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Definition, Introduction and Background

Definition

Let G be a finite group and H ≤ G. H is called a core-n subgroup of G
if |H : HG| ≤ n where HG =

⋂
g∈GH

g is the core of H in G.

Definition

G is called a core-n group if each subgroup of G is a core-n subgroup.
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Definition, Introduction and Background

Definition

Let G be a finite group with order 2n. G is called a minimal core-2 2-
group if G is not a core-2 group but both of each subgroup of G and its
quotient are the core-2 group.

Definition

Let G be a finite p-group with order pn, where p is a prime. G is called
an almost maximal class if c(G) = n− 2.

Remark: In this paper, G always is not abelian. And the terminology is
general.
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Definition, Introduction and Background

Introduction

For a group G and its subgroup H,

1 ≤ HG ≤ H/NG(H) ≤ G.

When any subgroup H of G such that NG(H) = H, G is called Dedekind
group. Certainly, at the same time, HG = H.
So the core-n group can be seen as some generalized Dedekind group.
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Definition, Introduction and Background

Background

Buckley, Lennox, Neumann, Smith and Wiegold studied n-core p-group
in 1995[1]. Their paper concerned the maximal abelian normal subgroup
index’s bounder for the core-p p-group.
After that, J.C. Lennox, H.Smith, J.Wiegold, Y.Berkovich, Z.Janko,
M.Y. Xu and some others gave some contributions about core-p p-group
in [2, 3, 4, 5, 6].
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Definition, Introduction and Background

Prof. Mingyao Xu give an open problem:

Decide the core-2 2-group.

By the classification maximal class p-group, one can check they are the
core-p p-group.
In this paper, we decide the minimal non-core-2 2-groups with almost
maximal class.
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Main Result

Theorem

Let G be a non-core-2 2-group of order 2n with almost maximal class.
Then G must be one of following groups.
(I) 〈a, b, c, d|c2n−3

= d2 = b2 = [d, c] = [b, d] = 1, cb = c−1, ba = bc, da =
dc2n−4

, ca = c−1+2n−4
, a2 = dc2n−5〉, (n ≥ 6);

(II) 〈a, b, c, d|c2n−3
= d2 = [d, c] = [b, d] = 1, cb = c−1+2n−4

, b2 = d, ba =
bc, da = dc2n−4

, ca = c, a2 = c2n−5〉, (n ≥ 6);
(III) 〈a, b, c, d|c2n−3

= d2 = a2 = [d, c] = [b, d] = 1, cb = c−1+2n−4
, b2 =

d, ba = bc, da = dc2n−4
, ca = c−1〉, (n ≥ 5);

(IV)〈a, b, c, d|c2 = d2 = b2 = a4 = [d, c] = [b, d] = [b, c] = [d, a] =
1, [b, a] = c, [c, a] = d〉(n = 5);
(V)〈a, b, c, d|c2 = d2 = b2 = [d, c] = [b, d] = [b, c] = [d, a] = 1, a4 =
d, [b, a] = c, [c, a] = d〉(n = 5);
(VI)〈c, b, a|c2n−2

= b2 = a2 = 1, cb = c−1, ca = c−1+2n−3
, [b, a] = 1〉, (n ≥

5).
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Main Result

Remark

1. I, II and III: d(G) = 2 and G′ is cyclic where n ≥ 5;
2. IV and V: d(G) = 2 and G′ is not cyclic where n=5;
3. VI: d(G) = 3 where n ≥ 5.
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Proof of the Main Result

Lemma

Let G be a groups of order 2n where n ≤ 4 or c(G) = n− 1 . Then G is
core-2 2-group.

This lemma means both of small order and the maximal class 2-group are
the core-2 2-group. So we only consider n ≥ 5 in the following lemma.
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Proof of the Main Result

Lemma

Let G be a minimal non-core-p p-groups of order pn where n ≥ 4 , then
d(G) ≤ 4.

Outline of the Proof.
Let K < G such that |K : KG| ≥ p2. Since G is minimal, KG = 1.
We can choose a subgroup H ≤ K with order p2 such that HG = 1,
H

⋂
Z(G) = 1 and HΦ(G) < G.

Case 1. If |G : HΦ(G)| = p, then |G : Φ(G)| ≤ p3;
Case 2. Otherwise |G : HΦ(G)| ≥ p2, then can get |G : Φ(G)| ≤ p4.
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Proof of the Main Result

Lemma

Let G be a minimal non-core-2 2-groups of order 2n with almost maximal
class where n > 4 , then d(G) ≤ 3.

Proof.
Since G is almost maximal class, |G/G′| = 23 and G′ ≤ Φ(G) . Then
|G : Φ(G)| ≤ 23. So d(G) = 2 or 3.

Remark

We classify the group according to d(G) = 2 or 3.
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Proof of the Main Result

Lemma

Let G be a minimal non-core-2 2-groups of order 2n with almost maximal
class where n ≥ 7 , d(G) = 2. Then G′ is cyclic.

Outline of the proof.
Firstly, we claim that
when n = 6, if d(G′) ≥ 2(it means that G′ is not cyclic) and d(G) ≥ 2,
then G is not a core-2 2-group.

Secondly, assume G′ is not cyclic. Since G is a minimal non-core-2
2-group, then Ḡ = G/G5 is core-2 2-group with order 26 such that
d(Ḡ′) ≥ 2, |Ḡ/Φ(Ḡ)| = 4.
This is a contradiction with above claiming result.
So G′ is cyclic.
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This is a contradiction with above claiming result.

So G′ is cyclic.

maxues@cnu.edu.cn (CNU) CMNC2AC June 30, 2014 13 / 31



Proof of the Main Result

Lemma

Let G be a minimal non-core-2 2-groups of order 2n with almost maximal
class where n ≥ 7 , d(G) = 2. Then G′ is cyclic.

Outline of the proof.
Firstly, we claim that
when n = 6, if d(G′) ≥ 2(it means that G′ is not cyclic) and d(G) ≥ 2,
then G is not a core-2 2-group.
Secondly, assume G′ is not cyclic. Since G is a minimal non-core-2
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Proof of the Main Result

Lemma

Let G be a minimal non-core-2 2-groups of order 2n where n ≥ 5 ,
d(G) = 2 and G′ is cyclic. Then G must be one of following groups.
(I) 〈a, b, c, d|c2n−3

= d2 = b2 = [d, c] = [b, d] = 1, cb = c−1, ba = bc, da =
dc2n−4

, ca = c−1+2n−4
, a2 = dc2n−5〉, (n ≥ 6);

(II) 〈a, b, c, d|c2n−3
= d2 = [d, c] = [b, d] = 1, cb = c−1+2n−4

, b2 = d, ba =
bc, da = dc2n−4

, ca = c, a2 = c2n−5〉, (n ≥ 6);
(III) 〈a, b, c, d|c2n−3

= d2 = a2 = [d, c] = [b, d] = 1, cb = c−1+2n−4
, b2 =

d, ba = bc, da = dc2n−4
, ca = c−1〉, (n ≥ 5).
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Proof of the Main Result

Outline of the Proof.
Since G is a minimal non-core-2 2-group, we can take subgroup H of
order 4 and HG = 1.

Set G′ = 〈c0〉 and O(c0) = 2n−3. Thus H
⋂
G′ = 1, M = G′ oH lG.

For M is a core-2 2-group, take L = {1, d}CM and L ≤ H.
Then 〈c0〉 × LlM .
Thus H = 〈L, b〉, G = 〈M,a〉 where b2 ∈ L.
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Proof of the Main Result

∀x ∈ G, since [d, x] ≡ 1 (mod G′), then dx = d · cj0, 0 ≤ j < 2n−3.

For O(d) = O(dx) = O(dcj0) = 2 and n ≥ 5, then

2n−4|j and [d, x] ≡ 1 (mod G3 = 〈c2
0〉).

Thus d ∈ Φ(G),Φ(G) = 〈c0, d〉, and G = 〈a, b〉.
Then

G′ = 〈c0〉 = 〈[b, a], G3〉, [b, a] = cδ00 , (δ0, 2) = 1.

maxues@cnu.edu.cn (CNU) CMNC2AC June 30, 2014 16 / 31



Proof of the Main Result

∀x ∈ G, since [d, x] ≡ 1 (mod G′), then dx = d · cj0, 0 ≤ j < 2n−3.

For O(d) = O(dx) = O(dcj0) = 2 and n ≥ 5, then

2n−4|j and [d, x] ≡ 1 (mod G3 = 〈c2
0〉).

Thus d ∈ Φ(G),Φ(G) = 〈c0, d〉, and G = 〈a, b〉.

Then
G′ = 〈c0〉 = 〈[b, a], G3〉, [b, a] = cδ00 , (δ0, 2) = 1.

maxues@cnu.edu.cn (CNU) CMNC2AC June 30, 2014 16 / 31



Proof of the Main Result

∀x ∈ G, since [d, x] ≡ 1 (mod G′), then dx = d · cj0, 0 ≤ j < 2n−3.

For O(d) = O(dx) = O(dcj0) = 2 and n ≥ 5, then

2n−4|j and [d, x] ≡ 1 (mod G3 = 〈c2
0〉).

Thus d ∈ Φ(G),Φ(G) = 〈c0, d〉, and G = 〈a, b〉.
Then

G′ = 〈c0〉 = 〈[b, a], G3〉, [b, a] = cδ00 , (δ0, 2) = 1.

maxues@cnu.edu.cn (CNU) CMNC2AC June 30, 2014 16 / 31



Proof of the Main Result

Since HG = 1, {1, d} 6= {1, d}a ⊂ Ω1(Φ(G)) = {1, d, dc2n−4

0 , c2n−4

0 }.
But da ≡ d (mod G′ = 〈c0〉), da = dc2n−4

0 and a2 ∈ Φ(G).

Thus

ca0 = cδ30 , a
2 = dδ4cδ50 , δ3 ∈ {±1 + 2n−4,±1}, δ4 ∈ {0, 1}, 0 ≤ δ5 < 2n−4.
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Proof of the Main Result

Case 1. n ≥ 6.
If H CM , thenM = 〈c0〉 ×H, and

O(b) = O(ba) = O(bcδ00 ) = o(cδ00 ) = o(c0) ≥ 8 6= o(b) ≤ 4.

A contradiction.
Thus [c0, b] = cδ1−1

0 6= 1.
Since b2 ∈ L, δ1 ∈ {±1 + 2n−4,−1}. b2 = dδ2 , δ2 ∈ {0, 1}.

G = 〈a, b, c0, d|c2n−3

0 = d2 = [d, c0] = [b, d] = 1, cb0 = cδ10 , b
2 = dδ2 , ba = bcδ00 ,

da = dc2n−4

0 , ca0 = cδ30 , a
2 = dδ4cδ50 〉.
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Proof of the Main Result

Taking c = cδ00 , then

G = 〈a, b, c, d|c2n−3
= d2 = [d, c] = [b, d] = 1, cb = cδ1 , b2 = dδ2 ,

ba = bc, da = dc2n−4
, ca = cδ3 , a2 = dδ4cδ5〉.
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Proof of the Main Result

Since G/G′ ∼= Z4 × Z2,

δ2
2 + δ2

4 6= 0. (1)

Since

(a2)a = (dδ4cδ5)a = (dc2n−4
)δ4cδ3·δ5 = dδ4c2n−4·δ4+δ3·δ5

= a2 = dδ4cδ5

,

2n−4δ4 + (δ3 − 1)δ5 ≡ 0 (mod 2n−3). (2)
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Proof of the Main Result

Since

ba
2

= b(d
δ4cδ5 ) = bc

δ5
= b[b, cδ5 ] = bc(1−δ1)δ5

= (ba)a = (bc)a = bcδ3+1,

δ3 + 1 ≡ (1− δ1)δ5 (mod 2n−3). (3)

Since

(b2)a = (ba)2 = (bc)2 = b2cbc = b2cδ1+1 = dδ2cδ1+1

= (dδ2)a = (da)δ2 = dδ2c2n−4δ2 ,

2n−4δ2 ≡ δ1 + 1 (mod 2n−3) (4)

.
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Proof of the Main Result

By solving equations,
δ3 = −1 + 2n−4, δ5 = 2n−5 + 2n−4δ′5. Replacing adδ

′
5 with a, we can get

δ5 = 2n−5 and G is type(I).

δ3 = 1,δ5 = 1 + 2n−5 + 2n−4δ′5. Replacing adδ
′
5 with a, we can get

δ5 = 2n−5 and G is type (II).
δ3 = −1 + 2n−4 or −1, δ5 = 2n−4δ′5, δ3 = −1. ^ adδ

′
5 . Replacing a with

δ′5, we can get δ5 = 0 and G is type (III).
Other cases do not occur or same as above type.
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Proof of the Main Result

Case 2. n=5.

G = 〈a, b, c, d|c4 = d2 = [d, c] = [b, d] = 1, cb = cδ1 , b2 = dδ2 , ba = bc, da = dc2,

ca = cδ3 , a2 = dδ4cδ5〉, δ1, δ3 ∈ {±1}, δ2, δ4 ∈ {0, 1}, δ5 ∈ {0,±1, 2}.

As above discussion, we can get a type (III) group.

We can check the three type group are not isomorphic and minimal
non-core-2 2-group with almost maximal class.
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Proof of the Main Result

Lemma

Let G be a minimal non-core-2 2-groups of order 2n where n ≥ 5 ,
d(G) = 2 and G′ is not cyclic. Then G must be one of following groups.
(IV)〈a, b, c, d|c2 = d2 = b2 = a4 = [d, c] = [b, d] = [b, c] = [d, a] =
1, [b, a] = c, [c, a] = d〉(n = 5); or
(V)〈a, b, c, d|c2 = d2 = b2 = [d, c] = [b, d] = [b, c] = [d, a] = 1, a4 =
d, [b, a] = c, [c, a] = d〉(n = 5);

Proof. By above lemma, since G′ is not cyclic, then 4 < n ≤ 6.
Case 1. n=5.
Since G′ is not cyclic, G′ ∼= Z2 × Z2,G/G′ ∼= Z4 × Z2.
Without loss generality, we can assumeG = 〈a, b〉, and a4, b2 ∈ G′, [a, b] =
c ∈ G′ −G3, G3 = 〈d〉.
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Proof of the Main Result

Then

G = 〈a, b, c, d|c2 = d2 = [d, c] = [b, d] = [d, a] = 1, [b, a] = c,

[c, a] = dδ1 , [c, b] = dδ2 , a4 = cδ3dδ4 , b2 = cδ5dδ6〉

where δ1, δ2, δ3, δ4, δ5, δ6 ∈ {0, 1}.

Since G is almost maximal class,

[G2, G] = 〈[c, a], [c, b], G3〉 ⇒ δ1 + δ2 ≥ 1
(b2)a = (ba)2 ⇒ dδ1δ5 = dδ2

(a4)a = a4 ⇒ dδ1δ3 = 1
(b2)b = b2 ⇒ dδ2δ5 = 1

(a4)b = (ab)4 ⇒ dδ2δ3 = 1.

Then δ1 = 1, δ2 = δ3 = δ5 = 0, δ4, δ6 ∈ {0, 1}.
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Proof of the Main Result

(i) If δ4 = 0, δ6 = 0 ,then G is type (V);
(ii)If δ4 = 0, δ6 = 1 , replacing ba2 with b, then G is type(V);
(iii)If δ4 = 1, δ6 = 0, then G is type (IV);
(iv)If δ4 = 1 and δ6 = 1, this case G is core-2 2-group.
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Proof of the Main Result

Case 2. n=6. It is similarity to n = 5.
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Proof of the Main Result

Lemma

Let G be a minimal non-core-2 2-groups of order 2n where n ≥ 5 ,
d(G) = 3. Then G must be
〈c, b, a|c2n−2

= b2 = a2 = 1, cb = c−1, ca = c−1+2n−3
, [b, a] = 1〉, (n ≥ 5).

Proof.
Since n ≥ 5 and d(G) = 3, by[7], ∃K l G such that Ki = Gi, where
i = 2, 3, · · · , n− 2.

For G is a maximal class 2-group, then ∃L =< c > lK and L char K.
Assume H ≤ G such that |H| = 4 and HG = 1. Then H

⋂
L =

1.(Otherwise 1 6= H ∩ L Char LCG. This is a contradiction.)
It means G = 〈H,L〉 = LoH.
By G/L ∼= H,Φ(G) < L, H ∼= Z2 × Z2. If |CG(L)L| = 2, then 1 <
CG(L) ∩H < Z(G). This is contradict to HG = 1.So CG(L) = L,H ∼=
G/L ∼= Ω1(Aut(L)) ∼= Z2 × Z2.

maxues@cnu.edu.cn (CNU) CMNC2AC June 30, 2014 28 / 31



Proof of the Main Result

Lemma

Let G be a minimal non-core-2 2-groups of order 2n where n ≥ 5 ,
d(G) = 3. Then G must be
〈c, b, a|c2n−2

= b2 = a2 = 1, cb = c−1, ca = c−1+2n−3
, [b, a] = 1〉, (n ≥ 5).

Proof.
Since n ≥ 5 and d(G) = 3, by[7], ∃K l G such that Ki = Gi, where
i = 2, 3, · · · , n− 2.
For G is a maximal class 2-group, then ∃L =< c > lK and L char K.

Assume H ≤ G such that |H| = 4 and HG = 1. Then H
⋂
L =

1.(Otherwise 1 6= H ∩ L Char LCG. This is a contradiction.)
It means G = 〈H,L〉 = LoH.
By G/L ∼= H,Φ(G) < L, H ∼= Z2 × Z2. If |CG(L)L| = 2, then 1 <
CG(L) ∩H < Z(G). This is contradict to HG = 1.So CG(L) = L,H ∼=
G/L ∼= Ω1(Aut(L)) ∼= Z2 × Z2.

maxues@cnu.edu.cn (CNU) CMNC2AC June 30, 2014 28 / 31



Proof of the Main Result

Lemma

Let G be a minimal non-core-2 2-groups of order 2n where n ≥ 5 ,
d(G) = 3. Then G must be
〈c, b, a|c2n−2

= b2 = a2 = 1, cb = c−1, ca = c−1+2n−3
, [b, a] = 1〉, (n ≥ 5).

Proof.
Since n ≥ 5 and d(G) = 3, by[7], ∃K l G such that Ki = Gi, where
i = 2, 3, · · · , n− 2.
For G is a maximal class 2-group, then ∃L =< c > lK and L char K.
Assume H ≤ G such that |H| = 4 and HG = 1. Then H

⋂
L =

1.(Otherwise 1 6= H ∩ L Char LCG. This is a contradiction.)

It means G = 〈H,L〉 = LoH.
By G/L ∼= H,Φ(G) < L, H ∼= Z2 × Z2. If |CG(L)L| = 2, then 1 <
CG(L) ∩H < Z(G). This is contradict to HG = 1.So CG(L) = L,H ∼=
G/L ∼= Ω1(Aut(L)) ∼= Z2 × Z2.

maxues@cnu.edu.cn (CNU) CMNC2AC June 30, 2014 28 / 31



Proof of the Main Result

Lemma

Let G be a minimal non-core-2 2-groups of order 2n where n ≥ 5 ,
d(G) = 3. Then G must be
〈c, b, a|c2n−2

= b2 = a2 = 1, cb = c−1, ca = c−1+2n−3
, [b, a] = 1〉, (n ≥ 5).

Proof.
Since n ≥ 5 and d(G) = 3, by[7], ∃K l G such that Ki = Gi, where
i = 2, 3, · · · , n− 2.
For G is a maximal class 2-group, then ∃L =< c > lK and L char K.
Assume H ≤ G such that |H| = 4 and HG = 1. Then H

⋂
L =

1.(Otherwise 1 6= H ∩ L Char LCG. This is a contradiction.)
It means G = 〈H,L〉 = LoH.

By G/L ∼= H,Φ(G) < L, H ∼= Z2 × Z2. If |CG(L)L| = 2, then 1 <
CG(L) ∩H < Z(G). This is contradict to HG = 1.So CG(L) = L,H ∼=
G/L ∼= Ω1(Aut(L)) ∼= Z2 × Z2.

maxues@cnu.edu.cn (CNU) CMNC2AC June 30, 2014 28 / 31



Proof of the Main Result

Lemma

Let G be a minimal non-core-2 2-groups of order 2n where n ≥ 5 ,
d(G) = 3. Then G must be
〈c, b, a|c2n−2

= b2 = a2 = 1, cb = c−1, ca = c−1+2n−3
, [b, a] = 1〉, (n ≥ 5).

Proof.
Since n ≥ 5 and d(G) = 3, by[7], ∃K l G such that Ki = Gi, where
i = 2, 3, · · · , n− 2.
For G is a maximal class 2-group, then ∃L =< c > lK and L char K.
Assume H ≤ G such that |H| = 4 and HG = 1. Then H

⋂
L =

1.(Otherwise 1 6= H ∩ L Char LCG. This is a contradiction.)
It means G = 〈H,L〉 = LoH.
By G/L ∼= H,Φ(G) < L, H ∼= Z2 × Z2. If |CG(L)L| = 2, then 1 <
CG(L) ∩H < Z(G). This is contradict to HG = 1.

So CG(L) = L,H ∼=
G/L ∼= Ω1(Aut(L)) ∼= Z2 × Z2.

maxues@cnu.edu.cn (CNU) CMNC2AC June 30, 2014 28 / 31



Proof of the Main Result

Lemma

Let G be a minimal non-core-2 2-groups of order 2n where n ≥ 5 ,
d(G) = 3. Then G must be
〈c, b, a|c2n−2

= b2 = a2 = 1, cb = c−1, ca = c−1+2n−3
, [b, a] = 1〉, (n ≥ 5).

Proof.
Since n ≥ 5 and d(G) = 3, by[7], ∃K l G such that Ki = Gi, where
i = 2, 3, · · · , n− 2.
For G is a maximal class 2-group, then ∃L =< c > lK and L char K.
Assume H ≤ G such that |H| = 4 and HG = 1. Then H

⋂
L =

1.(Otherwise 1 6= H ∩ L Char LCG. This is a contradiction.)
It means G = 〈H,L〉 = LoH.
By G/L ∼= H,Φ(G) < L, H ∼= Z2 × Z2. If |CG(L)L| = 2, then 1 <
CG(L) ∩H < Z(G). This is contradict to HG = 1.So CG(L) = L,H ∼=
G/L ∼= Ω1(Aut(L)) ∼= Z2 × Z2.

maxues@cnu.edu.cn (CNU) CMNC2AC June 30, 2014 28 / 31



Proof of the Main Result

Without loss generality, we can assume H = 〈b, a〉

G = 〈a, b, c|c2n−2
= b2 = a2 = 1, cb = c−1, ca = c−1+2n−3

, [b, a] = 1〉.

We can check G is an inner core-2 2-group and G/N is a core-2 2-group
where N ≤ Z(G) and |N | = 2.
Then G is a minimal non-core-2 2-group.
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Proof of the Main Result

By above lemma, we can get the main result.
Furthermore, we can also get all the inner core-2 2-groups.
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Proof of the Main Result

Thank you very much!
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