COMPATIBLE ELEMENTS FOR A TRIDIAGONAL PAIR

Gabriel Pretel

University of Wisconsin-Madison

Throughout this talk \mathbb{F} will denote an algebraically closed field with characteristic 0 . Unadorned tensor products will be taken over \mathbb{F}.

Throughout this talk \mathbb{F} will denote an algebraically closed field with characteristic 0 . Unadorned tensor products will be taken over \mathbb{F}.

In this talk we will discuss relationships between the following:

- Tridiagonal pairs
- The Onsager algebra
- The $\mathfrak{s l}_{2}$ loop algebra
- Compatible elements for a tridiagonal pair

TRIDIAGONAL PAIRS

Let V denote a vector space over \mathbb{F} with finite positive dimension. By a tridiagonal pair (or TD pair) on V we mean an ordered pair A, B, where $A, B \in \operatorname{End}(V)$ satisfy the following four conditions:

TRIDIAGONAL PAIRS

Let V denote a vector space over \mathbb{F} with finite positive dimension. By a tridiagonal pair (or TD pair) on V we mean an ordered pair A, B, where $A, B \in \operatorname{End}(V)$ satisfy the following four conditions:
(1) each of A, B is diagonalizable;

TRIDIAGONAL PAIRS

Let V denote a vector space over \mathbb{F} with finite positive dimension. By a tridiagonal pair (or TD pair) on V we mean an ordered pair A, B, where $A, B \in \operatorname{End}(V)$ satisfy the following four conditions:
(1) each of A, B is diagonalizable;
(2) there exists an ordering $\left\{V_{i}\right\}_{i=0}^{d}$ of the eigenspaces of A such that $B V_{i} \subseteq V_{i-1}+V_{i}+V_{i+1}$ for $0 \leq i \leq d$, where $V_{-1}=0$ and $V_{d+1}=0$;

TRIDIAGONAL PAIRS

Let V denote a vector space over \mathbb{F} with finite positive dimension. By a tridiagonal pair (or TD pair) on V we mean an ordered pair A, B, where $A, B \in \operatorname{End}(V)$ satisfy the following four conditions:
(1) each of A, B is diagonalizable;
(2) there exists an ordering $\left\{V_{i}\right\}_{i=0}^{d}$ of the eigenspaces of A such that $B V_{i} \subseteq V_{i-1}+V_{i}+V_{i+1}$ for $0 \leq i \leq d$, where $V_{-1}=0$ and $V_{d+1}=0$;
(3) there exists an ordering $\left\{V_{i}^{\prime}\right\}_{i=0}^{\delta}$ of the eigenspaces of B such that $A V_{i}^{\prime} \subseteq V_{i-1}^{\prime}+V_{i}^{\prime}+V_{i+1}^{\prime}$ for $0 \leq i \leq \delta$, where $V_{-1}^{\prime}=0$ and $V_{\delta+1}^{\prime}=0$;

TRIDIAGONAL PAIRS

Let V denote a vector space over \mathbb{F} with finite positive dimension. By a tridiagonal pair (or TD pair) on V we mean an ordered pair A, B, where $A, B \in \operatorname{End}(V)$ satisfy the following four conditions:
(1) each of A, B is diagonalizable;
(2) there exists an ordering $\left\{V_{i}\right\}_{i=0}^{d}$ of the eigenspaces of A such that $B V_{i} \subseteq V_{i-1}+V_{i}+V_{i+1}$ for $0 \leq i \leq d$, where $V_{-1}=0$ and $V_{d+1}=0$;
(3) there exists an ordering $\left\{V_{i}^{\prime}\right\}_{i=0}^{\delta}$ of the eigenspaces of B such that $A V_{i}^{\prime} \subseteq V_{i-1}^{\prime}+V_{i}^{\prime}+V_{i+1}^{\prime}$ for $0 \leq i \leq \delta$, where $V_{-1}^{\prime}=0$ and $V_{\delta+1}^{\prime}=0$;
(4) there is no subspace W of V such that $A W \subseteq W, B W \subseteq W$, $W \neq 0, W \neq V$.

For the moment assume that A, B is a tridiagonal pair on V.

For the moment assume that A, B is a tridiagonal pair on V.

- It turns out that the integers d and δ above are equal; we call d the diameter of the tridiagonal pair.

For the moment assume that A, B is a tridiagonal pair on V.

- It turns out that the integers d and δ above are equal; we call d the diameter of the tridiagonal pair.
- For $0 \leq i \leq d$ the spaces V_{i}, V_{i}^{\prime} have the same dimension; we denote this common dimension by ρ_{i}.

For the moment assume that A, B is a tridiagonal pair on V.

- It turns out that the integers d and δ above are equal; we call d the diameter of the tridiagonal pair.
- For $0 \leq i \leq d$ the spaces V_{i}, V_{i}^{\prime} have the same dimension; we denote this common dimension by ρ_{i}.
- The sequence $\left\{\rho_{i}\right\}_{i=0}^{d}$ is symmetric and unimodal; that is $\rho_{i}=\rho_{d-i}$ for $0 \leq i \leq d$ and $\rho_{i-1} \leq \rho_{i}$ for $1 \leq i \leq d / 2$.

For the moment assume that A, B is a tridiagonal pair on V.

- It turns out that the integers d and δ above are equal; we call d the diameter of the tridiagonal pair.
- For $0 \leq i \leq d$ the spaces V_{i}, V_{i}^{\prime} have the same dimension; we denote this common dimension by ρ_{i}.
- The sequence $\left\{\rho_{i}\right\}_{i=0}^{d}$ is symmetric and unimodal; that is $\rho_{i}=\rho_{d-i}$ for $0 \leq i \leq d$ and $\rho_{i-1} \leq \rho_{i}$ for $1 \leq i \leq d / 2$.
- It is also known that $\rho_{i} \leq\binom{ d}{i}$ for $0 \leq i \leq d$.

TD PAIRS OF KRAWTCHOUK TYPE

We say that a tridiagonal pair A, B has Krawtchouk type whenever the eigenvalue corresponding to V_{i} and V_{i}^{\prime} is $d-2 i$ for $0 \leq i \leq d$.

TD PAIRS OF KRAWTCHOUK TYPE

We say that a tridiagonal pair A, B has Krawtchouk type whenever the eigenvalue corresponding to V_{i} and V_{i}^{\prime} is $d-2 i$ for $0 \leq i \leq d$.

In this case it is known that A, B satisfy the Dolan-Grady relations

$$
\begin{aligned}
{[A,[A,[A, B]]] } & =4[A, B], \\
{[B,[B,[B, A]]] } & =4[B, A],
\end{aligned}
$$

where $[X, Y]=X Y-Y X$.

TD PAIRS OF KRAWTCHOUK TYPE

We say that a tridiagonal pair A, B has Krawtchouk type whenever the eigenvalue corresponding to V_{i} and V_{i}^{\prime} is $d-2 i$ for $0 \leq i \leq d$.

In this case it is known that A, B satisfy the Dolan-Grady relations

$$
\begin{aligned}
{[A,[A,[A, B]]] } & =4[A, B], \\
{[B,[B,[B, A]]] } & =4[B, A],
\end{aligned}
$$

where $[X, Y]=X Y-Y X$.
In view of these relations we consider the following Lie algebra.

THE ONSAGER ALGEBRA

Let \mathcal{O} denote the Lie algebra over \mathbb{F} with generators \mathcal{A}, \mathcal{B} and relations

$$
\begin{aligned}
{[\mathcal{A},[\mathcal{A},[\mathcal{A}, \mathcal{B}]]] } & =4[\mathcal{A}, \mathcal{B}] \\
{[\mathcal{B},[\mathcal{B},[\mathcal{B}, \mathcal{A}]]] } & =4[\mathcal{B}, \mathcal{A}]
\end{aligned}
$$

We call \mathcal{O} the Onsager algebra. We call \mathcal{A}, \mathcal{B} the standard generators for \mathcal{O}.

Let V denote a finite-dimensional irreducible \mathcal{O}-module. It turns out that the standard generators \mathcal{A}, \mathcal{B} are diagonalizable on V. Furthermore there exist an integer $d \geq 0$ and scalars $\alpha, \beta \in \mathbb{F}$ such that the set of distinct eigenvalues of \mathcal{A} (resp. \mathcal{B}) on V is $\{d-2 i+\alpha \mid 0 \leq i \leq d\}$ (resp. $\{d-2 i+\beta \mid 0 \leq i \leq d\}$). We call the ordered pair (α, β) the type of V.

Let V denote a finite-dimensional irreducible \mathcal{O}-module. It turns out that the standard generators \mathcal{A}, \mathcal{B} are diagonalizable on V. Furthermore there exist an integer $d \geq 0$ and scalars $\alpha, \beta \in \mathbb{F}$ such that the set of distinct eigenvalues of \mathcal{A} (resp. \mathcal{B}) on V is $\{d-2 i+\alpha \mid 0 \leq i \leq d\}$ (resp. $\{d-2 i+\beta \mid 0 \leq i \leq d\}$). We call the ordered pair (α, β) the type of V.

Let I denote the identity element of $\operatorname{End}(V)$. Replacing \mathcal{A}, \mathcal{B} by $\mathcal{A}-\alpha I, \mathcal{B}-\beta I$ the type becomes $(0,0)$.

$\mathcal{O}-M O D U L E S$ and TD PAIRS

B. Hartwig described the relationship between finite-dimensional irreducible \mathcal{O}-modules and tridiagonal pairs. This is given in the following two theorems.

$\mathcal{O}-M O D U L E S$ and TD PAIRS

B. Hartwig described the relationship between finite-dimensional irreducible \mathcal{O}-modules and tridiagonal pairs. This is given in the following two theorems.

Theorem (Hartwig):
Let A, B denote a tridiagonal pair on V of Krawtchouk type. Then there exists a unique \mathcal{O}-module structure on V such that the standard generators \mathcal{A}, \mathcal{B} act on V as A, B respectively. This \mathcal{O}-module is irreducible and of type (0,0).

$\mathcal{O}-M O D U L E S$ and TD PAIRS

B. Hartwig described the relationship between finite-dimensional irreducible \mathcal{O}-modules and tridiagonal pairs. This is given in the following two theorems.

Theorem (Hartwig):
Let A, B denote a tridiagonal pair on V of Krawtchouk type. Then there exists a unique \mathcal{O}-module structure on V such that the standard generators \mathcal{A}, \mathcal{B} act on V as A, B respectively. This \mathcal{O}-module is irreducible and of type (0,0).

Theorem (Hartwig):
Let V denote a finite-dimensional irreducible \mathcal{O}-module of type $(0,0)$. Then the standard generators \mathcal{A}, \mathcal{B} act on V as a tridiagonal pair of Krawtchouk type.

Combining the previous two theorems we obtain a bijection between the following two sets:
(i) the isomorphism classes of tridiagonal pairs over \mathbb{F} that have Krawtchouk type;
(ii) the isomorphism classes of finite-dimensional irreducible \mathcal{O}-modules of type $(0,0)$.

Combining the previous two theorems we obtain a bijection between the following two sets:
(i) the isomorphism classes of tridiagonal pairs over \mathbb{F} that have Krawtchouk type;
(ii) the isomorphism classes of finite-dimensional irreducible \mathcal{O}-modules of type $(0,0)$.

We will return to \mathcal{O} shortly.

THE LIE ALGEBRA $\mathfrak{s l}_{2}$

Let $\mathfrak{s l}_{2}$ denote the Lie algebra over \mathbb{F} with basis e, f, h and Lie bracket

$$
[e, f]=h, \quad[h, e]=2 e, \quad[h, f]=-2 f
$$

THE $\mathfrak{s l}_{2}$ LOOP ALGEBRA

Let t denote an indeterminate, and let $\mathbb{F}\left[t, t^{-1}\right]$ denote the \mathbb{F}-algebra consisting of the Laurent polynomials in t that have all coefficients in \mathbb{F}. Let $L\left(\mathfrak{s l}_{2}\right)$ denote the Lie algebra over \mathbb{F} consisting of the \mathbb{F}-vector space $\mathfrak{s l}_{2} \otimes \mathbb{F}\left[t, t^{-1}\right]$ and Lie bracket

$$
[u \otimes a, v \otimes b]=[u, v] \otimes a b, \quad u, v \in \mathfrak{s l}_{2}, \quad a, b \in \mathbb{F}\left[t, t^{-1}\right] .
$$

We call $L\left(\mathfrak{s l}_{2}\right)$ the $\mathfrak{s l}_{2}$ loop algebra.

AN EMBEDDING $\mathcal{O} \rightarrow L\left(\mathfrak{s l}_{2}\right)$

E. Date and S. S. Roan showed that there exists a homomorphism of Lie algebras $\mathcal{O} \rightarrow L\left(\mathfrak{s l}_{2}\right)$ that sends

$$
\begin{aligned}
\mathcal{A} & \mapsto e \otimes 1+f \otimes 1, \\
\mathcal{B} & \mapsto e \otimes t+f \otimes t^{-1} .
\end{aligned}
$$

Moreover, they showed that this map is injective.

\mathcal{O}-modules and $L\left(\mathfrak{s l}_{2}\right)$-modules

In view of the above embedding $\mathcal{O} \rightarrow L\left(\mathfrak{s l}_{2}\right)$, we see that every $L\left(\mathfrak{s l}_{2}\right)$-module is an \mathcal{O}-module by restriction.
\mathcal{O}-modules and $L\left(\mathfrak{s l}_{2}\right)$-modules

In view of the above embedding $\mathcal{O} \rightarrow L\left(\mathfrak{s l}_{2}\right)$, we see that every $L\left(\mathfrak{s l}_{2}\right)$-module is an \mathcal{O}-module by restriction.
E. Date and S. S. Roan showed that every finite-dimensional irreducible \mathcal{O}-module of type $(0,0)$ can be obtained this way, as we shall explain shortly. We will discuss the various ways in which such an \mathcal{O}-module extends to an $L\left(\mathfrak{s l}_{2}\right)$-module, and we will discuss how these extensions are related to one another.
\mathcal{O}-modules and $L\left(\mathfrak{s l}_{2}\right)$-modules

In view of the above embedding $\mathcal{O} \rightarrow L\left(\mathfrak{s l}_{2}\right)$, we see that every $L\left(\mathfrak{s l}_{2}\right)$-module is an \mathcal{O}-module by restriction.
E. Date and S. S. Roan showed that every finite-dimensional irreducible \mathcal{O}-module of type $(0,0)$ can be obtained this way, as we shall explain shortly. We will discuss the various ways in which such an \mathcal{O}-module extends to an $L\left(\mathfrak{s l}_{2}\right)$-module, and we will discuss how these extensions are related to one another.

The following theorem will help us describe these extensions.

Theorem:

The loop algebra $L\left(\mathfrak{s l}_{2}\right)$ is isomorphic to the Lie algebra over \mathbb{F} that has generators $\mathcal{A}, \mathcal{B}, \mathcal{H}$ and relations

$$
\begin{array}{ll}
{[\mathcal{A},[\mathcal{A}, \mathcal{H}]]=4 \mathcal{H},} & {[\mathcal{H},[\mathcal{H}, \mathcal{A}]]=4 \mathcal{A},} \\
{[\mathcal{B},[\mathcal{B}, \mathcal{H}]]=4 \mathcal{H},} & {[\mathcal{H},[\mathcal{H}, \mathcal{B}]]=4 \mathcal{B},} \\
{[\mathcal{A},[\mathcal{A},[\mathcal{A}, \mathcal{B}]]]=4[\mathcal{A}, \mathcal{B}],} & {[\mathcal{B},[\mathcal{B},[\mathcal{B}, \mathcal{A}]]]=4[\mathcal{B}, \mathcal{A}],} \\
{[\mathcal{H},[\mathcal{A}, \mathcal{B}]]=0 .} &
\end{array}
$$

Theorem:

The loop algebra $L\left(\mathfrak{s l}_{2}\right)$ is isomorphic to the Lie algebra over \mathbb{F} that has generators $\mathcal{A}, \mathcal{B}, \mathcal{H}$ and relations

$$
\begin{array}{ll}
{[\mathcal{A},[\mathcal{A}, \mathcal{H}]]=4 \mathcal{H},} & {[\mathcal{H},[\mathcal{H}, \mathcal{A}]]=4 \mathcal{A},} \\
{[\mathcal{B},[\mathcal{B}, \mathcal{H}]]=4 \mathcal{H},} & {[\mathcal{H},[\mathcal{H}, \mathcal{B}]]=4 \mathcal{B},} \\
{[\mathcal{A},[\mathcal{A},[\mathcal{A}, \mathcal{B}]]]=4[\mathcal{A}, \mathcal{B}],} & {[\mathcal{B},[\mathcal{B},[\mathcal{B}, \mathcal{A}]]]=4[\mathcal{B}, \mathcal{A}],} \\
{[\mathcal{H},[\mathcal{A}, \mathcal{B}]]=0 .} &
\end{array}
$$

An isomorphism here is given by

$$
\mathcal{A} \mapsto e \otimes 1+f \otimes 1, \quad \mathcal{B} \mapsto e \otimes t+f \otimes t^{-1}, \quad \mathcal{H} \mapsto h \otimes 1
$$

COMPATIBLE ELEMENTS

Recall that finite-dimensional irreducible \mathcal{O}-modules of type $(0,0)$ correspond to TD pairs of Krawtchouk type. In what follows we adopt the TD pair point of view for convenience.

COMPATIBLE ELEMENTS

Recall that finite-dimensional irreducible \mathcal{O}-modules of type $(0,0)$ correspond to TD pairs of Krawtchouk type. In what follows we adopt the TD pair point of view for convenience.

For a TD pair A, B on V that has Krawtchouk type, an element $H \in \operatorname{End}(V)$ is said to be compatible with A, B whenever the following relations hold:

$$
\begin{array}{ll}
{[A,[A, H]]=4 H,} & {[H,[H, A]]=4 A,} \\
{[B,[B, H]]=4 H,} & {[H,[H, B]]=4 B} \\
{[H,[A, B]]=0 .} &
\end{array}
$$

COMPATIBLE ELEMENTS

Recall that finite-dimensional irreducible \mathcal{O}-modules of type $(0,0)$ correspond to TD pairs of Krawtchouk type. In what follows we adopt the TD pair point of view for convenience.

For a TD pair A, B on V that has Krawtchouk type, an element $H \in \operatorname{End}(V)$ is said to be compatible with A, B whenever the following relations hold:

$$
\begin{array}{ll}
{[A,[A, H]]=4 H,} & {[H,[H, A]]=4 A,} \\
{[B,[B, H]]=4 H,} & {[H,[H, B]]=4 B,} \\
{[H,[A, B]]=0 .} &
\end{array}
$$

Let $\operatorname{Com}(A, B)$ denote the set of elements in $\operatorname{End}(V)$ that are compatible with A, B.

Compatible elements and extensions

In the following two propositions, V will denote a finitedimensional irreducible \mathcal{O}-module of type $(0,0)$. Let A, B denote the tridiagonal pair associated with the \mathcal{O}-module V.

Compatible elements and extensions

In the following two propositions, V will denote a finitedimensional irreducible \mathcal{O}-module of type $(0,0)$. Let A, B denote the tridiagonal pair associated with the \mathcal{O}-module V.

Proposition: Consider an $L\left(\mathfrak{s l}_{2}\right)$-action on V that extends the \mathcal{O}-action on V. For the $L\left(\mathfrak{s l}_{2}\right)$-module V, the action of \mathcal{H} on V is an element of $\operatorname{Com}(A, B)$.

Compatible elements and extensions

In the following two propositions, V will denote a finitedimensional irreducible \mathcal{O}-module of type $(0,0)$. Let A, B denote the tridiagonal pair associated with the \mathcal{O}-module V.

Proposition: Consider an $L\left(\mathfrak{s l}_{2}\right)$-action on V that extends the \mathcal{O}-action on V. For the $L\left(\mathfrak{s l}_{2}\right)$-module V, the action of \mathcal{H} on V is an element of $\operatorname{Com}(A, B)$.

Proposition: Let $H \in \operatorname{Com}(A, B)$. Then there exists a unique $L\left(\mathfrak{s l}_{2}\right)$-action on V that extends the \mathcal{O}-action on V, such that the element \mathcal{H} of $L\left(\mathfrak{s l}_{2}\right)$ acts on V as H.

Compatible elements and extensions

In the following two propositions, V will denote a finitedimensional irreducible \mathcal{O}-module of type $(0,0)$. Let A, B denote the tridiagonal pair associated with the \mathcal{O}-module V.

Proposition: Consider an $L\left(\mathfrak{s l}_{2}\right)$-action on V that extends the \mathcal{O}-action on V. For the $L\left(\mathfrak{s l}_{2}\right)$-module V, the action of \mathcal{H} on V is an element of $\operatorname{Com}(A, B)$.

Proposition: Let $H \in \operatorname{Com}(A, B)$. Then there exists a unique $L\left(\mathfrak{s l}_{2}\right)$-action on V that extends the \mathcal{O}-action on V, such that the element \mathcal{H} of $L\left(\mathfrak{s l}_{2}\right)$ acts on V as H.

Combining these propositions we obtain a bijection between the following two sets:
(i) $\operatorname{Com}(A, B)$;
(ii) the $L\left(\mathfrak{s l}_{2}\right)$-actions on V that extend the \mathcal{O}-action on V.
\mathcal{O}-modules and $L\left(\mathfrak{s l}_{2}\right)$-modules
Our next general goal is to describe the elements of $\operatorname{Com}(A, B)$.
\mathcal{O}-modules and $L\left(\mathfrak{s l}_{2}\right)$-modules
Our next general goal is to describe the elements of $\operatorname{Com}(A, B)$.
To this end, we will recall the classification of \mathcal{O}-modules and $L\left(\mathfrak{s l}_{2}\right)$-modules. First we will summarize the classification of $L\left(\mathfrak{s l}_{2}\right)$-modules, which was proved by V. Chari. Then we will summarize the classification of \mathcal{O}-modules, which was proved by Date and Roan.

Evaluation modules for $L\left(\mathfrak{s l}_{2}\right)$

There exists a family of $L\left(\mathfrak{s l}_{2}\right)$-modules called evaluation modules. Each evaluation module gets a notation of the form $V_{d}(a)$, where d is a positive integer and a is a nonzero scalar in \mathbb{F}.

Evaluation modules for $L\left(\mathfrak{s l}_{2}\right)$

There exists a family of $L\left(\mathfrak{s l}_{2}\right)$-modules called evaluation modules. Each evaluation module gets a notation of the form $V_{d}(a)$, where d is a positive integer and a is a nonzero scalar in \mathbb{F}.

- The $L\left(\mathfrak{s l}_{2}\right)$-module $V_{d}(a)$ has dimension $d+1$.

Evaluation modules for $L\left(\mathfrak{s l}_{2}\right)$

There exists a family of $L\left(\mathfrak{s l}_{2}\right)$-modules called evaluation modules. Each evaluation module gets a notation of the form $V_{d}(a)$, where d is a positive integer and a is a nonzero scalar in \mathbb{F}.

- The $L\left(\mathfrak{s l}_{2}\right)$-module $V_{d}(a)$ has dimension $d+1$.
- On $V_{d}(a)$, each of the generators $\mathcal{A}, \mathcal{B}, \mathcal{H}$ is diagonalizable with eigenvalues $\{d-2 i\}_{i=0}^{d}$.

Evaluation modules for $L\left(\mathfrak{s l}_{2}\right)$

There exists a family of $L\left(\mathfrak{s L}_{2}\right)$-modules called evaluation modules. Each evaluation module gets a notation of the form $V_{d}(a)$, where d is a positive integer and a is a nonzero scalar in \mathbb{F}.

- The $L\left(\mathfrak{s l}_{2}\right)$-module $V_{d}(a)$ has dimension $d+1$.
- On $V_{d}(a)$, each of the generators $\mathcal{A}, \mathcal{B}, \mathcal{H}$ is diagonalizable with eigenvalues $\{d-2 i\}_{i=0}^{d}$.
- The $L\left(\mathfrak{s l}_{2}\right)$-module $V_{d}(a)$ is determined up to isomorphism by d and a.

A 2-DIMENSIONAL EXAMPLE

The actions of $\mathcal{A}, \mathcal{B}, \mathcal{H}$ on the $L\left(\mathfrak{s l}_{2}\right)$-module $V_{1}(a)$ are given by

$$
\mathcal{A}:\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \mathcal{B}:\left(\begin{array}{cc}
0 & a \\
a^{-1} & 0
\end{array}\right), \quad \mathcal{H}:\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

with respect to a suitable basis.

Irreducible $L\left(\mathfrak{s l}_{2}\right)$-modules (Chari):

Every finite-dimensional irreducible $L\left(\mathfrak{s l}_{2}\right)$-module is isomorphic to a tensor product of evaluation $L\left(\mathfrak{s l}_{2}\right)$-modules.

Irreducible $L\left(\mathfrak{s l}_{2}\right)$-modules (Chari):

Every finite-dimensional irreducible $L\left(\mathfrak{s l}_{2}\right)$-module is isomorphic to a tensor product of evaluation $L\left(\mathfrak{s l}_{2}\right)$-modules.

A tensor product of evaluation $L\left(\mathfrak{s l}_{2}\right)$-modules

$$
V_{d_{1}}\left(a_{1}\right) \otimes \cdots \otimes V_{d_{n}}\left(a_{n}\right)
$$

is irreducible if and only if $a_{1}, a_{2}, \ldots, a_{n}$ are mutually distinct.

Irreducible $L\left(\mathfrak{s l}_{2}\right)$-modules (Chari):

Every finite-dimensional irreducible $L\left(\mathfrak{s l}_{2}\right)$-module is isomorphic to a tensor product of evaluation $L\left(\mathfrak{s l}_{2}\right)$-modules.

A tensor product of evaluation $L\left(\mathfrak{s l}_{2}\right)$-modules

$$
V_{d_{1}}\left(a_{1}\right) \otimes \cdots \otimes V_{d_{n}}\left(a_{n}\right)
$$

is irreducible if and only if $a_{1}, a_{2}, \ldots, a_{n}$ are mutually distinct.
Two such tensor products are isomorphic if and only if one can be obtained from the other by permuting the factors in the tensor product.

Inverse-free $L\left(\mathfrak{s l}_{2}\right)$-modules

Let V denote a finite-dimensional irreducible $L\left(\mathfrak{s l}_{2}\right)$-module. By the classification above it is isomorphic to a tensor product of evaluation modules $L\left(\mathfrak{s l}_{2}\right)$-modules, say

$$
V_{d_{1}}\left(a_{1}\right) \otimes \cdots \otimes V_{d_{n}}\left(a_{n}\right) .
$$

V is said to be inverse-free whenever $a_{1}, a_{1}^{-1}, a_{2}, a_{2}^{-1}, \ldots, a_{n}, a_{n}^{-1}$ are mutually distinct.

Inverse-free $L\left(\mathfrak{s l}_{2}\right)$-modules

Let V denote a finite-dimensional irreducible $L\left(\mathfrak{s l}_{2}\right)$-module. By the classification above it is isomorphic to a tensor product of evaluation modules $L\left(\mathfrak{s l}_{2}\right)$-modules, say

$$
V_{d_{1}}\left(a_{1}\right) \otimes \cdots \otimes V_{d_{n}}\left(a_{n}\right) .
$$

V is said to be inverse-free whenever $a_{1}, a_{1}^{-1}, a_{2}, a_{2}^{-1}, \ldots, a_{n}, a_{n}^{-1}$ are mutually distinct.

We are now ready to describe the relationship between \mathcal{O}-modules and $L\left(\mathfrak{s l}_{2}\right)$-modules more precisely.

Irreducible \mathcal{O}-modules (Date and Roan):

- Let V denote a finite-dimensional irreducible \mathcal{O}-module of type $(0,0)$. Then up to isomorphism V is obtained by restricting the action of $L\left(\mathfrak{s l}_{2}\right)$ on a tensor product of evaluation $L\left(\mathfrak{s l}_{2}\right)$-modules.

Irreducible \mathcal{O}-modules (Date and Roan):

- Let V denote a finite-dimensional irreducible \mathcal{O}-module of type $(0,0)$. Then up to isomorphism V is obtained by restricting the action of $L\left(\mathfrak{s l}_{2}\right)$ on a tensor product of evaluation $L\left(\mathfrak{s l}_{2}\right)$-modules.
- Let V denote a finite-dimensional irreducible $L\left(\mathfrak{s l}_{2}\right)$-module. When we restrict the action of $L\left(\mathfrak{s l}_{2}\right)$ to \mathcal{O}, the resulting \mathcal{O}-module is irreducible if and only if the $L\left(\mathfrak{s l}_{2}\right)$-module V is inverse-free.

Irreducible \mathcal{O}-modules (Date and Roan):

- Let V denote a finite-dimensional irreducible \mathcal{O}-module of type $(0,0)$. Then up to isomorphism V is obtained by restricting the action of $L\left(\mathfrak{s l}_{2}\right)$ on a tensor product of evaluation $L\left(\mathfrak{s l}_{2}\right)$-modules.
- Let V denote a finite-dimensional irreducible $L\left(\mathfrak{s l}_{2}\right)$-module. When we restrict the action of $L\left(\mathfrak{s l}_{2}\right)$ to \mathcal{O}, the resulting \mathcal{O}-module is irreducible if and only if the $L\left(\mathfrak{s l}_{2}\right)$-module V is inverse-free.
- Two inverse-free tensor products of evaluation $L\left(\mathfrak{s l}_{2}\right)$-modules restrict to isomorphic \mathcal{O}-modules if and only if one can be obtained from the other by permuting the tensor factors and by replacing any number of the evaluation parameters with their multiplicative inverses.

Some definitions:
By the degree of a finite-dimensional irreducible \mathcal{O}-module of type $(0,0)$, we mean the number of tensor factors in the decomposition discussed above.

Some definitions:

By the degree of a finite-dimensional irreducible \mathcal{O}-module of type $(0,0)$, we mean the number of tensor factors in the decomposition discussed above.

By the degree of a TD pair of Krawtchouk type, we mean the degree of the associated \mathcal{O}-module.

Some definitions:

By the degree of a finite-dimensional irreducible \mathcal{O}-module of type $(0,0)$, we mean the number of tensor factors in the decomposition discussed above.

By the degree of a TD pair of Krawtchouk type, we mean the degree of the associated \mathcal{O}-module.
(Remark: for a TD pair of Krawtchouk type, the degree equals ρ_{1}.)

Some definitions:

By the degree of a finite-dimensional irreducible \mathcal{O}-module of type $(0,0)$, we mean the number of tensor factors in the decomposition discussed above.

By the degree of a TD pair of Krawtchouk type, we mean the degree of the associated \mathcal{O}-module.
(Remark: for a TD pair of Krawtchouk type, the degree equals ρ_{1}.)
We are now ready to discuss compatible elements in more detail.

Back to compatible elements ...

Until further notice, A, B will denote a tridiagonal pair that has Krawtchouk type and degree n.

Back to compatible elements ...

Until further notice, A, B will denote a tridiagonal pair that has Krawtchouk type and degree n.

Proposition:

Back to compatible elements ...

Until further notice, A, B will denote a tridiagonal pair that has Krawtchouk type and degree n.

Proposition:

- The set $\operatorname{Com}(A, B)$ has cardinality 2^{n}.

Back to compatible elements ...

Until further notice, A, B will denote a tridiagonal pair that has Krawtchouk type and degree n.

Proposition:

- The set $\operatorname{Com}(A, B)$ has cardinality 2^{n}.
- The elements of $\operatorname{Com}(A, B)$ are diagonalizable.

Back to compatible elements ...

Until further notice, A, B will denote a tridiagonal pair that has Krawtchouk type and degree n.

Proposition:

- The set $\operatorname{Com}(A, B)$ has cardinality 2^{n}.
- The elements of $\operatorname{Com}(A, B)$ are diagonalizable.
- The elements of $\operatorname{Com}(A, B)$ mutually commute.

Back to compatible elements ...

Until further notice, A, B will denote a tridiagonal pair that has Krawtchouk type and degree n.

Proposition:

- The set $\operatorname{Com}(A, B)$ has cardinality 2^{n}.
- The elements of $\operatorname{Com}(A, B)$ are diagonalizable.
- The elements of $\operatorname{Com}(A, B)$ mutually commute.
- The common eigenspaces for the elements of $\operatorname{Com}(A, B)$ all have dimension 1.

We now explain how any given element of $\operatorname{Com}(A, B)$ is related to every other element of $\operatorname{Com}(A, B)$.

We now explain how any given element of $\operatorname{Com}(A, B)$ is related to every other element of $\operatorname{Com}(A, B)$.

Until further notice, fix $H \in \operatorname{Com}(A, B)$.

We now explain how any given element of $\operatorname{Com}(A, B)$ is related to every other element of $\operatorname{Com}(A, B)$.

Until further notice, fix $H \in \operatorname{Com}(A, B)$.
We identify the underlying vector space V with an irreducible, inverse-free $L\left(\mathfrak{s l}_{2}\right)$-module

$$
V_{d_{1}}\left(a_{1}\right) \otimes \cdots \otimes V_{d_{n}}\left(a_{n}\right),
$$

such that $\mathcal{A}, \mathcal{B}, \mathcal{H}$ act on V as A, B, H respectively.

For $1 \leq i \leq n$ let $\mathcal{H}_{i} \in \operatorname{End}(V)$ be

$$
I \otimes \cdots \otimes I \otimes \mathcal{H} \otimes I \otimes \cdots \otimes I
$$

where \mathcal{H} above is in the $i^{\text {th }}$ position.

For $1 \leq i \leq n$ let $\mathcal{H}_{i} \in \operatorname{End}(V)$ be

$$
I \otimes \cdots \otimes I \otimes \mathcal{H} \otimes I \otimes \cdots \otimes I
$$

where \mathcal{H} above is in the $i^{\text {th }}$ position.
Our compatible element $H=\mathcal{H}_{1}+\mathcal{H}_{2}+\cdots+\mathcal{H}_{n}$.

For $1 \leq i \leq n$ let $\mathcal{H}_{i} \in \operatorname{End}(V)$ be

$$
I \otimes \cdots \otimes I \otimes \mathcal{H} \otimes I \otimes \cdots \otimes I
$$

where \mathcal{H} above is in the $i^{\text {th }}$ position.
Our compatible element $H=\mathcal{H}_{1}+\mathcal{H}_{2}+\cdots+\mathcal{H}_{n}$.
The compatible elements can be described as follows.

For $1 \leq i \leq n$ let $\mathcal{H}_{i} \in \operatorname{End}(V)$ be

$$
I \otimes \cdots \otimes I \otimes \mathcal{H} \otimes I \otimes \cdots \otimes I
$$

where \mathcal{H} above is in the $i^{\text {th }}$ position.
Our compatible element $H=\mathcal{H}_{1}+\mathcal{H}_{2}+\cdots+\mathcal{H}_{n}$.
The compatible elements can be described as follows.
Proposition: The set $\operatorname{Com}(A, B)$ consists of the elements

$$
\sum_{i=1}^{n} \varepsilon_{i} \mathcal{H}_{i} \quad \varepsilon_{i} \in\{ \pm 1\}, \quad 1 \leq i \leq n
$$

SPECIAL CASE: $\rho_{i}=\binom{d}{i}$

We now consider a special case when the description of $\operatorname{Com}(A, B)$ is especially nice. We assume that $\rho_{i}=\binom{d}{i}$ for $0 \leq i \leq d$, where d is the diameter of A, B.

SPECIAL CASE: $\rho_{i}=\binom{d}{i}$

We now consider a special case when the description of $\operatorname{Com}(A, B)$ is especially nice. We assume that $\rho_{i}=\binom{d}{i}$ for $0 \leq i \leq d$, where d is the diameter of A, B.

The condition $\rho_{i}=\binom{d}{i}$ for $0 \leq i \leq d$ just means that each tensor factor in the decomposition referred to above is 2-dimensional. We have that

SPECIAL CASE: $\rho_{i}=\binom{d}{i}$

We now consider a special case when the description of $\operatorname{Com}(A, B)$ is especially nice. We assume that $\rho_{i}=\binom{d}{i}$ for $0 \leq i \leq d$, where d is the diameter of A, B.

The condition $\rho_{i}=\binom{d}{i}$ for $0 \leq i \leq d$ just means that each tensor factor in the decomposition referred to above is 2-dimensional. We have that

- the underlying vector space V has dimension 2^{d},

SPECIAL CASE: $\rho_{i}=\binom{d}{i}$

We now consider a special case when the description of $\operatorname{Com}(A, B)$ is especially nice. We assume that $\rho_{i}=\binom{d}{i}$ for $0 \leq i \leq d$, where d is the diameter of A, B.

The condition $\rho_{i}=\binom{d}{i}$ for $0 \leq i \leq d$ just means that each tensor factor in the decomposition referred to above is 2-dimensional. We have that

- the underlying vector space V has dimension 2^{d},
- $n=d$, and

SPECIAL CASE: $\rho_{i}=\binom{d}{i}$

We now consider a special case when the description of $\operatorname{Com}(A, B)$ is especially nice. We assume that $\rho_{i}=\binom{d}{i}$ for $0 \leq i \leq d$, where d is the diameter of A, B.

The condition $\rho_{i}=\binom{d}{i}$ for $0 \leq i \leq d$ just means that each tensor factor in the decomposition referred to above is 2-dimensional. We have that

- the underlying vector space V has dimension 2^{d},
- $n=d$, and
- $\operatorname{Com}(A, B)$ has cardinality 2^{d}.

SPECIAL CASE: $\rho_{i}=\binom{d}{i}$

Let \mathbb{X} denote the set of all common eigenspaces for the elements of $\operatorname{Com}(A, B)$, and note that \mathbb{X} has cardinality 2^{d}.

SPECIAL CASE: $\rho_{i}=\binom{d}{i}$

Let \mathbb{X} denote the set of all common eigenspaces for the elements of $\operatorname{Com}(A, B)$, and note that \mathbb{X} has cardinality 2^{d}.

Proposition:
(i) There exists a d-cube structure on \mathbb{X} with the following property: for all $x \in \mathbb{X}, A x$ and $B x$ are contained in the sum of those elements of \mathbb{X} adjacent to x.

SPECIAL CASE: $\rho_{i}=\binom{d}{i}$

Let \mathbb{X} denote the set of all common eigenspaces for the elements of $\operatorname{Com}(A, B)$, and note that \mathbb{X} has cardinality 2^{d}.

Proposition:
(i) There exists a d-cube structure on \mathbb{X} with the following property: for all $x \in \mathbb{X}, A x$ and $B x$ are contained in the sum of those elements of \mathbb{X} adjacent to x.
(ii) For each $x \in \mathbb{X}$ there exists $H_{x} \in \operatorname{Com}(A, B)$ such that for $0 \leq i \leq d$, the sum of of the elements in \mathbb{X} at distance i from x is an eigenspace for H_{x} with eigenvalue $d-2 i$.

SPECIAL CASE: $\rho_{i}=\binom{d}{i}$

We can pick a nonzero vector in each $x \in \mathbb{X}$ in such a way to get a basis for V such that, with respect to this basis,

SPECIAL CASE: $\rho_{i}=\binom{d}{i}$

We can pick a nonzero vector in each $x \in \mathbb{X}$ in such a way to get a basis for V such that, with respect to this basis,

- the matrix representing A is the adjacency matrix for the d-cube structure on \mathbb{X},

$$
\text { SPECIAL CASE: } \rho_{i}=\binom{d}{i}
$$

We can pick a nonzero vector in each $x \in \mathbb{X}$ in such a way to get a basis for V such that, with respect to this basis,

- the matrix representing A is the adjacency matrix for the d-cube structure on \mathbb{X},
- the matrix representing B is a weighted adjacency matrix for the d-cube structure on \mathbb{X}, and

$$
\text { SPECIAL CASE: } \rho_{i}=\binom{d}{i}
$$

We can pick a nonzero vector in each $x \in \mathbb{X}$ in such a way to get a basis for V such that, with respect to this basis,

- the matrix representing A is the adjacency matrix for the d-cube structure on \mathbb{X},
- the matrix representing B is a weighted adjacency matrix for the d-cube structure on \mathbb{X}, and
- for $x \in \mathbb{X}$, the matrix representing H_{x} is the dual adjacency matrix with respect to the vertex x.

$$
\text { SPECIAL CASE: } \rho_{i}=\binom{d}{i}
$$

We can pick a nonzero vector in each $x \in \mathbb{X}$ in such a way to get a basis for V such that, with respect to this basis,

- the matrix representing A is the adjacency matrix for the d-cube structure on \mathbb{X},
- the matrix representing B is a weighted adjacency matrix for the d-cube structure on \mathbb{X}, and
- for $x \in \mathbb{X}$, the matrix representing H_{x} is the dual adjacency matrix with respect to the vertex x.

So the elements of $\operatorname{Com}(A, B)$ correspond to the 2^{d} dual adjacency matrices for the d-cube.

Picture for H_{x} when $d=3$:

