The Classification of Minimal non-core-2 2-groups with Almost Maximal Class

Xuesong Ma

jointed with J.Y. Chen, S.F. Du, J. Xu and M.Y. Xu

School of Mathematical Sciences, Capital Normal University, Beijing, RPC.

June 30, 2014

1 Definition, Introduction and Background

Let G be a finite group and $H \leq G$. H is called a core-n subgroup of G if $|H: H_G| \leq n$ where $H_G = \bigcap_{g \in G} H^g$ is the core of H in G.

Let G be a finite group and $H \leq G$. H is called a core-n subgroup of G if $|H: H_G| \leq n$ where $H_G = \bigcap_{q \in G} H^g$ is the core of H in G.

Definition

G is called a core-n group if each subgroup of G is a core-n subgroup.

Let G be a finite group with order 2^n . G is called a minimal core-2 2group if G is not a core-2 group but both of each subgroup of G and its quotient are the core-2 group.

Let G be a finite group with order 2^n . G is called a minimal core-2 2group if G is not a core-2 group but both of each subgroup of G and its quotient are the core-2 group.

Definition

Let G be a finite p-group with order p^n , where p is a prime. G is called an almost maximal class if c(G) = n - 2.

Remark: In this paper, G always is not abelian. And the terminology is general.

Introduction

For a group G and its subgroup H,

 $1 \le H_G \le H \le N_G(H) \le G.$

When any subgroup H of G such that $N_G(H) = H$, G is called Dedekind group. Certainly, at the same time, $H_G = H$.

So the core-n group can be seen as some generalized Dedekind group.

Background

Buckley, Lennox, Neumann, Smith and Wiegold studied n-core p-group in 1995[1]. Their paper concerned the maximal abelian normal subgroup index's bounder for the core-p p-group.

After that, J.C. Lennox, H.Smith, J.Wiegold, Y.Berkovich, Z.Janko, M.Y. Xu and some others gave some contributions about core-p p-group in [2, 3, 4, 5, 6].

Prof. Mingyao Xu give an open problem:

Decide the core-2 2-group.

Prof. Mingyao Xu give an open problem:

Decide the core-2 2-group.

By the classification maximal class p-group, one can check they are the core-p p-group. In this paper, we decide the minimal non-core-2 2-groups with almost maximal class.

Theorem

Let G be a non-core-2 2-group of order 2^n with almost maximal class. Then G must be one of following groups. (I) $\langle a, b, c, d | c^{2^{n-3}} = d^2 = b^2 = [d, c] = [b, d] = 1, c^b = c^{-1}, b^a = bc, d^a = bc^{-1}$ $dc^{2^{n-4}}, c^a = c^{-1+2^{n-4}}, a^2 = dc^{2^{n-5}}, (n \ge 6);$ (II) $\langle a, b, c, d | c^{2^{n-3}} = d^2 = [d, c] = [b, d] = 1, c^b = c^{-1+2^{n-4}}, b^2 = d, b^a = d^{2^{n-3}}$ $bc. d^{a} = dc^{2^{n-4}}, c^{a} = c, a^{2} = c^{2^{n-5}} \rangle, (n \ge 6);$ (III) $\langle a, b, c, d | c^{2^{n-3}} = d^2 = a^2 = [d, c] = [b, d] = 1, c^b = c^{-1+2^{n-4}}, b^2 = c^{-1+2^{n-4$ $d, b^{a} = bc, d^{a} = dc^{2^{n-4}}, c^{a} = c^{-1} \rangle, (n \ge 5);$ $(IV)\langle a, b, c, d | c^2 = d^2 = b^2 = a^4 = [d, c] = [b, d] = [b, c] = [d, a] =$ $1, [b, a] = c, [c, a] = d \rangle (n = 5);$ $(V)\langle a, b, c, d | c^2 = d^2 = b^2 = [d, c] = [b, d] = [b, c] = [d, a] = 1, a^4 =$ $\begin{array}{l} d, [b,a] = c, [c,a] = d \rangle (n = 5); \\ (\mathrm{VI}) \langle c, b, a | c^{2^{n-2}} = b^2 = a^2 = 1, c^b = c^{-1}, c^a = c^{-1+2^{n-3}}, [b,a] = 1 \rangle, (n \geq 1) \rangle \\ \end{array}$ 5).

Remark

1. I, II and III: d(G) = 2 and G' is cyclic where $n \ge 5$; 2. IV and V: d(G) = 2 and G' is not cyclic where n=5; 3. VI: d(G) = 3 where $n \ge 5$.

Let G be a groups of order 2^n where $n \leq 4$ or c(G) = n-1 . Then G is core-2 2-group.

Let G be a groups of order 2^n where $n \leq 4$ or c(G) = n-1 . Then G is core-2 2-group.

This lemma means both of small order and the maximal class 2-group are the core-2 2-group. So we only consider $n \ge 5$ in the following lemma.

Let G be a minimal non-core-p p-groups of order p^n where $n \geq 4$, then $d(G) \leq 4.$

Outline of the Proof.

Let K < G such that $|K: K_G| \ge p^2$. Since G is minimal, $K_G = 1$. We can choose a subgroup $H \le K$ with order p^2 such that $H_G = 1$, $H \bigcap Z(G) = 1$ and $H\Phi(G) < G$. Case 1. If $|G: H\Phi(G)| = p$, then $|G: \Phi(G)| \le p^3$; Case 2. Otherwise $|G: H\Phi(G)| \ge p^2$, then can get $|G: \Phi(G)| \le p^4$. \Box

Let G be a minimal non-core-2 2-groups of order 2^n with almost maximal class where n>4 , then $d(G)\leq 3.$

Proof.

Since G is almost maximal class, $|G/G'| = 2^3$ and $G' \leq \Phi(G)$. Then $|G: \Phi(G)| \leq 2^3$. So d(G) = 2 or 3.

Let G be a minimal non-core-2 2-groups of order 2^n with almost maximal class where n>4 , then $d(G)\leq 3.$

Proof.

Since G is almost maximal class, $|G/G'| = 2^3$ and $G' \leq \Phi(G)$. Then $|G: \Phi(G)| \leq 2^3$. So d(G) = 2 or 3.

Remark

We classify the group according to d(G) = 2 or 3.

Let G be a minimal non-core-2 2-groups of order 2^n with almost maximal class where $n \ge 7$, d(G) = 2. Then G' is cyclic.

Outline of the proof. Firstly, we claim that when n = 6, if $d(G') \ge 2$ (it means that G' is not cyclic) and $d(G) \ge 2$, then G is not a core-2 2-group.

Let G be a minimal non-core-2 2-groups of order 2^n with almost maximal class where $n \ge 7$, d(G) = 2. Then G' is cyclic.

Outline of the proof. Firstly, we claim that when n = 6, if $d(G') \ge 2$ (it means that G' is not cyclic) and $d(G) \ge 2$, then G is not a core-2 2-group. Secondly, assume G' is not cyclic. Since G is a minimal non-core-2 2-group, then $\overline{G} = G/G_5$ is core-2 2-group with order 2^6 such that $d(\overline{G'}) \ge 2$, $|\overline{G}/\Phi(\overline{G})| = 4$. This is a contradiction with above claiming result.

Let G be a minimal non-core-2 2-groups of order 2^n with almost maximal class where $n \ge 7$, d(G) = 2. Then G' is cyclic.

Outline of the proof. Firstly, we claim that when n = 6, if $d(G') \ge 2$ (it means that G' is not cyclic) and $d(G) \ge 2$, then G is not a core-2 2-group. Secondly, assume G' is not cyclic. Since G is a minimal non-core-2 2-group, then $\overline{G} = G/G_5$ is core-2 2-group with order 2⁶ such that $d(\bar{G}') > 2, |\bar{G}/\Phi(\bar{G})| = 4.$ This is a contradiction with above claiming result. So G' is cyclic. ENISTREA SEZATEDBRAZEV

CMNC2AC

June 30, 2014

13 / 31

 $\begin{array}{ll} \mbox{Let G be a minimal non-core-$2 $2-groups of order 2^n where $n \geq 5$,} \\ \mbox{$d(G)=2$ and G' is cyclic. Then G must be one of following groups.} \\ (I) $\langle a,b,c,d|c^{2^{n-3}}=d^2=b^2=[d,c]=[b,d]=1,c^b=c^{-1},b^a=bc,d^a=dc^{2^{n-4}},c^a=c^{-1+2^{n-4}},a^2=dc^{2^{n-5}}\rangle,(n\geq 6); \\ (II) $\langle a,b,c,d|c^{2^{n-3}}=d^2=[d,c]=[b,d]=1,c^b=c^{-1+2^{n-4}},b^2=d,b^a=bc,d^a=dc^{2^{n-4}},c^a=c,a^2=c^{2^{n-5}}\rangle,(n\geq 6); \\ (III) $\langle a,b,c,d|c^{2^{n-3}}=d^2=c^{2^{n-5}}\rangle,(n\geq 6); \\ (III) $\langle a,b,c,d|c^{2^{n-3}}=d^2=a^2=[d,c]=[b,d]=1,c^b=c^{-1+2^{n-4}},b^2=d,b^a=d,b^a=bc,d^a=dc^{2^{n-4}},c^a=c^{-1}\rangle,(n\geq 5). \\ \end{array}$

Outline of the Proof. Since G is a minimal non-core-2 2-group, we can take subgroup H of order 4 and $H_G = 1$.

Outline of the Proof.

Since G is a minimal non-core-2 2-group, we can take subgroup H of order 4 and $H_G = 1$. Set $G' = \langle c_0 \rangle$ and $O(c_0) = 2^{n-3}$. Thus $H \bigcap G' = 1$, $M = G' \rtimes H \lt G$. For M is a core-2 2-group, take $L = \{1, d\} \lhd M$ and $L \le H$.

Then $\langle c_0 \rangle \times L < M$. Thus $H = \langle L, b \rangle, G = \langle M, a \rangle$ where $b^2 \in L$.

Outline of the Proof.

Since G is a minimal non-core-2 2-group, we can take subgroup H of order 4 and $H_G = 1$. Set $G' = \langle c_0 \rangle$ and $O(c_0) = 2^{n-3}$. Thus $H \bigcap G' = 1$, $M = G' \rtimes H \lt G$. For M is a core-2 2-group, take $L = \{1, d\} \lhd M$ and $L \le H$.

Then $\langle c_0 \rangle \times L < M$. Thus $H = \langle L, b \rangle, G = \langle M, a \rangle$ where $b^2 \in L$.

 $\forall x \in G, \text{ since } [d, x] \equiv 1 \pmod{G'}, \text{ then } d^x = d \cdot c_0^j, 0 \le j < 2^{n-3}.$ For $O(d) = O(d^x) = O(dc_0^j) = 2$ and $n \ge 5$, then

 $2^{n-4}|j \text{ and } [d,x] \equiv 1 \pmod{G_3} = \langle c_0^2 \rangle$.

 $\forall x \in G, \text{ since } [d, x] \equiv 1 \pmod{G'}, \text{ then } d^x = d \cdot c_0^j, 0 \le j < 2^{n-3}.$ For $O(d) = O(d^x) = O(dc_0^j) = 2$ and $n \ge 5$, then

 $2^{n-4}|j \text{ and } [d,x] \equiv 1 \pmod{G_3} = \langle c_0^2 \rangle$.

Thus $d \in \Phi(G)$, $\Phi(G) = \langle c_0, d \rangle$, and $G = \langle a, b \rangle$.

 $\forall x \in G, \text{ since } [d, x] \equiv 1 \pmod{G'}, \text{ then } d^x = d \cdot c_0^j, 0 \le j < 2^{n-3}.$ For $O(d) = O(d^x) = O(dc_0^j) = 2$ and $n \ge 5$, then

$$2^{n-4}|j \text{ and } [d,x] \equiv 1 \pmod{G_3} = \langle c_0^2 \rangle.$$

Thus $d \in \Phi(G)$, $\Phi(G) = \langle c_0, d \rangle$, and $G = \langle a, b \rangle$. Then

$$G' = \langle c_0 \rangle = \langle [b, a], G_3 \rangle, [b, a] = c_0^{\delta_0}, (\delta_0, 2) = 1.$$

Since $H_G = 1$, $\{1, d\} \neq \{1, d\}^a \subset \Omega_1(\Phi(G)) = \{1, d, dc_0^{2^{n-4}}, c_0^{2^{n-4}}\}.$ But $d^a \equiv d \pmod{G' = \langle c_0 \rangle}, d^a = dc_0^{2^{n-4}}$ and $a^2 \in \Phi(G).$

Since
$$H_G = 1$$
, $\{1, d\} \neq \{1, d\}^a \subset \Omega_1(\Phi(G)) = \{1, d, dc_0^{2^{n-4}}, c_0^{2^{n-4}}\}$.
But $d^a \equiv d \pmod{G' = \langle c_0 \rangle}$, $d^a = dc_0^{2^{n-4}}$ and $a^2 \in \Phi(G)$.
Thus

$$c_0^a = c_0^{\delta_3}, a^2 = d^{\delta_4} c_0^{\delta_5}, \delta_3 \in \{\pm 1 + 2^{n-4}, \pm 1\}, \delta_4 \in \{0, 1\}, 0 \le \delta_5 < 2^{n-4}$$

Case 1. $n \ge 6$. If $H \triangleleft M$, then $M = \langle c_0 \rangle \times H$, and

$$O(b) = O(b^{a}) = O(bc_{0}^{\delta_{0}}) = o(c_{0}^{\delta_{0}}) = o(c_{0}) \ge 8 \neq o(b) \le 4.$$

A contradiction.
Thus
$$[c_0, b] = c_0^{\delta_1 - 1} \neq 1$$
.
Since $b^2 \in L$, $\delta_1 \in \{\pm 1 + 2^{n-4}, -1\}$. $b^2 = d^{\delta_2}, \delta_2 \in \{0, 1\}$.

Case 1. $n \ge 6$. If $H \triangleleft M$, then $M = \langle c_0 \rangle \times H$, and

$$O(b) = O(b^{a}) = O(bc_{0}^{\delta_{0}}) = o(c_{0}^{\delta_{0}}) = o(c_{0}) \ge 8 \neq o(b) \le 4.$$

A contradiction.
Thus
$$[c_0, b] = c_0^{\delta_1 - 1} \neq 1$$
.
Since $b^2 \in L$, $\delta_1 \in \{\pm 1 + 2^{n-4}, -1\}$. $b^2 = d^{\delta_2}, \delta_2 \in \{0, 1\}$.

 $G = \langle a, b, c_0, d | c_0^{2^{n-3}} = d^2 = [d, c_0] = [b, d] = 1, c_0^b = c_0^{\delta_1}, b^2 = d^{\delta_2}, b^a = bc_0^{\delta_0}, b^{\delta_1} = bc_0^{\delta_1}, b^{\delta_2} = bc_0^{\delta_2}, b^{\delta_1} = bc_0^{\delta_2}, b^{\delta_2} = bc$

$$d^{a} = dc_{0}^{2^{n-4}}, c_{0}^{a} = c_{0}^{\delta_{3}}, a^{2} = d^{\delta_{4}}c_{0}^{\delta_{5}}\rangle.$$

Case 1. $n \ge 6$. If $H \triangleleft M$, then $M = \langle c_0 \rangle \times H$, and

$$O(b) = O(b^{a}) = O(bc_{0}^{\delta_{0}}) = o(c_{0}^{\delta_{0}}) = o(c_{0}) \ge 8 \neq o(b) \le 4.$$

A contradiction.
Thus
$$[c_0, b] = c_0^{\delta_1 - 1} \neq 1$$
.
Since $b^2 \in L$, $\delta_1 \in \{\pm 1 + 2^{n-4}, -1\}$. $b^2 = d^{\delta_2}, \delta_2 \in \{0, 1\}$.

 $G = \langle a, b, c_0, d | c_0^{2^{n-3}} = d^2 = [d, c_0] = [b, d] = 1, c_0^b = c_0^{\delta_1}, b^2 = d^{\delta_2}, b^a = bc_0^{\delta_0}, b^{\delta_1} = bc_0^{\delta_1}, b^{\delta_2} = bc_0^{\delta_2}, b^{\delta_1} = bc_0^{\delta_2}, b^{\delta_2} = bc$

$$d^{a} = dc_{0}^{2^{n-4}}, c_{0}^{a} = c_{0}^{\delta_{3}}, a^{2} = d^{\delta_{4}}c_{0}^{\delta_{5}}\rangle.$$

Taking
$$c = c_0^{\delta_0}$$
, then
 $G = \langle a, b, c, d | c^{2^{n-3}} = d^2 = [d, c] = [b, d] = 1, c^b = c^{\delta_1}, b^2 = d^{\delta_2},$
 $b^a = bc, d^a = dc^{2^{n-4}}, c^a = c^{\delta_3}, a^2 = d^{\delta_4}c^{\delta_5} \rangle.$

Since $G/G' \cong \mathbb{Z}_4 \times \mathbb{Z}_2$,

$$\delta_2^2 + \delta_4^2 \neq 0. \tag{1}$$

Since $G/G' \cong \mathbb{Z}_4 \times \mathbb{Z}_2$,

$$\delta_2^2 + \delta_4^2 \neq 0. \tag{1}$$

Since

,

$$(a^2)^a = (d^{\delta_4} c^{\delta_5})^a = (dc^{2^{n-4}})^{\delta_4} c^{\delta_3 \cdot \delta_5} = d^{\delta_4} c^{2^{n-4} \cdot \delta_4 + \delta_3 \cdot \delta_5} = a^2 = d^{\delta_4} c^{\delta_5}$$

$$2^{n-4}\delta_4 + (\delta_3 - 1)\delta_5 \equiv 0 \pmod{2^{n-3}}.$$
(2)

Since

$$b^{a^2} = b^{(d^{\delta_4}c^{\delta_5})} = b^{c^{\delta_5}} = b[b, c^{\delta_5}] = bc^{(1-\delta_1)\delta_5}$$

= $(b^a)^a = (bc)^a = bc^{\delta_3+1},$

$$\delta_3 + 1 \equiv (1 - \delta_1)\delta_5 \pmod{2^{n-3}}.$$
 (3)

Since

$$b^{a^2} = b^{(d^{\delta_4}c^{\delta_5})} = b^{c^{\delta_5}} = b[b, c^{\delta_5}] = bc^{(1-\delta_1)\delta_5}$$

= $(b^a)^a = (bc)^a = bc^{\delta_3+1},$

$$\delta_3 + 1 \equiv (1 - \delta_1)\delta_5 \pmod{2^{n-3}}.$$
 (3)

Since

.

$$(b^2)^a = (b^a)^2 = (bc)^2 = b^2 c^b c = b^2 c^{\delta_1 + 1} = d^{\delta_2} c^{\delta_1 + 1}$$

= $(d^{\delta_2})^a = (d^a)^{\delta_2} = d^{\delta_2} c^{2^{n-4} \delta_2},$

$$2^{n-4}\delta_2 \equiv \delta_1 \pm 1 \pmod{2^{n-3}} \qquad (4)$$

maxues@cnu.edu.cn (CNU) CMNC2AC June 30, 2014 21 / 31

By solving equations, $\delta_3 = -1 + 2^{n-4}$, $\delta_5 = 2^{n-5} + 2^{n-4}\delta'_5$. Replacing $ad^{\delta'_5}$ with a, we can get $\delta_5 = 2^{n-5}$ and G is type(I).

By solving equations, $\delta_3 = -1 + 2^{n-4}, \, \delta_5 = 2^{n-5} + 2^{n-4}\delta'_5$. Replacing $ad^{\delta'_5}$ with a, we can get $\delta_5 = 2^{n-5}$ and G is type(I). $\delta_3 = 1, \delta_5 = 1 + 2^{n-5} + 2^{n-4}\delta'_5$. Replacing $ad^{\delta'_5}$ with a, we can get $\delta_5 = 2^{n-5}$ and G is type (II).

By solving equations, $\delta_3 = -1 + 2^{n-4}, \, \delta_5 = 2^{n-5} + 2^{n-4} \delta'_5$. Replacing $ad^{\delta'_5}$ with a, we can get $\delta_5 = 2^{n-5}$ and G is type(I). $\delta_3 = 1, \delta_5 = 1 + 2^{n-5} + 2^{n-4} \delta'_5$. Replacing $ad^{\delta'_5}$ with a, we can get $\delta_5 = 2^{n-5}$ and G is type (II). $\delta_3 = -1 + 2^{n-4}$ or $-1, \, \delta_5 = 2^{n-4} \delta'_5, \, \delta_3 = -1$. A $ad^{\delta'_5}$. Replacing a with δ'_5 , we can get $\delta_5 = 0$ and G is type (III). Other cases do not occur or same as above type.

Case 2. n=5.

$$G = \langle a, b, c, d | c^4 = d^2 = [d, c] = [b, d] = 1, c^b = c^{\delta_1}, b^2 = d^{\delta_2}, b^a = bc, d^a = d^{\delta_2}, c^a = c^{\delta_3}, a^2 = d^{\delta_4} c^{\delta_5} \rangle, \quad \delta_1, \delta_3 \in \{\pm 1\}, \delta_2, \delta_4 \in \{0, 1\}, \delta_5 \in \{0, \pm 1, 2\}.$$

As above discussion, we can get a type (III) group.

Case 2. n=5.

$$G = \langle a, b, c, d | c^4 = d^2 = [d, c] = [b, d] = 1, c^b = c^{\delta_1}, b^2 = d^{\delta_2}, b^a = bc, d^a = dc$$
$$c^a = c^{\delta_3}, a^2 = d^{\delta_4} c^{\delta_5} \rangle, \quad \delta_1, \delta_3 \in \{\pm 1\}, \delta_2, \delta_4 \in \{0, 1\}, \delta_5 \in \{0, \pm 1, 2\}.$$

As above discussion, we can get a type (III) group. We can check the three type group are not isomorphic and minimal non-core-2 2-group with almost maximal class.

Let G be a minimal non-core-2 2-groups of order 2^n where $n \ge 5$, d(G) = 2 and G' is not cyclic. Then G must be one of following groups. (IV) $\langle a, b, c, d | c^2 = d^2 = b^2 = a^4 = [d, c] = [b, d] = [b, c] = [d, a] = 1, [b, a] = c, [c, a] = d \rangle (n = 5);$ or (V) $\langle a, b, c, d | c^2 = d^2 = b^2 = [d, c] = [b, d] = [b, c] = [d, a] = 1, a^4 = d, [b, a] = c, [c, a] = d \rangle (n = 5);$

Proof. By above lemma, since G' is not cyclic, then $4 < n \le 6$. Case 1. n=5. Since G' is not cyclic, $G' \cong \mathbb{Z}_2 \times \mathbb{Z}_2, G/G' \cong \mathbb{Z}_4 \times \mathbb{Z}_2$. Without loss generality, we can assume $G = \langle a, b \rangle$, and $a^4, b^2 \in G', [a, b] = c \in G' - G_3, G_3 = \langle d \rangle$.

CMNC2AC

A 3

24 / 31

June 30, 2014

Then

$$G = \langle a, b, c, d | c^2 = d^2 = [d, c] = [b, d] = [d, a] = 1, [b, a] = c,$$
$$[c, a] = d^{\delta_1}, [c, b] = d^{\delta_2}, a^4 = c^{\delta_3} d^{\delta_4}, b^2 = c^{\delta_5} d^{\delta_6} \rangle$$
where $\delta_1, \delta_2, \delta_3, \delta_4, \delta_5, \delta_6 \in \{0, 1\}.$

Then

$$G = \langle a, b, c, d | c^2 = d^2 = [d, c] = [b, d] = [d, a] = 1, [b, a] = c,$$
$$[c, a] = d^{\delta_1}, [c, b] = d^{\delta_2}, a^4 = c^{\delta_3} d^{\delta_4}, b^2 = c^{\delta_5} d^{\delta_6} \rangle$$

where $\delta_1, \delta_2, \delta_3, \delta_4, \delta_5, \delta_6 \in \{0, 1\}$. Since G is almost maximal class,

$$[G_2, G] = \langle [c, a], [c, b], G_3 \rangle \implies \delta_1 + \delta_2 \ge 1$$

$$(b^2)^a = (b^a)^2 \implies d^{\delta_1 \delta_5} = d^{\delta_2}$$

$$(a^4)^a = a^4 \implies d^{\delta_1 \delta_3} = 1$$

$$(b^2)^b = b^2 \implies d^{\delta_2 \delta_5} = 1$$

$$(a^4)^b = (a^b)^4 \implies d^{\delta_2 \delta_3} = 1.$$

Then

$$G = \langle a, b, c, d | c^2 = d^2 = [d, c] = [b, d] = [d, a] = 1, [b, a] = c,$$
$$[c, a] = d^{\delta_1}, [c, b] = d^{\delta_2}, a^4 = c^{\delta_3} d^{\delta_4}, b^2 = c^{\delta_5} d^{\delta_6} \rangle$$

where $\delta_1, \delta_2, \delta_3, \delta_4, \delta_5, \delta_6 \in \{0, 1\}$. Since G is almost maximal class,

$$[G_2, G] = \langle [c, a], [c, b], G_3 \rangle \implies \delta_1 + \delta_2 \ge 1$$

$$(b^2)^a = (b^a)^2 \implies d^{\delta_1 \delta_5} = d^{\delta_2}$$

$$(a^4)^a = a^4 \implies d^{\delta_1 \delta_3} = 1$$

$$(b^2)^b = b^2 \implies d^{\delta_2 \delta_5} = 1$$

$$(a^4)^b = (a^b)^4 \implies d^{\delta_2 \delta_3} = 1.$$

Then
$$f_2 = \delta_3 = \delta_5 = 0.6$$
 $\delta_6 \in 0.1$

(i) If
$$\delta_4 = 0, \delta_6 = 0$$
, then G is type (V);
(ii) If $\delta_4 = 0, \delta_6 = 1$, replacing ba^2 with b, then G is type(V);
(iii) If $\delta_4 = 1, \delta_6 = 0$, then G is type (IV);
(iv) If $\delta_4 = 1$ and $\delta_6 = 1$, this case G is core-2 2-group.

Case 2. n=6. It is similarity to n = 5.

Let G be a minimal non-core-2 2-groups of order 2^n where $n \ge 5$, d(G) = 3. Then G must be $\langle c, b, a | c^{2^{n-2}} = b^2 = a^2 = 1, c^b = c^{-1}, c^a = c^{-1+2^{n-3}}, [b, a] = 1 \rangle, (n \ge 5).$

Proof.

Since $n \geq 5$ and d(G) = 3, by[7], $\exists K \leq G$ such that $K_i = G_i$, where $i = 2, 3, \dots, n-2$.

Let G be a minimal non-core-2 2-groups of order 2^n where $n \ge 5$, d(G) = 3. Then G must be $\langle c, b, a | c^{2^{n-2}} = b^2 = a^2 = 1, c^b = c^{-1}, c^a = c^{-1+2^{n-3}}, [b, a] = 1 \rangle, (n \ge 5).$

Proof.

Since $n \ge 5$ and d(G) = 3, by[7], $\exists K < G$ such that $K_i = G_i$, where $i = 2, 3, \dots, n-2$. For G is a maximal class 2-group, then $\exists L = < c > < K$ and L char K.

Let G be a minimal non-core-2 2-groups of order 2^n where $n \ge 5$, d(G) = 3. Then G must be $\langle c, b, a | c^{2^{n-2}} = b^2 = a^2 = 1, c^b = c^{-1}, c^a = c^{-1+2^{n-3}}, [b, a] = 1 \rangle, (n \ge 5).$

Proof.

Since $n \ge 5$ and d(G) = 3, by[7], $\exists K < G$ such that $K_i = G_i$, where $i = 2, 3, \dots, n-2$. For G is a maximal class 2-group, then $\exists L = \langle c \rangle < K$ and L char K.

Assume $H \leq G$ such that |H| = 4 and $H_G = 1$. Then $H \cap L = 1$. (Otherwise $1 \neq H \cap L$ Char $L \triangleleft G$. This is a contradiction.)

Let G be a minimal non-core-2 2-groups of order 2^n where $n \ge 5$, d(G) = 3. Then G must be $\langle c, b, a | c^{2^{n-2}} = b^2 = a^2 = 1, c^b = c^{-1}, c^a = c^{-1+2^{n-3}}, [b, a] = 1 \rangle, (n \ge 5).$

Proof.

Since $n \geq 5$ and d(G) = 3, by[7], $\exists K \leq G$ such that $K_i = G_i$, where $i = 2, 3, \dots, n-2$.

For G is a maximal class 2-group, then $\exists L = \langle c \rangle \langle K$ and L char K. Assume $H \leq G$ such that |H| = 4 and $H_G = 1$. Then $H \bigcap L = 1$. (Otherwise $1 \neq H \cap L$ Char $L \triangleleft G$. This is a contradiction.) It means $G = \langle H, L \rangle = L \rtimes H$.

Let G be a minimal non-core-2 2-groups of order 2^n where $n \ge 5$, d(G) = 3. Then G must be $\langle c, b, a | c^{2^{n-2}} = b^2 = a^2 = 1, c^b = c^{-1}, c^a = c^{-1+2^{n-3}}, [b, a] = 1 \rangle, (n \ge 5).$

Proof.

Since $n \geq 5$ and d(G) = 3, by[7], $\exists K \leq G$ such that $K_i = G_i$, where $i = 2, 3, \dots, n-2$.

For G is a maximal class 2-group, then $\exists L = \langle c \rangle \langle K$ and L char K. Assume $H \leq G$ such that |H| = 4 and $H_G = 1$. Then $H \bigcap L = 1$. (Otherwise $1 \neq H \cap L$ Char $L \triangleleft G$. This is a contradiction.) It means $G = \langle H, L \rangle = L \rtimes H$. By $G/L \cong H, \Phi(G) \langle L, H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. If $|C_G(L)L| = 2$, then $1 < C_G(L) \cap H < Z(G)$. This is contradict to $H_G = 1$.

Let G be a minimal non-core-2 2-groups of order 2^n where $n \ge 5$, d(G) = 3. Then G must be $\langle c, b, a | c^{2^{n-2}} = b^2 = a^2 = 1, c^b = c^{-1}, c^a = c^{-1+2^{n-3}}, [b, a] = 1 \rangle, (n \ge 5).$

Proof.

Since $n \geq 5$ and d(G) = 3, by[7], $\exists K \leq G$ such that $K_i = G_i$, where $i = 2, 3, \dots, n-2$.

For G is a maximal class 2-group, then $\exists L = \langle c \rangle \langle K$ and L char K. Assume $H \leq G$ such that |H| = 4 and $H_G = 1$. Then $H \bigcap L = 1$. (Otherwise $1 \neq H \cap L$ Char $L \triangleleft G$. This is a contradiction.) It means $G = \langle H, L \rangle = L \rtimes H$. By $G/L \cong H, \Phi(G) \langle L, H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. If $|C_G(L)L| = 2$, then $1 < C_G(L) \cap H < Z(G)$. This is contradict to $H_G = 1$. So $C_G(L) = L, H \cong G/L \cong \Omega_1(Aut(L)) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Without loss generality, we can assume $H = \langle b, a \rangle$

$$G = \langle a, b, c | c^{2^{n-2}} = b^2 = a^2 = 1, c^b = c^{-1}, c^a = c^{-1+2^{n-3}}, [b, a] = 1 \rangle.$$

We can check G is an inner core-2 2-group and G/N is a core-2 2-group where $N \leq Z(G)$ and |N| = 2. Then G is a minimal non-core-2 2-group.

By above lemma, we can get the main result. Furthermore, we can also get all the inner core-2 2-groups.

Thank you very much!

- G.Cutolo, E.I.Khukhro, J.C.Lennox, J.Wiegold S.Rinauro and H.Smith, Finite core-p p-groups, J.Algebra, (1997) 188, 701-719.
- G.Cutolo, H.Smith and J.Wiegold, On core-2 2-groups, J. Algebra, (2006)237, 813-841.
- J.C. Lennox, H.Smith and J.Wiegold(1996), Finite p-groups in which subgroups have large cores, Infinite Groups, 1994, Proceeding of the International Conference, de Gruyter, Berlin, 1996, 163-169.
- Y. Berkovich and Z.Janko, Structure of finite p-groups with given subgroups, Contemp. Math., 402(2006),13-93.
- Q.H. Zhang, L.B.Zhao, M.M.Li and Y.Q.Shen, Finite p-groups all of whose subgroups of index p^3 are abelian, manuscript.
- **Q.H.** Zhang, Sun, Xiujuan, An, Lijian and Xu, Mingyao, Finite p-groups all of whose subgroups of index p^2 are abelian, Algebra Colloq. 15(2008),1,167-180.
- Blackburn N. On a special class of p-groups, Acta Mathematica, 1958, 100(1): 45-92.

June 30, 2014

31 / 31