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Throughout this talk F will denote an algebraically closed field with
characteristic 0. Unadorned tensor products will be taken over F.

In this talk we will discuss relationships between the following:

� Tridiagonal pairs

� The Onsager algebra

� The sl2 loop algebra

� Compatible elements for a tridiagonal pair
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TRIDIAGONAL PAIRS

Let V denote a vector space over F with finite positive dimension.
By a tridiagonal pair (or TD pair) on V we mean an ordered pair
A,B , where A,B ∈ End(V ) satisfy the following four conditions:

(1) each of A,B is diagonalizable;

(2) there exists an ordering {Vi}di=0 of the eigenspaces of A such
that BVi ⊆ Vi−1 + Vi + Vi+1 for 0 ≤ i ≤ d , where V−1 = 0
and Vd+1 = 0;

(3) there exists an ordering {V �
i
}δ
i=0 of the eigenspaces of B such

that AV �
i
⊆ V �

i−1 + V �
i
+ V �

i+1 for 0 ≤ i ≤ δ, where V �
−1 = 0

and V �
δ+1 = 0;

(4) there is no subspace W of V such that AW ⊆ W , BW ⊆ W ,
W �= 0, W �= V .
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For the moment assume that A,B is a tridiagonal pair on V .

� It turns out that the integers d and δ above are equal; we call
d the diameter of the tridiagonal pair.

� For 0 ≤ i ≤ d the spaces Vi , V �
i
have the same dimension; we

denote this common dimension by ρi .

� The sequence {ρi}di=0 is symmetric and unimodal; that is
ρi = ρd−i for 0 ≤ i ≤ d and ρi−1 ≤ ρi for 1 ≤ i ≤ d/2.

� It is also known that ρi ≤
�
d

i

�
for 0 ≤ i ≤ d .
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TD PAIRS OF KRAWTCHOUK TYPE

We say that a tridiagonal pair A,B has Krawtchouk type whenever
the eigenvalue corresponding to Vi and V �

i
is d − 2i for 0 ≤ i ≤ d .

In this case it is known that A,B satisfy the Dolan-Grady relations

[A, [A, [A,B]]] = 4[A,B],

[B , [B , [B ,A]]] = 4[B ,A],

where [X ,Y ] = XY − YX .

In view of these relations we consider the following Lie algebra.
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THE ONSAGER ALGEBRA

Let O denote the Lie algebra over F with generators A,B and
relations

[A, [A, [A,B]]] = 4[A,B],
[B, [B, [B,A]]] = 4[B,A].

We call O the Onsager algebra. We call A,B the standard
generators for O.
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Let V denote a finite-dimensional irreducible O-module. It turns
out that the standard generators A,B are diagonalizable on V .
Furthermore there exist an integer d ≥ 0 and scalars α,β ∈ F such
that the set of distinct eigenvalues of A (resp. B) on V is
{d − 2i + α|0 ≤ i ≤ d} (resp. {d − 2i + β|0 ≤ i ≤ d}). We call
the ordered pair (α,β) the type of V .

Let I denote the identity element of End(V ). Replacing A,B by
A− αI ,B − βI the type becomes (0, 0).
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O-MODULES and TD PAIRS

B. Hartwig described the relationship between finite-dimensional
irreducible O-modules and tridiagonal pairs. This is given in the
following two theorems.

Theorem (Hartwig):

Let A,B denote a tridiagonal pair on V of Krawtchouk type. Then
there exists a unique O-module structure on V such that the
standard generators A,B act on V as A,B respectively. This
O-module is irreducible and of type (0, 0).

Theorem (Hartwig):

Let V denote a finite-dimensional irreducible O-module of type
(0, 0). Then the standard generators A,B act on V as a
tridiagonal pair of Krawtchouk type.

Gabriel Pretel COMPATIBLE ELEMENTS FOR A TRIDIAGONAL PAIR



O-MODULES and TD PAIRS

B. Hartwig described the relationship between finite-dimensional
irreducible O-modules and tridiagonal pairs. This is given in the
following two theorems.

Theorem (Hartwig):

Let A,B denote a tridiagonal pair on V of Krawtchouk type. Then
there exists a unique O-module structure on V such that the
standard generators A,B act on V as A,B respectively. This
O-module is irreducible and of type (0, 0).

Theorem (Hartwig):

Let V denote a finite-dimensional irreducible O-module of type
(0, 0). Then the standard generators A,B act on V as a
tridiagonal pair of Krawtchouk type.

Gabriel Pretel COMPATIBLE ELEMENTS FOR A TRIDIAGONAL PAIR



O-MODULES and TD PAIRS

B. Hartwig described the relationship between finite-dimensional
irreducible O-modules and tridiagonal pairs. This is given in the
following two theorems.

Theorem (Hartwig):

Let A,B denote a tridiagonal pair on V of Krawtchouk type. Then
there exists a unique O-module structure on V such that the
standard generators A,B act on V as A,B respectively. This
O-module is irreducible and of type (0, 0).

Theorem (Hartwig):

Let V denote a finite-dimensional irreducible O-module of type
(0, 0). Then the standard generators A,B act on V as a
tridiagonal pair of Krawtchouk type.

Gabriel Pretel COMPATIBLE ELEMENTS FOR A TRIDIAGONAL PAIR



Combining the previous two theorems we obtain a bijection
between the following two sets:

(i) the isomorphism classes of tridiagonal pairs over F that have
Krawtchouk type;

(ii) the isomorphism classes of finite-dimensional irreducible
O-modules of type (0, 0).

We will return to O shortly.
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THE LIE ALGEBRA sl2

Let sl2 denote the Lie algebra over F with basis e, f , h and Lie
bracket

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f .
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THE sl2 LOOP ALGEBRA

Let t denote an indeterminate, and let F[t, t−1] denote the
F-algebra consisting of the Laurent polynomials in t that have all
coefficients in F. Let L(sl2) denote the Lie algebra over F
consisting of the F-vector space sl2 ⊗ F[t, t−1] and Lie bracket

[u ⊗ a, v ⊗ b] = [u, v ]⊗ ab, u, v ∈ sl2, a, b ∈ F[t, t−1].

We call L(sl2) the sl2 loop algebra.
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AN EMBEDDING O → L(sl2)

E. Date and S. S. Roan showed that there exists a homomorphism
of Lie algebras O → L(sl2) that sends

A �→ e ⊗ 1 + f ⊗ 1,

B �→ e ⊗ t + f ⊗ t−1.

Moreover, they showed that this map is injective.
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O-modules and L(sl2)-modules

In view of the above embedding O → L(sl2), we see that every
L(sl2)-module is an O-module by restriction.

E. Date and S. S. Roan showed that every finite-dimensional
irreducible O-module of type (0, 0) can be obtained this way, as we
shall explain shortly. We will discuss the various ways in which
such an O-module extends to an L(sl2)-module, and we will
discuss how these extensions are related to one another.

The following theorem will help us describe these extensions.
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Theorem:

The loop algebra L(sl2) is isomorphic to the Lie algebra over F
that has generators A,B,H and relations

[A, [A,H]] = 4H, [H, [H,A]] = 4A,

[B, [B,H]] = 4H, [H, [H,B]] = 4B,
[A, [A, [A,B]]] = 4[A,B], [B, [B, [B,A]]] = 4[B,A],

[H, [A,B]] = 0.

An isomorphism here is given by

A �→ e ⊗ 1 + f ⊗ 1, B �→ e ⊗ t + f ⊗ t−1, H �→ h ⊗ 1.
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COMPATIBLE ELEMENTS

Recall that finite-dimensional irreducible O-modules of type (0, 0)
correspond to TD pairs of Krawtchouk type. In what follows we
adopt the TD pair point of view for convenience.

For a TD pair A,B on V that has Krawtchouk type, an element
H ∈ End(V ) is said to be compatible with A,B whenever the
following relations hold:

[A, [A,H]] = 4H, [H, [H,A]] = 4A,

[B , [B ,H]] = 4H, [H, [H,B]] = 4B ,

[H, [A,B]] = 0.

Let Com(A,B) denote the set of elements in End(V ) that are
compatible with A,B .
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Compatible elements and extensions

In the following two propositions, V will denote a finite-
dimensional irreducible O-module of type (0, 0). Let A,B denote
the tridiagonal pair associated with the O-module V .

Proposition: Consider an L(sl2)-action on V that extends the
O-action on V . For the L(sl2)-module V , the action of H on V is
an element of Com(A,B).

Proposition: Let H ∈ Com(A,B). Then there exists a unique
L(sl2)-action on V that extends the O-action on V , such that the
element H of L(sl2) acts on V as H.

Combining these propositions we obtain a bijection between the
following two sets:

(i) Com(A,B);

(ii) the L(sl2)-actions on V that extend the O-action on V .
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O-modules and L(sl2)-modules

Our next general goal is to describe the elements of Com(A,B).

To this end, we will recall the classification of O-modules and
L(sl2)-modules. First we will summarize the classification of
L(sl2)-modules, which was proved by V. Chari. Then we will
summarize the classification of O-modules, which was proved by
Date and Roan.
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Evaluation modules for L(sl2)

There exists a family of L(sl2)-modules called evaluation modules.
Each evaluation module gets a notation of the form Vd(a), where
d is a positive integer and a is a nonzero scalar in F.

� The L(sl2)-module Vd(a) has dimension d + 1.

� On Vd(a), each of the generators A,B,H is diagonalizable
with eigenvalues {d − 2i}d

i=0.

� The L(sl2)-module Vd(a) is determined up to isomorphism by
d and a.
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A 2-DIMENSIONAL EXAMPLE

The actions of A,B,H on the L(sl2)-module V1(a) are given by

A :

�
0 1
1 0

�
, B :

�
0 a

a−1 0

�
, H :

�
1 0
0 −1

�
,

with respect to a suitable basis.
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Irreducible L(sl2)-modules (Chari):

Every finite-dimensional irreducible L(sl2)-module is isomorphic to
a tensor product of evaluation L(sl2)-modules.

A tensor product of evaluation L(sl2)-modules

Vd1(a1)⊗ · · ·⊗ Vdn(an)

is irreducible if and only if a1, a2, . . . , an are mutually distinct.

Two such tensor products are isomorphic if and only if one can be
obtained from the other by permuting the factors in the tensor
product.
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Inverse-free L(sl2)-modules

Let V denote a finite-dimensional irreducible L(sl2)-module. By
the classification above it is isomorphic to a tensor product of
evaluation modules L(sl2)-modules, say

Vd1(a1)⊗ · · ·⊗ Vdn(an).

V is said to be inverse-free whenever a1, a
−1
1 , a2, a

−1
2 , . . . , an, a−1

n

are mutually distinct.

We are now ready to describe the relationship between O-modules
and L(sl2)-modules more precisely.
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Irreducible O-modules (Date and Roan):

� Let V denote a finite-dimensional irreducible O-module of
type (0, 0). Then up to isomorphism V is obtained by
restricting the action of L(sl2) on a tensor product of
evaluation L(sl2)-modules.

� Let V denote a finite-dimensional irreducible L(sl2)-module.
When we restrict the action of L(sl2) to O, the resulting
O-module is irreducible if and only if the L(sl2)-module V is
inverse-free.

� Two inverse-free tensor products of evaluation L(sl2)-modules
restrict to isomorphic O-modules if and only if one can be
obtained from the other by permuting the tensor factors and
by replacing any number of the evaluation parameters with
their multiplicative inverses.
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Some definitions:

By the degree of a finite-dimensional irreducible O-module of type
(0, 0), we mean the number of tensor factors in the decomposition
discussed above.

By the degree of a TD pair of Krawtchouk type, we mean the
degree of the associated O-module.

(Remark: for a TD pair of Krawtchouk type, the degree equals ρ1.)

We are now ready to discuss compatible elements in more detail.
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Back to compatible elements . . .

Until further notice, A,B will denote a tridiagonal pair that has
Krawtchouk type and degree n.

Proposition:

� The set Com(A,B) has cardinality 2n.

� The elements of Com(A,B) are diagonalizable.

� The elements of Com(A,B) mutually commute.

� The common eigenspaces for the elements of Com(A,B) all
have dimension 1.
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We now explain how any given element of Com(A,B) is related to
every other element of Com(A,B).

Until further notice, fix H ∈ Com(A,B).

We identify the underlying vector space V with an irreducible,
inverse-free L(sl2)-module

Vd1(a1)⊗ · · ·⊗ Vdn(an),

such that A,B,H act on V as A,B ,H respectively.
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For 1 ≤ i ≤ n let Hi ∈ End(V ) be

I ⊗ · · ·⊗ I ⊗H⊗ I ⊗ · · ·⊗ I ,

where H above is in the i th position.

Our compatible element H = H1 +H2 + · · ·+Hn.

The compatible elements can be described as follows.

Proposition: The set Com(A,B) consists of the elements

n�

i=1

εiHi εi ∈ {±1}, 1 ≤ i ≤ n.
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SPECIAL CASE: ρi =
�
d

i

�

We now consider a special case when the description of Com(A,B)
is especially nice. We assume that ρi =

�
d

i

�
for 0 ≤ i ≤ d , where d

is the diameter of A,B .

The condition ρi =
�
d

i

�
for 0 ≤ i ≤ d just means that each tensor

factor in the decomposition referred to above is 2-dimensional. We
have that

� the underlying vector space V has dimension 2d ,

� n = d , and

� Com(A,B) has cardinality 2d .
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SPECIAL CASE: ρi =
�
d

i

�

Let X denote the set of all common eigenspaces for the elements
of Com(A,B), and note that X has cardinality 2d .

Proposition:

(i) There exists a d-cube structure on X with the following
property: for all x ∈ X, Ax and Bx are contained in the sum
of those elements of X adjacent to x .

(ii) For each x ∈ X there exists Hx ∈ Com(A,B) such that for
0 ≤ i ≤ d , the sum of of the elements in X at distance i from
x is an eigenspace for Hx with eigenvalue d − 2i .
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SPECIAL CASE: ρi =
�
d

i

�

We can pick a nonzero vector in each x ∈ X in such a way to get a
basis for V such that, with respect to this basis,

� the matrix representing A is the adjacency matrix for the
d-cube structure on X,

� the matrix representing B is a weighted adjacency matrix for
the d-cube structure on X, and

� for x ∈ X, the matrix representing Hx is the dual adjacency
matrix with respect to the vertex x .

So the elements of Com(A,B) correspond to the 2d dual
adjacency matrices for the d-cube.

Gabriel Pretel COMPATIBLE ELEMENTS FOR A TRIDIAGONAL PAIR



SPECIAL CASE: ρi =
�
d

i

�

We can pick a nonzero vector in each x ∈ X in such a way to get a
basis for V such that, with respect to this basis,

� the matrix representing A is the adjacency matrix for the
d-cube structure on X,

� the matrix representing B is a weighted adjacency matrix for
the d-cube structure on X, and

� for x ∈ X, the matrix representing Hx is the dual adjacency
matrix with respect to the vertex x .

So the elements of Com(A,B) correspond to the 2d dual
adjacency matrices for the d-cube.

Gabriel Pretel COMPATIBLE ELEMENTS FOR A TRIDIAGONAL PAIR



SPECIAL CASE: ρi =
�
d

i

�

We can pick a nonzero vector in each x ∈ X in such a way to get a
basis for V such that, with respect to this basis,

� the matrix representing A is the adjacency matrix for the
d-cube structure on X,

� the matrix representing B is a weighted adjacency matrix for
the d-cube structure on X, and

� for x ∈ X, the matrix representing Hx is the dual adjacency
matrix with respect to the vertex x .

So the elements of Com(A,B) correspond to the 2d dual
adjacency matrices for the d-cube.

Gabriel Pretel COMPATIBLE ELEMENTS FOR A TRIDIAGONAL PAIR



SPECIAL CASE: ρi =
�
d

i

�

We can pick a nonzero vector in each x ∈ X in such a way to get a
basis for V such that, with respect to this basis,

� the matrix representing A is the adjacency matrix for the
d-cube structure on X,

� the matrix representing B is a weighted adjacency matrix for
the d-cube structure on X, and

� for x ∈ X, the matrix representing Hx is the dual adjacency
matrix with respect to the vertex x .

So the elements of Com(A,B) correspond to the 2d dual
adjacency matrices for the d-cube.

Gabriel Pretel COMPATIBLE ELEMENTS FOR A TRIDIAGONAL PAIR



SPECIAL CASE: ρi =
�
d

i

�

We can pick a nonzero vector in each x ∈ X in such a way to get a
basis for V such that, with respect to this basis,

� the matrix representing A is the adjacency matrix for the
d-cube structure on X,

� the matrix representing B is a weighted adjacency matrix for
the d-cube structure on X, and

� for x ∈ X, the matrix representing Hx is the dual adjacency
matrix with respect to the vertex x .

So the elements of Com(A,B) correspond to the 2d dual
adjacency matrices for the d-cube.

Gabriel Pretel COMPATIBLE ELEMENTS FOR A TRIDIAGONAL PAIR



Picture for Hx when d = 3:
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