Mikulić, Unitals, projective planes and other combinatorial structures constructed from the unitary groups $U(3, q), q=3,4,5,7$, Ars Combin. 110 (2013), 3-13.
- The construction method of primitive designs and regular graphs for which a stabilizer of a point and a stabilizer of a block are not necessarily conjugate.
- D. Crnković, V. Mikulić, A. Švob, On some transitive combinatorial structures constructed from the unitary group $\mathrm{U}(3,3)$, J. Statist. Plann. Inference 144 (2014), 19-40.

Theorem

Let G be a finite permutation group acting transitively on the sets Ω_{1} and Ω_{2} of size m and n, respectively. Let $\alpha \in \Omega_{1}$ and $\Delta_{2}=\bigcup_{i=1}^{s} G_{\alpha} \cdot \delta_{i}$, where $\delta_{1}, \ldots, \delta_{s} \in \Omega_{2}$ are representatives of distinct G_{α}-orbits. If $\Delta_{2} \neq \Omega_{2}$ and

$$
\mathcal{B}=\left\{g \cdot \Delta_{2}: g \in G\right\},
$$

then $\mathcal{D}\left(G, \alpha, \delta_{1}, \ldots, \delta_{s}\right)=\left(\Omega_{2}, \mathcal{B}\right)$ is a $1-\left(n,\left|\Delta_{2}\right|, \frac{\left|G_{\alpha}\right|}{\left|G_{\Delta_{2}}\right|} \sum_{i=1}^{s}\left|G_{\delta_{i}} \cdot \alpha\right|\right)$ design with $\frac{m \cdot\left|G_{\alpha}\right|}{\left|G_{\Delta_{2}}\right|}$ blocks. The group $H \cong G / \bigcap_{x \in \Omega_{2}} G_{x}$ acts as an automorphism group on $\left(\Omega_{2}, \mathcal{B}\right)$, transitively on points and blocks of the design.

Corollary

If a group G acts transitively on the points and the blocks of a 1-design \mathcal{D}, then \mathcal{D} can be obtained as described in the Theorem, i.e., such that Δ_{2} is a union of G_{α}-orbits.

We can use the Theorem to construct 1-design as follows. Let M be a finite group and H_{1}, H_{2}, and G be subgroups of M. G acts transitively on the class $\operatorname{ccl}_{G}\left(H_{i}\right), i=1,2$, by conjugation and

$$
\begin{aligned}
& \left|c c l_{G}\left(H_{1}\right)\right|=\left[G: N_{G}\left(H_{1}\right)\right]=m, \\
& \left|\operatorname{ccl}_{G}\left(H_{2}\right)\right|=\left[G: N_{G}\left(H_{2}\right)\right]=n .
\end{aligned}
$$

Let us denote the elements of $\operatorname{ccl}_{G}\left(H_{1}\right)$ by $H_{1}^{g_{1}}, H_{1}^{g_{2}}, \ldots, H_{1}^{g_{m}}$, and the elements of $\mathrm{ccl}_{G}\left(H_{2}\right)$ by $H_{2}^{h_{1}}, H_{2}^{h_{2}}, \ldots, H_{2}^{h_{n}}$.

We can construct a 1 -design such that:

- the point set of the design is $\mathrm{ccl}_{G}\left(\mathrm{H}_{2}\right)$,
- the block set is $\operatorname{ccl}_{G}\left(H_{1}\right)$,
- the block $H_{1}^{g_{i}}$ is incident with the point $H_{2}^{h_{j}}$ if and only if $H_{2}^{h_{j}} \cap H_{1}^{g_{i}} \cong G_{i}, i=1, \ldots, k$, where $\left\{G_{1}, \ldots, G_{k}\right\} \subset\left\{H_{2}^{x} \cap H_{1}^{y} \mid x, y \in G\right\}$.
We denote a 1 -design constructed in this way by $\mathcal{D}\left(G, H_{2}, H_{1} ; G_{1}, \ldots, G_{k}\right)$.

Let M be a finite group and H and G be subgroups of M. One can construct regular graph in the following way:

- the vertex set of the graph is $c c l_{G}(H)$,
- the vertex $H^{g_{i}}$ is adjacent to the vertex $H^{g_{j}}$ if and only if $H^{g_{i}} \cap H^{g_{j}} \cong G_{i}, i=1, \ldots, k$, where $\left\{G_{1}, \ldots, G_{k}\right\} \subset\left\{H^{x} \cap H^{y} \mid x, y \in G\right\}$.
We denote a regular graph constructed in this way by $\mathcal{G}\left(G, H ; G_{1}, \ldots, G_{k}\right)$.

We consider transitive structures constructed from a simple group isomorphic to the unitary group $G \cong U(3,3)$. We describe structures constructed on the conjugacy classes of the maximal and second maximal subgroups of the group G.

Table: Maximal subgroups of the group $U(3,3)$ (up to conjugation)

Subgroup	Structure of the group	Size	Size of G-conjugacy class
M_{1}	$\left(E_{9}: Z_{3}\right): Z_{8}$	216	28
M_{2}	$L(2,7)$	168	36
M_{3}	$\left(Z_{4} \times Z_{4}\right): S_{3}$	96	63
M_{4}	$Z_{4} \cdot S_{4}$	96	63

Table: Second maximal subgroups of the group $U(3,3)$ (up to conjugation)

Subgroup	Structure of the group	Size	Size of G-conjugacy class
H_{1}	$E x_{27}^{+}: Z_{4}$	108	28
H_{2}	$E_{4} \cdot A_{4}$	48	63
H_{3}	$Z_{4} \cdot A_{4}$	48	63
H_{4}	$\left(Z_{4}: Z_{2}\right): Z_{2}$	32	189
H_{5}	S_{4}	24	252
H_{6}	$Z_{3}: Z_{8}$	24	252
H_{7}	$Z_{7}: Z_{3}$	21	288

In the following table we give a list of the 2-designs constructed on G-conjugacy classes of maximal and second maximal subgroups and some of their properties. The group G acts on all constructed designs, primitively on points and transitively but imprimitively on blocks.

Table: Transitive block designs constructed from the group $U(3,3)$

Block design \mathcal{D}	Parameters of \mathcal{D}	Simple design	Corresponding simple design	Aut \mathcal{D}
$\mathcal{D}\left(G, M_{1}, H_{4} ; Z_{8}\right)$	$(28,4,3)$	no	$(28,4,1)$	$U(3,3): Z_{2}$
$\mathcal{D}\left(G, M_{1}, H_{4} ; Z_{4}\right)$	$(28,8,14)$	yes		$U(3,3): Z_{2}$
$\mathcal{D}\left(G, M_{1}, H_{4} ; Z_{4}, Z_{8}\right)$	$(28,12,33)$	no	$(28,12,11)$	$S(6,2)$
$\mathcal{D}\left(G, M_{1}, H_{5} ; S_{3}\right)$	$(28,4,4)$	yes		$U(3,3): Z_{2}$
$\mathcal{D}\left(G, M_{1}, H_{6} ; Z_{8}\right)$	$(28,3,2)$	yes		$U(3,3): Z_{2}$
$\mathcal{D}\left(G, M_{1}, H_{6} ; Z_{8}, Z_{3}: Z_{8}\right)$	$(28,4,4)$	no	$(28,4,1)$	$U(3,3): Z_{2}$
$\mathcal{D}\left(G, M_{1}, H_{7} ; Z_{3}\right)$	$(28,7,16)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{2}, H_{4} ; Z_{2}\right)$	$(36,16,36)$	no	$(36,16,12)$	$S(6,2)$
$\mathcal{D}\left(G, M_{2}, H_{5} ; Z_{2}, S_{3}\right)$	$(36,16,48)$	no	$(36,16,12)$	$S(6,2)$
$\mathcal{D}\left(G, M_{2}, H_{7} ; Z_{3}, Z_{7}: Z_{3}\right)$	$(36,15,48)$	no	$(36,15,6)$	$U(3,3): Z_{2}$
$\mathcal{D}\left(G, M_{3}, H_{4} ; Z_{2}, Z_{4}, Z_{2} \times Z_{4}, Z_{4} \times Z_{2},\left(Z_{4}: Z_{2}\right): Z_{2}\right)$	$(63,31,45)$	no	$(63,31,15)$	$U(3,3): Z_{2}$

- We did not obtain any strongly regular graph from G-conjugacy classes of second maximal subgroups (whose G-normalizer is not a maximal subgroup).
- The group $U(3,3)$ has 190 maximal subgroups, and has four distinct $U(3,3)$-conjugacy classes of the maximal subgroups $M_{1}, M_{2}, M_{3}, M_{4}$.
- We consider structures constructed on the conjugacy classes of the maximal subgroups of the group $U(3,3)$ under the action of the four not conjugate maximal subgroups.
- We do not need to consider conjugacy classes of all maximal subgroups, we can eliminate some of them.
- Finally, after elimination, we got 7 maximal subgroups of the $U(3,3)$ which are not conjugate under the action of the group M_{1},
- 11 maximal subgroups of the $U(3,3)$ which are not conjugate under the action of the group M_{2},
- 11 maximal subgroups of the $U(3,3)$ which are not conjugate under the action of the group M_{3},
- 14 maximal subgroups of the $U(3,3)$ which are not conjugate under the action of the group M_{4}.

Table: Block designs constructed from the group $U(3,3)$, from the conjugacy classes of maximal subgroups under the action of the maximal subgroups

Block design \mathcal{D}	Parameters of \mathcal{D}	Simple design	Corresponding simple design	Aut \mathcal{D}
$\mathcal{D}\left(M_{2},\left(Z_{4} \times Z_{4}\right): S_{3},\left(Z_{4} \times Z_{4}\right): S_{3} ; D_{8}: Z_{2}\right)$	$(7,3,1)$	yes		$L(2,7)$
$\mathcal{D}\left(M_{2},\left(Z_{4} \times Z_{4}\right): S_{3},\left(Z_{4} \times Z_{4}\right): S_{3} ; E_{4}\right)$	$(7,3,3)$	no	$(7,3,1)$	$L(2,7)$
$\mathcal{D}\left(M_{2},\left(Z_{4} \times Z_{4}\right): S_{3},\left(Z_{9}: Z_{3}\right): Z_{8} ; Z_{8}\right)$	$(7,3,4)$	no	$(7,3,1)$	$L(2,7)$
$\mathcal{D}\left(M_{2}, L(2,7),\left(Z_{4} \times Z_{4}\right): S_{3} ; S_{3}\right)$	$(7,3,4)$	yes		$L(2,7)$
$\mathcal{D}\left(M_{1}, Z_{4} \cdot S_{4}, L(2,7) ; Z_{4}\right)$	$(9,3,3)$	no	$(9,3,1)$	$\left(E_{9}: Z_{2}\right) \cdot S_{4}$
$\mathcal{D}\left(M_{1}, Z_{4} \cdot S_{4}, Z_{4} \cdot S_{4} ; Z_{4} \times Z_{4}\right)$	$(9,4,9)$	no	$(9,4,3)$	$\left(E_{9}: D_{8}\right) \cdot Z_{2}$
$\mathcal{D}\left(M_{4},\left(Z_{4} \times Z_{4}\right): S_{3},\left(Z_{4} \times Z_{4}\right): S_{3} ; S_{3}\right)$	$(16,6,2)$	yes		$E_{16}: S_{6}$
$\mathcal{D}\left(M_{1}, L(2,7), L(2,7) ; D_{8}\right)$	$(36,15,6)$	yes	$U(3,3): Z_{2}$	
$\mathcal{D}\left(M_{1},\left(Z_{4} \times Z_{4}\right): S_{3},\left(Z_{4} \times Z_{4}\right): S_{3} ; E_{4}, S_{3}\right)$	$(36,15,6)$	yes		$U(4,2): Z_{2}$

Table: Strongly regular graphs constructed from the group $U(3,3)$ from the conjugacy classes of maximal subgroups under the action of the maximal subgroups

Graph \mathcal{G}	Parameters of \mathcal{G}	Aut \mathcal{G}
$\mathcal{G}\left(M_{4},\left(Z_{4} \times Z_{4}\right): S_{3} ; S_{3}\right)$	$(16,6,2,2)$	$\left(Z_{4} \times Z_{4}\right): D_{12}$
$\mathcal{G}\left(M_{1},\left(Z_{4} \times Z_{4}\right): S_{3} ; E_{4}, D_{8}: Z_{2}\right)$	$(27,10,1,5)$	$U(4,2): Z_{2}$
$\mathcal{G}\left(M_{2},\left(Z_{4} \times Z_{4}\right): S_{3} ; S_{3}\right)$	$(28,12,6,4)$	S_{8}
$\mathcal{G}\left(M_{1}, L(2,7) ; S_{4}\right)$	$(36,14,4,6)$	$U(3,3): Z_{2}$
$\mathcal{G}\left(M_{1},\left(Z_{4} \times Z_{4}\right): S_{3} ; E_{4}, D_{8}: Z_{2}\right)$	$(36,15,6,6)$	$U(4,2): Z_{2}$

Up to $U(3,3)$-conjugation, the group $U(3,3)$ has 7 second maximal subgroups.
We consider structures constructed on the conjugacy classes of the second maximal subgroups of the group $U(3,3)$ under the action of the maximal subgroups M_{1}, M_{2}, M_{3} and M_{4}.

- After elimination, we got 17 second maximal subgroups of the $U(3,3)$ which are not conjugate under the action of the group M_{1},
- 26 maximal subgroups of the $U(3,3)$ which are not conjugate under the action of the group M_{2},
- 29 maximal subgroups of the $U(3,3)$ which are not conjugate under the action of the group M_{3},
- 36 maximal subgroups of the $U(3,3)$ which are not conjugate under the action of the group M_{4}.

Table: Block designs constructed from the group $U(3,3)$ from the conjugacy classes of maximal and second maximal subgroups under the action of the maximal subgroups

Block design \mathcal{D}	Parameters of \mathcal{D}	Simple design	Corresponding simple design	Aut \mathcal{D}
$\mathcal{D}\left(M_{2}, M_{2}^{3}, H_{2}^{14} ; Z_{2} \times Z_{4}\right)$	$(7,3,1)$	yes		$L(2,7)$
$\mathcal{D}\left(M_{2}, M_{2}^{3}, H_{2}^{1} ; Z_{2} \times Z_{4}, Z_{2}\right)$	$(7,3,3)$	no	$(7,3,1)$	$L(2,7)$
$\mathcal{D}\left(M_{2}, M_{2}^{3}, H_{2}^{6} ; Z_{2}\right)$	$(7,3,4)$	no	$(7,3,1)$	$L(2,7)$
$\mathcal{D}\left(M_{2}, M_{2}^{3}, H_{2}^{4} ; E_{4}, D_{8}\right)$	$(7,3,6)$	no	$(7,3,1)$	$L(2,7)$
$\mathcal{D}\left(M_{2}, M_{2}^{7}, H_{2}^{25} ; I\right)$	$(7,3,8)$	no	$(7,3,1)$	$L(2,7)$
$\mathcal{D}\left(M_{2}, M_{2}^{3}, H_{2}^{22} ; I\right)$	$(7,3,8)$	no	$(7,3,4)$	$L(2,7)$
$\mathcal{D}\left(M_{2}, M_{2}^{3}, H_{2}^{19} ; Z_{8}, Z_{2}\right)$	$(7,3,12)$	no	$(7,3,1)$	$L(2,7)$
$\mathcal{D}\left(M_{2}, M_{2}^{7}, H_{2}^{8} ; E_{4}\right)$	$(7,3,12)$	no	$(7,3,4)$	$L(2,7)$
$\mathcal{D}\left(M_{2}, M_{2}^{7}, H_{2}^{23} ; Z_{3}\right)$	$(7,3,24)$	no	$(7,3,1)$	$L(2,7)$
$\mathcal{D}\left(M_{1}, M_{1}^{3}, H_{1}^{5} ; Z_{4}\right)$	$(9,3,3)$	no	$(9,3,1)$	$E_{9}:\left(S L(2,3): Z_{2}\right)$
$\mathcal{D}\left(M_{1}, H_{1}^{8}, H_{1}^{7} ; Z_{4}, I\right)$	$(9,3,9)$	no	$(9,3,1)$	$E_{9}:\left(S L(2,3): Z_{2}\right)$
$\mathcal{D}\left(M_{1}, M_{1}^{3}, H_{1}^{7} ; Z_{4}, I\right)$	$(9,4,18)$	no	$(9,4,3)$	$\left(E_{9}: D_{8}\right) \cdot Z_{2}$
$\mathcal{D}\left(M_{4}, M_{4}^{14}, H_{4}^{31} ; Z_{3}\right)$	$(16,5,8)$	yes		$E_{16}: S_{6}$
$\mathcal{D}\left(M_{4}, M_{4}^{3}, H_{4}^{10} ; Z_{3}\right)$	$(16,6,2)$	yes		$E_{16}: S_{6}$
$\mathcal{D}\left(M_{4}, M_{4}^{10}, H_{4}^{32} ; Z_{3}\right)$	$(16,6,4)$	no	$(16,6,2)$	$E_{16}: S_{6}$
$\mathcal{D}\left(M_{4}, M_{4}^{10}, H_{4}^{12} ; S_{3}, Z_{2}\right)$	$(16,6,6)$	no	$(16,6,2)$	$E_{16}: S_{6}$
$\mathcal{D}\left(M_{4}, H_{4}^{10}, H_{4}^{7} ; Z_{3}, Z_{2}\right)$	$(16,6,6)$	yes		$E_{16 \cdot S_{4}}$
$\mathcal{D}\left(M_{4}, H_{4}^{13}, H_{4}^{5} ; I\right)$	$(16,6,6)$	yes		$E_{16} \cdot S_{4}$
$\mathcal{D}\left(M_{4}, M_{4}^{10}, H_{4}^{31} ; Z_{3}\right)$	$(16,6,12)$	no	$(16,6,2)$	$E_{16}: S_{6}$
$\mathcal{D}\left(M_{1}, M_{1}^{2}, H_{1}^{5} ; Z_{2}, Z_{2} \times Z_{4}\right)$	$(36,15,6)$	yes		$U(4,2): Z_{2}$
$\mathcal{D}\left(M_{1}, M_{1}^{5}, H_{1}^{15} ; Z_{7}: Z_{3}, Z_{3}\right)$	$(36,15,12)$	no	$(36,15,6)$	$U(3,3): Z_{2}$
$\mathcal{D}\left(M_{1}, M_{1}^{5}, H_{1}^{14} ; Z_{7}: Z_{3}, Z_{3}\right)$	$(36,15,36)$	no	$(36,15,6)$	$U(3,3): Z_{2}$

Table: Strongly regular graphs constructed from the group $U(3,3)$ from the conjugacy classes of second maximal subgroups under the action of the maximal subgroups

Graph \mathcal{G}	Parameters of \mathcal{G}	Aut \mathcal{G}
$\mathcal{G}\left(M_{4}, H_{4}^{10} ; Z_{3}\right)$	$(16,6,2,2)$	$\left(Z_{4} \times Z_{4}\right): D_{12}$
$\mathcal{G}\left(M_{1}, H_{1}^{1} ; I, Z_{4}\right)$	$(27,10,1,5)$	$U(4,2): Z_{2}$
$\mathcal{G}\left(M_{1}, H_{1}^{6} ; I, E_{4}\right)$	$(36,15,6,6)$	$U(4,2): Z_{2}$

We consider transitive structures constructed from a simple group G isomorphic to the symplectic group $S(6,2)$. We describe structures constructed on the conjugacy classes of the maximal and second maximal subgroups of the group G.

Table: Maximal subgroups of the group $S(6,2)$ (up to conjugation)

Subgroup	Structure of the subgroup	Size	Size of G-conjugacy class
M_{8}	$U(4,2): Z_{2}$	51840	28
M_{7}	S_{8}	40320	36
M_{6}	$E_{32}: S_{6}$	23040	63
M_{5}	$U(3,3): Z_{2}$	12096	120
M_{4}	$E_{64}: L(3,2)$	10752	135
M_{3}	$\left(\left(E_{16}: Z_{2}\right) \times E_{4}\right):\left(S_{4} \times S_{4}\right)$	4608	315
M_{2}	$S_{3} \times S_{6}$	432	336
M_{1}	$L(2,8): Z_{3}$	1512	960

Table: Second maximal subgroups of the group $S(6,2)$ (up to conjugation)

Subgroup	Structure of the group	Size	Size of G-conjugacy class
H_{1}	$\left(E_{16}: A_{5}\right): Z_{2}$	1920	378
H_{2}	$\left(\left(Z_{2} \times D_{8}\right): Z_{2}\right):\left(S_{3} \times S_{3}\right)$	1152	1260
H_{3}	$Z_{2} \times S_{6}$	1440	1008
H_{4}	$\left(E_{9}: Z_{3}\right): G L(2,3)$	1296	1120
H_{5}	$E_{27}:\left(Z_{2} \times S_{4}\right)$	1296	1120
H_{6}	$\left(S_{4} \times S_{4}\right): Z_{2}$	1152	1260
H_{7}	S_{7}	5040	288
H_{8}	$E_{8}:\left(Z_{2} \times S_{4}\right)$	384	3780
H_{9}	$S_{5} \times S_{3}$	720	2016
H_{10}	$P S L(32): Z_{2}$	336	4320
H_{11}	$\left(E_{32}: A_{5}\right): Z_{2}$	3840	378
H_{12}	$Z_{2} \times\left(\left(E_{16}: A_{5}\right): Z_{2}\right)$	3840	378
H_{13}	$Z_{2} \times\left(\left(S_{4} \times S_{4}\right): Z_{2}\right)$	2304	630
H_{14}	$E_{32}:\left(Z_{2}: S_{4}\right)$	1536	945
H_{15}	$E_{8}:\left(D_{8} \times S_{4}\right)$	1536	945
H_{16}	$Z_{2} \times S_{6}$	1440	1008
H_{17}	$\left(E_{9}: Z_{3}\right): Q D_{16}$	432	3360
H_{18}	$\left(S L(23): Z_{4}\right): Z_{2}$	192	7560
H_{19}	$E_{4}:\left(Z_{2} \times S_{4}\right)$	192	7560
H_{20}	$E_{32}:\left(Z_{2} \times S_{4}\right)$	1536	945

Table: Second maximal subgroups of the group $S(6,2)$ (up to conjugation) (continued from the previous page)

Subgroup	Structure of the group	Size	Size of G-conjugacy class
H_{21}	$\left(E_{64}: Z_{7}\right): Z_{3}$	1344	1080
H_{22}	$E_{8} \cdot P S L(32)$	1344	1080
H_{23}	$E_{8}: P S L(32)$	1344	1080
H_{24}	$Z_{2} \times S_{3} \times S_{4}$	288	5040
H_{25}	$S_{5} \times S_{3}$	720	2016
H_{26}	$\left(\left(S_{3} \times S_{3}\right): Z_{2}\right) \times S_{3}$	432	3360
H_{27}	$Z_{2} \times S_{4} \times S_{3}$	288	5040
H_{28}	$\left(E_{8}: Z_{7}\right): Z_{3}$	168	8640
H_{29}	$\left(Z_{9}: Z_{3}\right): Z_{2}$	54	26880
H_{30}	$E_{21}: Z_{2}$	42	34560

- We describe 2 -designs and strongly regular graphs obtained from G-conjugacy classes of the maximal and second maximal subgroups.
- The group G acts transitively on all constructed designs.

Table: Transitive block designs constructed from the group $S(6,2), v=28$

Block design \mathcal{D}	Parameters of \mathcal{D}	Simple design	Corresponding simple design	Aut (\mathcal{D})
$\mathcal{D}\left(G, M_{8}, H_{6} ; P_{8,6}^{1}\right)$	$(28,12,110)$	no	$(28,12,11)$	$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{7} ; P_{8,7}^{1}\right)$	$(28,7,16)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{8} ; P_{8,8}^{1}\right)$	$(28,4,60)$	no	$(28,4,5)$	$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{9} ; P_{8,9}^{1}\right)$	$(28,3,16)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{9} ; P_{8,9}^{2}\right)$	$(28,10,240)$	no	$(28,10,40)$	$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{9} ; P_{8,9}^{1}, P_{8,9}^{2}\right)$	$(28,13,416)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{11} ; P_{8,11}^{1}\right)$	$(28,12,66)$	no	$(28,12,11)$	$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{14} ; P_{8,14}^{1}\right)$	$(28,12,165)$	no	$(28,12,11)$	$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{15} ; P_{8,15}^{1}\right)$	$(28,4,15)$	no	$(28,4,5)$	$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{15} ; P_{8,15)}^{2}\right)$	$(28,8,70)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{16} ; P_{8,16)}^{1}\right)$	$(28,10,120)$	no	$(28,10,40)$	$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{16} ; P_{8,16}^{2}\right)$	$(28,12,176)$	no	$(28,12,11)$	$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{16} ; P_{8,16)}^{3}\right)$	$(28,6,40)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{18} ; P_{8,18}^{1}\right)$	$(28,4,120)$	no	$(28,4,5)$	$S(6,2)$

Table: Transitive block designs constructed from the group $S(6,2), v=28$ (continued from the previous page)

Block design \mathcal{D}	Parameters of \mathcal{D}	Simple design	Corresponding simple design	Aut($\mathcal{D})$
$\mathcal{D}\left(G, M_{8}, H_{19} ; P_{8,19}^{1}\right)$	$(28,12,660)$	no	$(28,12,11)$	$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{24} ; P_{8,24}^{1}\right)$	$(28,6,200)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{24} ; P_{8,24}^{2}\right)$	$(28,4,80)$	no	$(28,4,5)$	$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{24} ; P_{8,24}^{1}, P_{8,24}^{2}\right)$	$(28,10,600)$	no	$(28,10,40)$	$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{26} ; P_{8,26}^{1}\right)$	$(28,9,320)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{26} ; P_{8,26}^{1}, P_{8,26}^{2}\right)$	$(28,10,400)$	no	$(28,10,40)$	$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{27} ; P_{8,27}^{1}\right)$	$(28,4,80)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{27} ; P_{8,27}^{2}, P_{8,27}^{3}\right)$	$(28,12,880)$	no	$(28,12,11)$	$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{27} ; P_{8,27}^{4}\right)$	$(28,12,880)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{1} ; P_{8,1}^{1}\right)$	$(28,10,45)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{2} ; P_{8,2}^{1}\right)$	$(28,3,10)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{2} ; P_{8,2}^{1}, P_{8,2}^{2}\right)$	$(28,4,20)$	no	$(28,4,5)$	$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{3} ; P_{8,3}^{1}, P_{8,3}^{2}\right)$	$(28,13,208)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{8}, H_{30} ; P_{8,30}^{1}\right)$	$(28,7,1920)$	no	$(28,7,16)$	$S(6,2)$

Table: Transitive block designs constructed from the group $S(6,2), v=36$

Block design \mathcal{D}	Parameters of \mathcal{D}	Simple design	Corresponding simple design	Aut($\mathcal{D})$
$\mathcal{D}\left(G, M_{7}, H_{1} ; P_{7,1}^{1}\right)$	$(36,16,72)$	no	$(36,16,12)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{2} ; P_{7,2}^{1}\right)$	$(36,12,132)$	no	$(36,12,33)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{5} ; P_{7,5}^{1}\right)$	$(36,9,64)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{8} ; P_{7,8}^{1}\right)$	$(36,3,18)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{8} ; P_{7,8}^{1}, P_{7,8}^{2}\right)$	$(36,4,36)$	no	$(36,4,9)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{8} ; P_{7,8}^{3}\right)$	$(36,8,168)$	no	$(36,8,6)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{8} ; P_{7,8}^{2}, P_{7,8}^{3}\right)$	$(36,9,216)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{8} ; P_{7,8}^{1}, P_{7,8}^{3}\right.$	$(36,11,330)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{8} ; P_{7,8}^{1}, P_{7,8}^{2}, P_{7,8}^{3}\right)$	$(36,12,396)$	no	$(36,12,33)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{9} ; P_{7,9}^{1}\right)$	$(36,5,32)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{9} ; P_{7,9}^{1}, P_{7,9}^{2}\right)$	$(36,6,48)$	no	$(36,6,8)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{10} ; P_{7,10}^{1}\right)$	$(36,14,624)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{10} ; P_{7,10}^{1}, P_{7,10}^{2}\right)$	$(36,15,720)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{14} ; P_{7,14}^{1}\right)$	$(36,8,42)$	no	$(36,8,6)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{14} ; P_{7,14}^{2}\right)$	$(36,12,99)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{14} ; P_{7,14}^{3}\right)$	$(36,16,180)$	no	$(36,16,12)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{15} ; P_{7,15}^{1}\right)$	$(36,12,99)$	no	$(36,12,33)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{15} ; P_{7,15}^{2}\right)$	yes		$S(6,2)$	
$\mathcal{D}\left(G, M_{7}, H_{16} ; P_{7,16}^{1}\right)$	$(36,8,42)$	yes	$S(6,2)$	

Table: Transitive block designs constructed from the group $S(6,2), v=36$ (continued from the previous page)

Block design \mathcal{D}	Parameters of \mathcal{D}	Simple design	Corresponding simple design	Aut (\mathcal{D})
$\mathcal{D}\left(G, M_{7}, H_{16} ; P_{7,16}^{2}\right)$	$(36,10,72)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{16} ; P_{7,16}^{1}, P_{7,16}^{2}\right)$	$(36,16,192)$	no	$(36,16,12)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{18} ; P_{7,18}^{1}\right)$	$(36,12,792)$	no	$(36,12,33)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{19} ; P_{7,19}^{1}\right)$	$(36,16,720)$	no	$(36,16,12)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{19} ; P_{7,19}^{2}\right)$	$(36,12,396)$	no	$(36,12,99)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{20} ; P_{7,20}^{1}\right)$	$(36,4,9)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{21} ; P_{7,21}^{1}\right)$	$(36,8,48)$	no	$(36,8,6)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{24} ; P_{7,24}^{1}\right)$	$(36,6,120)$	no	$(36,6,8)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{24} ; P_{7,24}^{2}\right)$	$(36,12,528)$	no	$(36,12,33)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{24} ; P_{7,24}^{1}, P_{7,24}^{2}\right)$	$(36,18,1224)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{24} ; P_{7,24}^{3}\right)$	$(36,18,1224)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{26} ; P_{7,26}^{1}\right)$	$(36,6,80)$	no	$(36,6,8)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{26} ; P_{7,26}^{2}\right)$	$(36,3,16)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{26} ; P_{7,26}^{1}, P_{7,26}^{2}\right)$	$(36,9,192)$	no	$(36,9,64)$	$S(6,2)$

Table: Transitive block designs constructed from the group $S(6,2), v=36$ (continued from the previous page)

Block design \mathcal{D}	Parameters of \mathcal{D}	Simple design	Corresponding simple design	Aut($\mathcal{D})$
$\mathcal{D}\left(G, M_{7}, H_{27} ; P_{7,27}^{1}\right)$	$(36,4,48)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{27} ; P_{7,27}^{2}\right)$	$(36,12,528)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{27} ; P_{7,27}^{2}, P_{7,27}^{3}\right)$	$(36,14,728)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{27} ; P_{7,27}^{2}, P_{7,27}^{1}\right)$	$(36,16,960)$	no	$(36,16,12)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{27} ; P_{7,27}^{2}, P_{7,27}^{1}, P_{7,27}^{3}\right)$	$(36,18,1224)$	no	$(36,18,153)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{27} ; P_{7,27}^{4}\right)$	$(36,18,1224)$	no	$(36,18,153)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{28} ; P_{7,28}^{1}\right)$	$(36,8,384)$	no	$(36,8,6)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{3} ; P_{7,3}^{1}\right)$	$(36,15,168)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{6} ; P_{7,6}^{1}\right)$	$(36,16,120)$	no	$(36,16,12)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{6} ; P_{7,6}^{1}, P_{7,6}^{2}\right)$	$(36,18,153)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{6} ; P_{7,6}^{3}\right)$	$(36,18,153)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{23} ; P_{7,23}^{1}\right)$	$(36,7,36)$	yes		$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{29} ; P_{7,29}^{1}\right)$	$(36,9,1536)$	no	$(36,9,64)$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{30} ; P_{7,30}^{1}\right)$	$(36,14,4992)$	no	$36,14,624$	$S(6,2)$
$\mathcal{D}\left(G, M_{7}, H_{30} ; P_{7,30}^{1}, P_{7,30}^{2}\right)$	$(36,15,5760)$	no	$(36,15,720)$	$S(6,2)$

Table: Transitive block designs constructed from the group $S(6,2), v=63,120,378$

Block design \mathcal{D}	Parameters of \mathcal{D}	Simple design	Corresponding simple design	Aut (\mathcal{D})
$\mathcal{D}\left(G, M_{6}, H_{1} ; P_{6,1}^{1}, P_{6,1}^{2}, P_{6,1}^{3}\right)$	$(63,31,90)$	no	$(63,31,15)$	$P G L(6,2)$
$\mathcal{D}\left(G, M_{6}, H_{3} ; P_{6,3}^{1}, P_{6,3}^{2}\right)$	$(63,31,240)$	no	$(63,31,15)$	$P G L(6,2)$
$\mathcal{D}\left(G, M_{6}, H_{6} ; P_{6,6}^{1}, P_{6,6}^{2}, P_{6,6}^{3}\right)$	$(63,31,150)$	no	$(63,31,15)$	$P G L(6,2)$
$\mathcal{D}\left(G, M_{6}, H_{14} ; P_{6,14}^{1}, P_{6,14}^{2}, P_{6,14}^{3}\right)$	$(63,31,225)$	no	$(63,31,15)$	$P G L(6,2)$
$\mathcal{D}\left(G, M_{6}, H_{19} ; P_{6,19}^{1}, P_{6,19}^{2}, P_{6,19}^{3}\right)$	$(63,31,900)$	no	$(63,31,15)$	$P G L(6,2)$
$\mathcal{D}\left(G, M_{6}, H_{27} ; P_{6,27}^{1}, P_{6,27}^{2}, P_{6,27}^{3}, P_{6,27}^{4}\right)$	$(63,31,1200)$	no	$(63,31,15)$	$P G L(6,2)$
$\mathcal{D}\left(G, M_{5}, H_{10} ; P_{5,10}^{1}, P_{5,10}^{2}\right)$	$(120,35,360)$	yes		$O^{+}(8,2): Z_{2}$
$\mathcal{D}\left(G, H_{1}, H_{12} ; P_{1,12}^{1}, P_{1,12}^{2}, P_{1,12}^{3}\right)$	$(378,117,36)$	yes		$O(7,3): Z_{2}$

Table: Strongly regular graphs constructed from the group $S(6,2)$ from the conjugacy classes of the second maximal subgroups

Graph \mathcal{G}	Parameters of \mathcal{G}	$\operatorname{Aut}(\mathcal{G})$
$\mathcal{G}\left(G_{2}, H_{12} ; P_{12}^{1}, P_{12}^{2}\right)$	$(378,52,26,4)$	S_{28}
$\mathcal{G}\left(G_{2}, H_{12} ; P_{12}^{1}, P_{12}^{3}, P_{12}^{4}\right)$	$(378,117,36,36)$	$O_{7}(3): Z_{2}$
$\mathcal{G}\left(G_{2}, H_{13} ; P_{13}^{1}, P_{13}^{2}\right)$	$(630,68,34,4)$	S_{36}
$\mathcal{G}\left(G_{2}, H_{4} ; P_{4}^{1}, P_{4}^{2}, P_{4}^{3}, P_{4}^{4}\right)$	$(1120,390,146,130)$	$O_{8}^{+}(3) . D_{8}$

Thank you for your attention!

Transitive combinatorial structures constructed from finite groups

Andrea Švob (asvob@math.uniri.hr)
Department of Mathematics, University of Rijeka, Croatia

Nalozta v vašo prihodnost

