Finite-dimensional irreducible modules for an even

 subalgebra of $U_{q}\left(\mathfrak{s l}_{2}\right)$
Alison Gordon Lynch

University of Wisconsin-Madison
gordon@math.wisc.edu

$$
\text { July 2, } 2014
$$

Introduction

Fix a field \mathbb{F} and fix $0 \neq q \in \mathbb{F}$ not a root of unity.
In this talk, we consider a subalgebra of the \mathbb{F}-algebra $U_{q}\left(\mathfrak{s l}_{2}\right)$.

The Lie algebra $\mathfrak{s l}_{2}$

The Lie algebra $\mathfrak{s l}_{2}$ consists of the 2×2 matrices over \mathbb{F} with trace 0 .

For $x, y \in \mathfrak{s l}_{2}$,

$$
[x, y]=x y-y x
$$

The Lie algebra $\mathfrak{s l}_{2}$

The Lie algebra $\mathfrak{s l}_{2}$ consists of the 2×2 matrices over \mathbb{F} with trace 0 .
For $x, y \in \mathfrak{s l}_{2}$,

$$
[x, y]=x y-y x
$$

$\mathfrak{s l}_{2}$ has a basis

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Observe that

$$
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h
$$

The algebras $U\left(\mathfrak{s l}_{2}\right)$ and $U_{q}\left(\mathfrak{s l}_{2}\right)$

The universal enveloping algebra $U\left(\mathfrak{s l}_{2}\right)$ is the associative algebra defined by generators e, f, h and relations

$$
h e-e h=2 e, \quad h f-f h=-2 f, \quad e f-f e=h .
$$

The algebras $U\left(\mathfrak{s l}_{2}\right)$ and $U_{q}\left(\mathfrak{s l}_{2}\right)$

The universal enveloping algebra $U\left(\mathfrak{s l}_{2}\right)$ is the associative algebra defined by generators e, f, h and relations

$$
h e-e h=2 e, \quad h f-f h=-2 f, \quad e f-f e=h .
$$

The quantum enveloping algebra $U_{q}\left(\mathfrak{s l}_{2}\right)$ is the associative algebra defined by generators e, f, k, k^{-1} and relations

$$
\begin{gathered}
k k^{-1}=k^{-1} k=1, \\
k e k^{-1}=q^{2} e, \quad k f k^{-1}=q^{-2} f, \\
e f-f e=\frac{k-k^{-1}}{q-q^{-1}}
\end{gathered}
$$

Equitable presentation for $U_{q}\left(\mathfrak{s l}_{2}\right)$

In 2006, Ito, Terwilliger, and Weng showed that $U_{q}\left(\mathfrak{s l}_{2}\right)$ has a presentation in generators $x, y^{ \pm 1}, z$ and relations

$$
\begin{aligned}
& y y^{-1}=y^{-1} y=1, \\
& \frac{q x y-q^{-1} y x}{q-q^{-1}}=1, \\
& \frac{q y z-q^{-1} z y}{q-q^{-1}}=1 \\
& \frac{q z x-q^{-1} x z}{q-q^{-1}}=1 .
\end{aligned}
$$

This presentation is called the equitable presentation for $U_{q}\left(\mathfrak{s l}_{2}\right)$.

Connections with $U_{q}\left(\mathfrak{s l}_{2}\right)$

$U_{q}\left(\mathfrak{s l}_{2}\right)$ and its equitable presentation have connections with:

- Q-polynomial distance-regular graphs (Worawannotai, 2012),
- Leonard pairs (Alnajjar, 2011),
- Tridiagonal pairs (Ito/Terwilliger, 2007),
- the q-Tetrahedron algebra (Ito/Terwilliger 2007, Funk-Neubauer 2009, Miki 2010),
- the universal Askey-Wilson algebra (Terwilliger, 2011).

A basis for $U_{q}\left(\mathfrak{s l}_{2}\right)$

Lemma (Terwilliger, 2011)

The following is a basis for the \mathbb{F}-vector space $U_{q}\left(\mathfrak{s l}_{2}\right)$:

$$
x^{r} y^{s} z^{t} \quad r, t \in \mathbb{N}, \quad s \in \mathbb{Z}
$$

The algebra \mathcal{A}

Define \mathcal{A} to be the \mathbb{F}-subspace of $U_{q}\left(\mathfrak{s l}_{2}\right)$ spanned by

$$
x^{r} y^{s} z^{t} \quad r, s, t \in \mathbb{N}, \quad r+s+t \text { even. }
$$

The algebra \mathcal{A}

Define \mathcal{A} to be the \mathbb{F}-subspace of $U_{q}\left(\mathfrak{s l}_{2}\right)$ spanned by

$$
x^{r} y^{s} z^{t} \quad r, s, t \in \mathbb{N}, \quad r+s+t \text { even. }
$$

Lemma (Bockting-Conrad and Terwilliger, 2013)

\mathcal{A} is a subalgebra of $U_{q}\left(\mathfrak{s l}_{2}\right)$.

The elements $\nu_{x}, \nu_{y}, \nu_{z}$

The relations from the equitable presentation for $U_{q}\left(\mathfrak{s l}_{2}\right)$ can be reformulated as:

$$
\begin{aligned}
& q(1-x y)=q^{-1}(1-y x), \\
& q(1-y z)=q^{-1}(1-z y), \\
& q(1-z x)=q^{-1}(1-x z) .
\end{aligned}
$$

The elements $\nu_{x}, \nu_{y}, \nu_{z}$

The relations from the equitable presentation for $U_{q}\left(\mathfrak{s l}_{2}\right)$ can be reformulated as:

$$
\begin{aligned}
& q(1-x y)=q^{-1}(1-y x), \\
& q(1-y z)=q^{-1}(1-z y), \\
& q(1-z x)=q^{-1}(1-x z) .
\end{aligned}
$$

We denote these elements $\nu_{x}, \nu_{y}, \nu_{z}$ respectively.
Observe that $\nu_{x}, \nu_{y}, \nu_{z} \in \mathcal{A}$.

Generators for \mathcal{A}

Proposition (Bockting-Conrad and Terwilliger, 2013)

The \mathbb{F}-algebra \mathcal{A} is generated by $\nu_{x}, \nu_{y}, \nu_{z}$.

Generators for \mathcal{A}

Proposition (Bockting-Conrad and Terwilliger, 2013)

The \mathbb{F}-algebra \mathcal{A} is generated by $\nu_{x}, \nu_{y}, \nu_{z}$.

In the same paper, Bockting-Conrad and Terwilliger posed the problem of finding a presentation for \mathcal{A} in generators $\nu_{x}, \nu_{y}, \nu_{z}$.

Relations involving $\nu_{x}, \nu_{y}, \nu_{z}$

Proposition

In $U_{q}\left(\mathfrak{s l}_{2}\right)$, the elements $\nu_{x}, \nu_{y}, \nu_{z}$ satisfy

$$
\begin{aligned}
& q^{3} \nu_{x}^{2} \nu_{y}-\left(q+q^{-1}\right) \nu_{x} \nu_{y} \nu_{x}+q^{-3} \nu_{y} \nu_{x}^{2}=\left(q^{2}-q^{-2}\right)\left(q-q^{-1}\right) \nu_{x}, \\
& q^{3} \nu_{y}^{2} \nu_{z}-\left(q+q^{-1}\right) \nu_{y} \nu_{z} \nu_{y}+q^{-3} \nu_{z} \nu_{y}^{2}=\left(q^{2}-q^{-2}\right)\left(q-q^{-1}\right) \nu_{y}, \\
& q^{3} \nu_{z}^{2} \nu_{x}-\left(q+q^{-1}\right) \nu_{z} \nu_{x} \nu_{z}+q^{-3} \nu_{x} \nu_{z}^{2}=\left(q^{2}-q^{-2}\right)\left(q-q^{-1}\right) \nu_{z},
\end{aligned}
$$

and

$$
\begin{aligned}
& q^{-3} \nu_{y}^{2} \nu_{x}-\left(q+q^{-1}\right) \nu_{y} \nu_{x} \nu_{y}+q^{3} \nu_{x} \nu_{y}^{2}=\left(q^{2}-q^{-2}\right)\left(q-q^{-1}\right) \nu_{y}, \\
& q^{-3} \nu_{z}^{2} \nu_{y}-\left(q+q^{-1}\right) \nu_{z} \nu_{y} \nu_{z}+q^{3} \nu_{y} \nu_{z}^{2}=\left(q^{2}-q^{-2}\right)\left(q-q^{-1}\right) \nu_{z}, \\
& q^{-3} \nu_{x}^{2} \nu_{z}-\left(q+q^{-1}\right) \nu_{x} \nu_{z} \nu_{x}+q^{3} \nu_{z} \nu_{x}^{2}=\left(q^{2}-q^{-2}\right)\left(q-q^{-1}\right) \nu_{x} .
\end{aligned}
$$

Relations involving $\nu_{x}, \nu_{y}, \nu_{z}$

Proposition (AGL)

In $U_{q}\left(\mathfrak{s l}_{2}\right)$, the elements $\nu_{x}, \nu_{y}, \nu_{z}$ satisfy

$$
\begin{aligned}
& \nu_{x} \frac{q \nu_{y} \nu_{z}-q^{-1} \nu_{z} \nu_{y}}{q-q^{-1}}=\nu_{x}-q^{-2} \nu_{y}-q^{2} \nu_{z}+\frac{q^{2} \nu_{y} \nu_{z}-q^{-2} \nu_{z} \nu_{y}}{q-q^{-1}} \\
& \frac{q \nu_{y} \nu_{z}-q^{-1} \nu_{z} \nu_{y}}{q-q^{-1}} \nu_{x}=\nu_{x}-q^{2} \nu_{y}-q^{-2} \nu_{z}+\frac{q^{2} \nu_{y} \nu_{z}-q^{-2} \nu_{z} \nu_{y}}{q-q^{-1}}
\end{aligned}
$$

and the relations obtained from these by cyclically permuting $\nu_{x} \rightarrow \nu_{y} \rightarrow \nu_{z} \rightarrow \nu_{x}$.

A presentation for \mathcal{A}

Theorem

The \mathbb{F}-algebra \mathcal{A} is isomorphic to the \mathbb{F}-algebra defined by generators $\nu_{x}, \nu_{y}, \nu_{z}$ and the 12 relations from the previous two propositions.

Representation theory of $U_{q}\left(\mathfrak{s l}_{2}\right)$

We now turn our attention to the representation theory of \mathcal{A}.
First, we recall the representation theory of $U_{q}\left(\mathfrak{s l}_{2}\right)$.

Representation theory of $U_{q}\left(\mathfrak{s l}_{2}\right)$

For $n \in \mathbb{N}, \varepsilon \in\{1,-1\}$, there exists an irreducible $U_{q}\left(\mathfrak{s l}_{2}\right)$-module $L(n, \varepsilon)$ of dimension n which has a basis $\left\{v_{i}\right\}_{i=0}^{n}$ such that

$$
\begin{array}{ll}
\varepsilon x \cdot v_{i} & =q^{2 i-n} v_{i}+\left(q^{n}-q^{2 i-2-n}\right) v_{i-1} \\
\varepsilon x \cdot v_{0} & =q^{-n} v_{0} \\
\varepsilon y \cdot v_{i} & =q^{n-2 i} v_{i} \quad(0 \leq i \leq n) \\
\varepsilon z \cdot v_{i} & =q^{2 i-n} v_{i}+\left(q^{-n}-q^{2 i+2-n}\right) v_{i+1} \quad(0 \leq i \leq n-1) \\
\varepsilon z . v_{n} & =q^{n} v_{n} .
\end{array}
$$

Moreover, every finite-dimensional irreducible $U_{q}\left(\mathfrak{s l}_{2}\right)$-module is isomorphic to some $L(n, \varepsilon)$.

Induced modules of \mathcal{A}

Observe that $L(n, \epsilon)$ has an induced \mathcal{A}-module structure.
For $n \in \mathbb{N}$, the \mathcal{A}-modules $L(n, 1)$ and $L(n,-1)$ are isomorphic.
We denote by $L(n)$ the common \mathcal{A}-module structure of $L(n, 1)$ and $L(n,-1)$.

Facts about $L(n)$

- $L(n)$ is irreducible as an \mathcal{A}-module.
- The actions of $\nu_{x}, \nu_{y}, \nu_{z}$ on $L(n)$ are nilpotent.
- The actions of x^{2}, y^{2}, z^{2} on $L(n)$ are diagonalizable.

Facts about finite-dimensional irreducible \mathcal{A}-modules

What about arbitrary finite-dimensional irreducible \mathcal{A}-modules?

Facts about finite-dimensional irreducible \mathcal{A}-modules

What about arbitrary finite-dimensional irreducible \mathcal{A}-modules?

Lemma (AGL)

Let V be a finite-dimensional irreducible \mathcal{A}-module. Then the actions of $\nu_{x}, \nu_{y}, \nu_{z}$ on V are nilpotent.

Facts about finite-dimensional irreducible \mathcal{A}-modules

What about arbitrary finite-dimensional irreducible \mathcal{A}-modules?

Lemma (AGL)

Let V be a finite-dimensional irreducible \mathcal{A}-module. Then the actions of $\nu_{x}, \nu_{y}, \nu_{z}$ on V are nilpotent.

Lemma (AGL)

Let V be a finite-dimensional irreducible \mathcal{A}-module. Then the actions of x^{2}, y^{2}, z^{2} on V are diagonalizable.

Representation theory of \mathcal{A}

Theorem (AGL)

Let V be a finite-dimensional irreducible \mathcal{A}-module. Then V is isomorphic to $L(n)$ for some $n \in \mathbb{N}$.

Future work

- Investigate the induced \mathcal{A}-modules from the $U_{q}\left(\mathfrak{s l}_{2}\right)$ modules related to tridiagonal pairs, the q-tetrahedron algebra, etc.
- Are there any naturally arising \mathcal{A}-modules other than those induced by an existing $U_{q}\left(\mathfrak{s l}_{2}\right)$-module?

Thank you!

