On groups all of whose undirected Cayley graphs of bounded valency are integral

István Estélyi istvan.estelyi@upr.si

Joint work with István Kovács

For a group *G* and subset $S \subseteq G$, $1 \notin S$, the Cayley digraph Cay(*G*, *S*) is the digraph whose vertex set is *G* and (*x*, *y*) is an arc if and only if $yx^{-1} \in S$.

We regard Cay(G, S) as an undirected graph when $S = S^{-1}$, and use the term Cayley graph.

The spectrum of a matrix is the set of its eigenvalues.

The spectrum of a graph is the spectrum of its adjacency matrix.

Definition

A group G is called Cayley integral if every undirected Cayley graph Cay(G, S) of G has integral spectrum.

= nar

Finite abelian Cayley integral groups have already been determined:

Theorem (Klotz, Sander 2010)

If G is an abelian Cayley integral group, then G is isomorphic to one of the following:

 $\mathbb{Z}_2^n, \mathbb{Z}_3^n, \mathbb{Z}_4^n, \mathbb{Z}_2^m \times \mathbb{Z}_3^n, \mathbb{Z}_2^m \times \mathbb{Z}_4^n, \ (m \ge 1, n \ge 1)$

WHAT ARE THE FINITE NON-ABELIAN CAYLEY INTEGRAL GROUPS?

Theorem (Abdollahi and Jazaeri 2014; Ahmady et al. 2014+)

The only finite non-abelian Cayley integral groups are S_3 , Dic₁₂ and $Q_8 \times E_{2^n}$, where $n \ge 0$.

HOW TO GENERALIZE CAYLEY INTEGRAL GROUPS FURTHER?

Let us study groups *G* for which we require Cay(G, S) to be integral only when |S| is bounded by a constant. Formally, for $k \in \mathbb{N}$, we set

Definition

 $\mathcal{G}_k = \{ G : \operatorname{Cay}(G, S) \text{ is integral whenever } |S| \le k \}.$

Theorem (E., Kovács, 2014+)

Every class G_k consists of the Cayley integral groups if $k \ge 6$. Furthermore, G_4 and G_5 are equal, and consist of the following groups:

(1) the Cayley integral groups,

(2) the generalized dicyclic groups $Dic(E_{3^n} \times \mathbb{Z}_6)$, where $n \ge 1$.

Let *A* be an abelian group with a unique involution $x \in A$.

Definition

The generalized dicyclic group over *A* is $Dic(A) = \langle A, y \rangle$, where $y^2 = x$ and $a^y = a^{-1}$ for all $a \in A$.

One can see that $A \triangleleft Dic(A) = A\langle y \rangle$ and |Dic(A)| = 2|A|.

Some important special cases:

- $A = \mathbb{Z}_n$ gives rise to the dicyclic group Dic_{2n} .
- $A = \mathbb{Z}_{2^n}$ gives rise to the generalized quaternion group $Q_{2^{n+1}}$.

In particular if $A = \mathbb{Z}_4 = \langle i \rangle$, then we get $Q_8 = \langle i, j \rangle$, the quaternion group.

Lemma

The following hold for every $G \in \mathcal{G}_k$ if $k \ge 2$.

- (i) For every $x \in G$, the order of x is in $\{1, 2, 3, 4, 6\}$.
- (ii) For every subgroup $H \leq G, H \in \mathcal{G}_k$.

(iii) For every $N \trianglelefteq G$ such that $|N| \mid k, G/N \in \mathcal{G}_I$, where I = k/|N|.

Proof:

- (i) Take $S = \{g, g^{-1}\}$, where $g \in G$ is not an involution or let S consist of two involtuions. Then components of Cay(G, S) are cycles.
- (ii) Is clear.
- (iii) Goes by inflating Cayley graphs of *G*/*N* using Kronecker product of (adjacency) matrices.

Lemma

Let $G \in \mathcal{G}_k$, and $N \trianglelefteq G$, N is abelian and |N| is odd. Then $G/N \in \mathcal{G}_k$.

Unlike the Cayley integral groups, the class \mathcal{G}_k is generally not closed under taking homomorphic images:

Consider for example $G = \mathbb{Z}_4 \rtimes \mathbb{Z}_4 = \langle a \rangle \rtimes \langle b \rangle$, where $a^b = a^{-1}$. Although *G* is in \mathcal{G}_2 , the factor $G/\langle b^2 \rangle \cong D_8$ is not.

Spectrum of graphs with a semiregular group

Let Γ be a graph, and let $H \leq \operatorname{Aut} \Gamma$ an abelian semiregular group of automorphisms with *m* orbits on the vertex set. Fix *m* verices v_1, \ldots, v_m , a complete set of representatives of *H*-orbits.

Definition

The symbol of Γ relative to *H* and the *m*-tuple (v_1, \ldots, v_m) is the $m \times m$ array

$$\mathbf{S} = (S_{ij})_{i,j \in \{1,\dots,m\}}, \text{ where } S_{ij} = \{x \in H : v_i \sim v_j^x \text{ in } \Gamma\}$$

Definition

For an irreducible character χ of H let $\chi(\mathbf{S})$ be the $m \times m$ complex matrix defined by

$$(\chi(\mathbf{S}))_{ij} = \begin{cases} \sum_{s \in S_{ij}} \chi(s) & \text{if } S_{ij} \neq \emptyset \\ 0 & \text{otherwise,} \end{cases} i, j \in \{1, \dots, m\}.$$

AM Univerza na Primorsken

Theorem (Kovács, Marušič, Malnič, Miklavič, 2014+)

The spectrum of Γ is the union of eigenvalues of $\chi(\mathbf{S})$, where χ runs over the set of all irreducible characters of *H*.

Using this theorem we have proved:

Lemma

Let $G \in \mathcal{G}_k$, and $N \trianglelefteq G$, N is abelian and |N| is odd. Then $G/N \in \mathcal{G}_k$.

Lemma

The group $Dic(E_{3^n} \times \mathbb{Z}_6)$ is in \mathcal{G}_5 for every $n \ge 0$.

Proposition

Every p-group in \mathcal{G}_k is Cayley integral if $k \ge 4$. Namely, they are one of the following: E_{3^m} , $E_{2^n} \times \mathbb{Z}_4^m$, $Q_8 \times E_{2^n}$, where $m, n \ge 0$.

In order to prove this first we show that the minimal non-abelian subgroup of such a group can only be Q_8 . Then we use the following theorem:

Theorem (Janko, 2007)

If G is a 2-group whose minimal nonabelian subgroups are isomorphic to Q_8 , then $G \cong Q_{2^m} \times E_{2^n}$, where $m \ge 3, n \ge 0$.

Since every nilpotent group is the direct product of its Sylow subgroups, we have obtained the following corollary:

Corollary

Every nilpotent group in \mathcal{G}_k is Cayley integral if $k \ge 4$.

A finite group G is said to be minimal non-abelian if it is non-abelian, but all proper subgroups of G are abelian.

Theorem (Rédei, 1947)

Let G be a minimal non-abelian p-group. Then G is one of the following: (i) Q_8 ; (ii) $\langle a, b | a^{p^m} = b^{p^n} = 1, a^b = a^{1+p^{m-1}} \rangle$, where $m \ge 2$ (metacyclic); (iii) $\langle a, b, c | a^{p^m} = b^{p^n} = c^p = 1, [a, b] = c, [c, a] = [c, b] = 1 \rangle$, where

 $m + n \ge 3$ if p = 2 (non-metacyclic).

Corollary

The minimal non-abelian groups of exponent at most 4 are the following groups:

(i)
$$Q_8$$
;
(ii) $D_8 = \langle a, b \mid a^4 = b^2 = 1, a^b = a^{-1} \rangle$,
 $H_2 = \langle a, b \mid a^4 = b^4 = 1, a^b = a^{-1} \rangle$ (metacyclic);
(iii) $H_{16} = \langle a, b, c \mid a^4 = b^2 = c^2 = 1, [a, b] = c, [c, a] = [c, b] = 1 \rangle$,
 $H_{32} = \langle a, b, c \mid a^4 = b^4 = c^2 = 1, [a, b] = c, [c, a] = [c, b] = 1 \rangle$,
 $H_{27} = \langle a, b, c \mid a^3 = b^3 = c^3 = 1, [a, b] = c, [c, a] = [c, b] = 1 \rangle$
(non-metacyclic).

IAM Univerza na Primorskem Inštitut Andrej Marušič

Non-niloptent groups in $\mathcal{G}_k, \ k \geq 4$

Proposition

Suppose that $G \in \mathcal{G}_k$, $k \ge 4$, and G is not nilpotent. Then $G \cong S_3$ or $Dic(E_{3^n} \times \mathbb{Z}_6)$ for some $n \ge 0$.

In order to prove this we used the following lemma:

Lemma

Suppose that $G \in \mathcal{G}_k$, $k \ge 4$, and $3 \mid |G|$. Then G has a normal Sylow 3-subgroup.

Let $G \in \mathcal{G}_k, \ k \geq 4$.

If G is nilpotent, then G is Cayley integral by

Corollary

Every nilpotent group in \mathcal{G}_k is Cayley integral if $k \ge 4$.

• If G is not nilpotent, then we apply an earlier

Proposition

Suppose that $G \in \mathcal{G}_k$, $k \ge 4$, and G is not nilpotent. Then $G \cong S_3$ or $Dic(E_{3^n} \times \mathbb{Z}_6)$ for some $n \ge 0$.

As seen earlier, these groups are in \mathcal{G}_5 . However, they are not in \mathcal{G}_k , $k \ge 6$, except for S_3 and $Dic(\mathbb{Z}_6) = Dic_{12}$.

This class of groups may even be too wide for a "nice" characterization, since

- For example, all 3-groups of exponent 3 are in \mathcal{G}_3 .
- For 2-groups in \mathcal{G}_3 we have proved the following proposition:

Proposition

Let G be a non-abelian 2-group of exponent 4. Then $G \in \mathcal{G}_3$ if and only if every minimal non-abelian subgroup of G is isomorphic to Q_8 , H_2 or H_{32} .

W. Klotz, T. Sander,

Integral Cayley graphs over abelian groups *EJC* (2012).

- A. Abdollahi, M. Jazaeri,

Groups all of whose undirected Cayley graphs are integral *Europ. J. Combin.* **38** (2014), 102–109.

A. Ahmady, J. P. Bell, B. Mohar, Integral Cayley graphs and groups, preprint arXiv:1209.5126v1 [math.CO] 2013.

I. Estélyi, I. Kovács,

On groups all of whose undirected Cayley graphs of bounded valency are integral,

preprint arXiv:1403.7602 [math.GR] 2014.

