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Setting

For a group G and subset S ⊆ G,1 /∈ S, the Cayley digraph Cay(G,S) is the
digraph whose vertex set is G and (x , y) is an arc if and only if yx−1 ∈ S.

We regard Cay(G,S) as an undirected graph when S = S−1, and use the
term Cayley graph.

The spectrum of a matrix is the set of its eigenvalues.

The spectrum of a graph is the spectrum of its adjacency matrix.

Definition
A group G is called Cayley integral if every undirected Cayley graph
Cay(G,S) of G has integral spectrum.
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Motivation

Finite abelian Cayley integral groups have already been determined:

Theorem (Klotz, Sander 2010)
If G is an abelian Cayley integral group, then G is isomorphic to one of the
following:

Zn
2, Zn

3, Zn
4, Zm

2 × Zn
3, Zm

2 × Zn
4, (m ≥ 1,n ≥ 1)

WHAT ARE THE FINITE NON-ABELIAN CAYLEY INTEGRAL GROUPS?

Theorem (Abdollahi and Jazaeri 2014; Ahmady et al. 2014+)
The only finite non-abelian Cayley integral groups are S3, Dic12 and Q8 × E2n ,
where n ≥ 0.
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The main result

HOW TO GENERALIZE CAYLEY INTEGRAL GROUPS FURTHER?

Let us study groups G for which we require Cay(G,S) to be integral only when
|S| is bounded by a constant. Formally, for k ∈ N, we set

Definition

Gk =
{

G : Cay(G,S) is integral whenever |S| ≤ k
}
.

Theorem (E., Kovács, 2014+)
Every class Gk consists of the Cayley integral groups if k ≥ 6. Furthermore,
G4 and G5 are equal, and consist of the following groups:
(1) the Cayley integral groups,
(2) the generalized dicyclic groups Dic(E3n × Z6), where n ≥ 1.
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Generalized dicyclic groups

Let A be an abelian group with a unique involution x ∈ A.

Definition
The generalized dicyclic group over A is Dic(A) = 〈A, y〉, where y2 = x and
ay = a−1 for all a ∈ A.

One can see that A / Dic(A) = A〈y〉 and |Dic(A)| = 2|A|.

Some important special cases:
A = Zn gives rise to the dicyclic group Dic2n.
A = Z2n gives rise to the generalized quaternion group Q2n+1 .

In particular if A = Z4 = 〈i〉, then we get Q8 = 〈i , j〉, the quaternion group.
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Basic properties of Gk

Lemma

The following hold for every G ∈ Gk if k ≥ 2.
(i) For every x ∈ G, the order of x is in {1,2,3,4,6}.
(ii) For every subgroup H ≤ G, H ∈ Gk .
(iii) For every N E G such that |N| | k , G/N ∈ Gl , where l = k/|N|.

Proof:
(i) Take S = {g,g−1}, where g ∈ G is not an involution or let S consist of

two involtuions. Then components of Cay(G,S) are cycles.
(ii) Is clear.
(iii) Goes by inflating Cayley graphs of G/N using Kronecker product of

(adjacency) matrices.
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Basic properties of groups in Gk

Lemma

Let G ∈ Gk , and N E G, N is abelian and |N| is odd. Then G/N ∈ Gk .

Unlike the Cayley integral groups, the class Gk is generally not closed under
taking homomorphic images:

Consider for example G = Z4 o Z4 = 〈a〉o 〈b〉, where ab = a−1. Although G
is in G2, the factor G/〈b2〉 ∼= D8 is not.
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Spectrum of graphs with a semiregular group

Let Γ be a graph, and let H ≤ Aut Γ an abelian semiregular group of
automorphisms with m orbits on the vertex set. Fix m verices v1, . . . , vm, a
complete set of representatives of H-orbits.

Definition
The symbol of Γ relative to H and the m-tuple (v1, . . . , vm) is the m ×m array

S = (Sij )i,j∈{1,...,m}, where Sij = {x ∈ H : vi ∼ vx
j in Γ}.

Definition
For an irreducible character χ of H let χ(S) be the m ×m complex matrix
defined by

(χ(S))ij =

{∑
s∈Sij

χ(s) if Sij 6= ∅
0 otherwise,

i , j ∈ {1, . . . ,m}.
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Spectrum of graphs with a semiregular group

Theorem (Kovács, Marušič, Malnič, Miklavič, 2014+)
The spectrum of Γ is the union of eigenvalues of χ(S), where χ runs over the
set of all irreducible characters of H.

Using this theorem we have proved:

Lemma

Let G ∈ Gk , and N E G, N is abelian and |N| is odd. Then G/N ∈ Gk .

Lemma

The group Dic(E3n × Z6) is in G5 for every n ≥ 0.

István Estélyi (UL,UP IAM) Rogla 02.07.2014 9 / 16



Nilpotent groups in Gk , k ≥ 4

Proposition

Every p-group in Gk is Cayley integral if k ≥ 4. Namely, they are one of the
following: E3m , E2n × Zm

4 , Q8 × E2n , where m,n ≥ 0.

In order to prove this first we show that the minimal non-abelian subgroup of
such a group can only be Q8.Then we use the following theorem:

Theorem (Janko, 2007)
If G is a 2-group whose minimal nonabelian subgroups are isomorphic to Q8,
then G ∼= Q2m × E2n , where m ≥ 3,n ≥ 0.

Since every nilpotent group is the direct product of its Sylow subgroups, we
have obtained the following corollary:

Corollary

Every nilpotent group in Gk is Cayley integral if k ≥ 4.

István Estélyi (UL,UP IAM) Rogla 02.07.2014 10 / 16



Minimal non-abelian p-groups in Gk , k ≥ 4

A finite group G is said to be minimal non-abelian if it is non-abelian, but all
proper subgroups of G are abelian.

Theorem (Rédei, 1947)
Let G be a minimal non-abelian p-group. Then G is one of the following:

(i) Q8;

(ii)
〈
a,b |apm

= bpn
= 1,ab = a1+pm−1〉

, where m ≥ 2 (metacyclic);

(iii)
〈
a,b, c |apm

= bpn
= cp = 1, [a,b] = c, [c,a] = [c,b] = 1

〉
, where

m + n ≥ 3 if p = 2 (non-metacyclic).

István Estélyi (UL,UP IAM) Rogla 02.07.2014 11 / 16



Minimal non-abelian p-groups in Gk , k ≥ 4

Corollary

The minimal non-abelian groups of exponent at most 4 are the following
groups:

(i) Q8;

(ii) D8 =
〈
a,b | a4 = b2 = 1,ab = a−1

〉
,

H2 =
〈
a,b | a4 = b4 = 1,ab = a−1

〉
(metacyclic);

(iii) H16 =
〈
a,b, c |a4 = b2 = c2 = 1, [a,b] = c, [c,a] = [c,b] = 1

〉
,

H32 =
〈
a,b, c |a4 = b4 = c2 = 1, [a,b] = c, [c,a] = [c,b] = 1

〉
,

H27 =
〈
a,b, c | a3 = b3 = c3 = 1, [a,b] = c, [c,a] = [c,b] = 1

〉
(non-metacyclic).
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Non-niloptent groups in Gk , k ≥ 4

Proposition

Suppose that G ∈ Gk , k ≥ 4, and G is not nilpotent. Then G ∼= S3 or
Dic(E3n × Z6) for some n ≥ 0.

In order to prove this we used the following lemma:

Lemma

Suppose that G ∈ Gk , k ≥ 4, and 3 | |G|. Then G has a normal Sylow
3-subgroup.
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Proof of the main theorem

Let G ∈ Gk , k ≥ 4.
If G is nilpotent, then G is Cayley integral by

Corollary

Every nilpotent group in Gk is Cayley integral if k ≥ 4.

If G is not nilpotent, then we apply an earlier

Proposition

Suppose that G ∈ Gk , k ≥ 4, and G is not nilpotent. Then G ∼= S3 or
Dic(E3n × Z6) for some n ≥ 0.

As seen earlier, these groups are in G5. However, they are not in Gk , k ≥ 6,
except for S3 and Dic(Z6) = Dic12.
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What about G3?

This class of groups may even be too wide for a "nice" characterization, since
For example, all 3-groups of exponent 3 are in G3.
For 2-groups in G3 we have proved the following proposition:

Proposition

Let G be a non-abelian 2-group of exponent 4. Then G ∈ G3 if and only if
every minimal non-abelian subgroup of G is isomorphic to Q8, H2 or H32.
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