Billiard arrays and finite-dimensional irreducible $U_{q}\left(\mathfrak{S l}_{2}\right)$-modules

REPUBLIKA SLOVENIJA MINISTRSTVO ZA IZOBRAŽEVANJE, ZNANOST IN ŠPORT

Paul Terwilliger

University of Wisconsin-Madison

Overview

In this talk we will describe the notion of a Billiard Array.
This is a triangular array of one-dimensional subspaces of a finite-dimensional vector space, subject to several conditions that specify which sums are direct.

We will use Billiard Arrays to characterize the finite-dimensional irreducible $U_{q}\left(\mathfrak{s l}_{2}\right)$-modules, for q not a root of unity.

Motivation: $U_{q}\left(\mathfrak{s l}_{2}\right)$ and its modules

In order to motivate things, we recall the quantum algebra $U_{q}\left(\mathfrak{s l}_{2}\right)$.
We will use the equitable presentation.
Let \mathbb{F} denote a field. Fix a nonzero $q \in \mathbb{F}$ that is not a root of unity.

The definition of $U_{q}\left(\mathfrak{s l}_{2}\right)$

Definition

Let $U_{q}\left(\mathfrak{s l}_{2}\right)$ denote the associative \mathbb{F}-algebra with generators $x, y^{ \pm 1}, z$ and relations $y y^{-1}=y^{-1} y=1$,

$$
\begin{aligned}
& \frac{q x y-q^{-1} y x}{q-q^{-1}}=1, \\
& \frac{q y z-q^{-1} z y}{q-q^{-1}}=1, \\
& \frac{q z x-q^{-1} x z}{q-q^{-1}}=1 .
\end{aligned}
$$

The $x, y^{ \pm 1}, z$ are called the equitable generators for $U_{q}\left(\mathfrak{s l}_{2}\right)$.

The defining relations for $U_{q}\left(\mathfrak{s l}_{2}\right)$ can be reformulated as follows:

$$
\begin{aligned}
& q(1-y z)=q^{-1}(1-z y), \\
& q(1-z x)=q^{-1}(1-x z), \\
& q(1-x y)=q^{-1}(1-y x) .
\end{aligned}
$$

Denote these common values by $\nu_{x}, \nu_{y}, \nu_{z}$ respectively.

How x, y, z are related to $\nu_{x}, \nu_{y}, \nu_{z}$

The x, y, z are related to $\nu_{x}, \nu_{y}, \nu_{z}$ as follows:

$$
\begin{array}{ll}
x \nu_{y}=q^{2} \nu_{y} x, & x \nu_{z}=q^{-2} \nu_{z} x, \\
y \nu_{z}=q^{2} \nu_{z} y, & y \nu_{x}=q^{-2} \nu_{x} y, \\
z \nu_{x}=q^{2} \nu_{x} z, & z \nu_{y}=q^{-2} \nu_{y} z .
\end{array}
$$

$U_{q}\left(\mathfrak{s l}_{2}\right)$-modules

For the rest of this talk, fix an integer $N \geq 1$.
Let V denote an irreducible $U_{q}\left(\mathfrak{s l}_{2}\right)$-module, with dimension $N+1$.
The x, y, z act on V as follows.
Each of x, y, z is diagonalizable on V. Moreover there exists $\varepsilon \in\{1,-1\}$ such that for each of x, y, z the eigenvalues on V are $\left\{\varepsilon q^{N-2 i}\right\}_{i=0}^{N}$. This ordering and its inversion will be called standard.

The scalar ε is called the type of V.
Replacing x, y, z by $\varepsilon x, \varepsilon y, \varepsilon z$ the type becomes 1 .
From now on, assume that V has type 1 .

$U_{q}\left(\mathfrak{s l}_{2}\right)$-modules, cont.

The $\nu_{x}, \nu_{y}, \nu_{z}$ act on V as follows.
Each of $\nu_{x}, \nu_{y}, \nu_{z}$ is nilpotent on V.
Moreover, for $\rho \in\{x, y, z\}$ the subspace $\nu_{\rho}^{i} V$ has dimension $N-i+1$ for $0 \leq i \leq N$, and $\nu_{\rho}^{N+1} V=0$.

Decompositions and flags

In order to clarify how x, y, z and $\nu_{x}, \nu_{y}, \nu_{z}$ act on V, we use the following concepts.

By a decomposition of V we mean a sequence $\left\{V_{i}\right\}_{i=0}^{N}$ of one-dimensional subspaces of V whose direct sum is V.

Example

For each of x, y, z the sequence of eigenspaces (in standard order) is a decomposition of V, said to be standard.

Decompositions and flags, cont.

By a flag on V we mean a sequence $\left\{U_{i}\right\}_{i=0}^{N}$ of subspaces for V such that $U_{i-1} \subseteq U_{i}$ for $1 \leq i \leq N$ and U_{i} has dimension $i+1$ for $0 \leq i \leq N$.

Example

Each of

$$
\left\{\nu_{x}^{N-i} V\right\}_{i=0}^{N}, \quad\left\{\nu_{y}^{N-i} V\right\}_{i=0}^{N}, \quad\left\{\nu_{z}^{N-i} V\right\}_{i=0}^{N}
$$

is a flag on V, said to be standard.

Given a decomposition $\left\{V_{i}\right\}_{i=0}^{N}$ of V we construct a flag on V as follows.

Define $U_{i}=V_{0}+\cdots+V_{i}$ for $0 \leq i \leq N$. Then the sequence $\left\{U_{i}\right\}_{i=0}^{N}$ is a flag on V.

This flag is said to be induced by the decomposition $\left\{V_{i}\right\}_{i=0}^{N}$.

Let $\left\{U_{i}\right\}_{i=0}^{N}$ and $\left\{U_{i}^{\prime}\right\}_{i=0}^{N}$ denote flags on V.
These flags are called opposite whenever $U_{i} \cap U_{j}^{\prime}=0$ if $i+j<N$ $(0 \leq i, j \leq N)$.

The flags $\left\{U_{i}\right\}_{i=0}^{N}$ and $\left\{U_{i}^{\prime}\right\}_{i=0}^{N}$ are opposite if and only if there exists a decomposition $\left\{V_{i}\right\}_{i=0}^{N}$ of V that induces $\left\{U_{i}\right\}_{i=0}^{N}$ and whose inversion $\left\{V_{N-i}\right\}_{i=0}^{N}$ induces $\left\{U_{i}^{\prime}\right\}_{i=0}^{N}$.

In this case $V_{i}=U_{i} \cap U_{N-i}^{\prime}$ for $0 \leq i \leq N$.
So we say that the decomposition $\left\{V_{i}\right\}_{i=0}^{N}$ is induced by the opposite flags $\left\{U_{i}\right\}_{i=0}^{N}$ and $\left\{U_{i}^{\prime}\right\}_{i=0}^{N}$.

Theorem

For our $U_{q}\left(\mathfrak{s l}_{2}\right)$-module V, the three standard flags are mutually opposite.

The standard flags are related to the standard decompositions in the following way.

Theorem

For our $U_{q}\left(\mathfrak{s l}_{2}\right)$-module V,
(i) each standard decomposition of V induces a standard flag on V;
(ii) each ordered pair of distinct standard flags on V induces a standard decomposition of V.

A problem in linear algebra

The above theorems suggest a problem in linear algebra.
Consider the three standard flags on our $U_{q}\left(\mathfrak{s l}_{2}\right)$-module V.
From these flags we can recover the standard decompositions of V, and from them the original $U_{q}\left(\mathfrak{s L}_{2}\right)$-module structure.

So these flags should be related in a special way, from a linear algebraic point of view.

The problem is to describe this relationship.
This is what we will do, for the rest of the talk.

Recall the natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$.

Definition

Let Δ_{N} denote the set consisting of the three-tuples of natural numbers whose sum is N. Thus

$$
\Delta_{N}=\{(r, s, t) \mid r, s, t \in \mathbb{N}, \quad r+s+t=N\} .
$$

We arrange the elements of Δ_{N} in a triangular array.
For $N=4$, the array looks as follows after deleting all punctuation:

An element in Δ_{N} is called a location.

In the above array, each horizontal row consists of the locations with the same middle coordinate.

Call the horizontal rows 2-lines.
The 1 -lines and 3 -lines are similarly defined.

By a line we mean a 1-line or 2-line or 3 -line.

3-cliques in Δ_{N}

040				
4	130	031		
220	121	022		
310	211	112	013	
400	301	202	103	004

In the above array, each interior location is adjacent to six other locations.

By a 3-clique we mean a set of three mutually adjacent locations.
There are two kinds of 3-cliques: Δ (white) and ∇ (black).

We now define a Billiard Array.
Let V denote a vector space over \mathbb{F} with dimension $N+1$.

Definition

By a Billiard Array on V we mean a function B that assigns to each location $\lambda \in \Delta_{N}$ a 1-dimensional subspace of V (denoted B_{λ}) such that:
(i) for each line L in Δ_{N} the sum $\sum_{\lambda \in L} B_{\lambda}$ is direct;
(ii) for each white 3 -clique C in Δ_{N} the sum $\sum_{\lambda \in C} B_{\lambda}$ is not direct.
We say that B is over \mathbb{F}. We call N the diameter of B.

Comments on Billiard Arrays

Let B denote a Billiard Array on V.
It turns out that the function B is injective.
We view B as an arrangement of one-dimensional subspaces of V into a triangular array, with the subspace B_{λ} at location λ for all $\lambda \in \Delta_{N}$.

Thus the subspaces B_{λ} are the "billiards" in the array.

Billiard Arrays

Here is our plan for the rest of the talk:
(i) Classify the Billiard Arrays up to isomorphism.
(ii) Describe what the Billiard Arrays have to do with 3-tuples of mutually opposite flags.
(iii) Use Billiard Arrays to explain what is special about the three standard flags for a finite-dimensional irreducible $U_{q}\left(\mathfrak{s l}_{2}\right)$-module of type 1.

The classification of Billiard Arrays; preliminaries

Our next goal is to classify the Billiard Arrays up to isomorphism.

Lemma

Let λ, μ, ν denote locations in Δ_{N} that form a white 3-clique. Then the subspace $B_{\lambda}+B_{\mu}+B_{\nu}$ is equal to each of

$$
B_{\lambda}+B_{\mu}, \quad B_{\mu}+B_{\nu}, \quad B_{\nu}+B_{\lambda} .
$$

This subspace has dimension 2.

Corollary

Let λ, μ, ν denote locations in Δ_{N} that form a white 3-clique. Then each of $B_{\lambda}, B_{\mu}, B_{\nu}$ is contained in the sum of the other two.

Comments on Billiard Arrays

Among the lines in Δ_{N}, three are on the boundary.

Lemma

Let L denote a boundary line of Δ_{N}. Then

$$
V=\sum_{\lambda \in L} B_{\lambda} \quad(\text { direct sum }) .
$$

Isomorphisms for Billiard Arrays

Shortly we will classify the Billiard Arrays up to isomorphism.
To prepare for this, we explain what isomorphism means in this context.

Definition

Let V^{\prime} denote a vector space over \mathbb{F} with dimension $N+1$. Let B^{\prime} denote a Billiard Array on V^{\prime}. By an isomorphism of Billiard Arrays from B to B^{\prime} we mean an \mathbb{F}-linear bijection $V \rightarrow V^{\prime}$ that sends $B_{\lambda} \mapsto B_{\lambda}^{\prime}$ for all $\lambda \in \Delta_{N}$. The Billiard Arrays B and B^{\prime} are called isomorphic whenever there exists an isomorphism of Billiard Arrays from B to B^{\prime}.

We now describe the notion of an affine brace.

Definition

Let λ, μ, ν denote locations in Δ_{N} that form a white 3 -clique. By an affine brace (or abrace) for this clique, we mean a set of vectors

$$
u \in B_{\lambda}, \quad v \in B_{\mu}, \quad w \in B_{\nu}
$$

that are not all zero, and $u+v+w=0$. (In fact each of u, v, w is nonzero).

The affine braces for a Billiard Array, cont.

Here is an example of an abrace.

Example

Let λ, μ, ν denote locations in Δ_{N} that form a white 3-clique. Pick any nonzero vectors

$$
u \in B_{\lambda}, \quad v \in B_{\mu}, \quad w \in B_{\nu}
$$

The vectors u, v, w are linearly dependent. So there exist scalars a, b, c in \mathbb{F}, not all zero, such that $a u+b v+c w=0$. The vectors $a u, b v, c w$ form an abrace for the clique.

Affine braces have the following property.

Lemma
 Let λ, μ, ν denote locations in Δ_{N} that form a white 3-clique. Then each nonzero vector in B_{λ} is contained in a unique abrace for this clique.

The braces for a Billiard Array

We have been discussing affine braces.
We now consider a variation on this concept, called a brace.

Definition

Let λ, μ denote adjacent locations in Δ_{N}. Note that there exists a unique location $\nu \in \Delta_{N}$ such that λ, μ, ν form a white 3 -clique. We call ν the completion of the pair λ, μ.

Definition

Let λ, μ denote adjacent locations in Δ_{N}. By a brace for λ, μ we mean a set of nonzero vectors

$$
u \in B_{\lambda}, \quad v \in B_{\mu}
$$

such that $u+v \in B_{\nu}$. Here ν denotes the completion of λ, μ.

Braces have the following property.

Lemma

Let λ, μ denote adjacent locations in Δ_{N}. Each nonzero vector in B_{λ} is contained in a unique brace for λ, μ.

We now define some maps $\tilde{B}_{\lambda, \mu}$.

Definition

Let λ, μ denote adjacent locations in Δ_{N}. We define an \mathbb{F}-linear $\operatorname{map} \tilde{B}_{\lambda, \mu}: B_{\lambda} \rightarrow B_{\mu}$ as follows. This map sends each nonzero $u \in B_{\lambda}$ to the unique $v \in B_{\mu}$ such that u, v is a brace for λ, μ.

Let λ, μ denote adjacent locations in Δ_{N}.
We just defined an \mathbb{F}-linear map $\tilde{B}_{\lambda, \mu}: B_{\lambda} \rightarrow B_{\mu}$.
We now consider what happens when we compose the maps of this kind.

The maps $\tilde{B}_{\lambda, \mu}$, cont.

Lemma

Let λ, μ denote adjacent locations in Δ_{N}. Then the maps $\tilde{B}_{\lambda, \mu}: B_{\lambda} \rightarrow B_{\mu}$ and $\tilde{B}_{\mu, \lambda}: B_{\mu} \rightarrow B_{\lambda}$ are inverses.

The maps $\tilde{B}_{\lambda, \mu}$, cont.

Lemma

Let λ, μ, ν denote locations in Δ_{N} that form a white 3-clique.
Then the composition around the clique:

$$
B_{\lambda} \xrightarrow[\tilde{B}_{\lambda, \mu}]{ } B_{\mu} \xrightarrow[\tilde{B}_{\mu, \nu}]{\longrightarrow} B_{\nu} \xrightarrow[\tilde{B}_{\nu, \lambda}]{ } B_{\lambda}
$$

is equal to the identity map on B_{λ}.

The maps $\tilde{B}_{\lambda, \mu}$, cont.

Definition

Let λ, μ, ν denote locations in Δ_{N} that form a black 3-clique. Then the composition around the clique:

$$
B_{\lambda} \xrightarrow[\tilde{B}_{\lambda, \mu}]{\longrightarrow} B_{\mu} \xrightarrow[\tilde{B}_{\mu, \nu}]{\longrightarrow} B_{\nu} \xrightarrow[\tilde{B}_{\nu, \lambda}]{ } B_{\lambda}
$$

is a nonzero scalar multiple of the identity map on B_{λ}. The scalar is called the clockwise B-value (resp. c.clockwise B-value) of the clique whenever the sequence λ, μ, ν runs clockwise (resp. c.clockwise) around the clique.

Clockwise and c.clockwise B-values

Lemma

For each black 3-clique in Δ_{N}, its clockwise B-value and c.clockwise B-value are reciprocals.

Definition

For each black 3-clique in Δ_{N}, by its B-value we mean the clockwise B-value.

We have now assigned a nonzero scalar value to each black 3-clique in Δ_{N}.

We define a function \hat{B} on the set of black 3-cliques in Δ_{N}.
The function \hat{B} sends each black 3 -clique to its B-value.
We call \hat{B} the value function for B.

It is convenient to view \hat{B} as a function on Δ_{N-2}, as follows.
Pick $(r, s, t) \in \Delta_{N-2}$. Observe that the locations

$$
(r, s+1, t+1), \quad(r+1, s, t+1), \quad(r+1, s+1, t)
$$

are in Δ_{N} and form a black 3-clique.
The B-value of this 3-clique is equal to the image of (r, s, t) under \hat{B}.

Abstract value functions

We just defined the value function of a Billiard Array.
We will use these value functions to classify the Billiard Arrays up to isomorphism.

Definition

By a value function on Δ_{N} we mean a function $\psi: \Delta_{N} \rightarrow \mathbb{F} \backslash\{0\}$.

The classification of Billiard Arrays

We now classify the Billiard Arrays up to isomorphism.
Recall the Billiard Array B and its value function \hat{B}.

Theorem

The map $B \mapsto \hat{B}$ induces a bijection between the following two sets:
(i) the isomorphism classes of Billiard Arrays over \mathbb{F} that have diameter N;
(ii) the value functions on Δ_{N-2}.

Billiard Arrays and flags

Our next goal is to describe what Billiard arrays have to do with 3-tuples of mutually opposite flags.

Until further notice let V denote a vector space over \mathbb{F} with dimension $N+1$.

Definition

Suppose we are given three flags on V, denoted $\left\{U_{i}\right\}_{i=0}^{N}$, $\left\{U_{i}^{\prime}\right\}_{i=0}^{N},\left\{U_{i}^{\prime \prime}\right\}_{i=0}^{N}$. These flags are said to be totally opposite whenever $U_{N-r} \cap U_{N-s}^{\prime} \cap U_{N-t}^{\prime \prime}=0$ for all integers r, s, t $(0 \leq r, s, t \leq N)$ such that $r+s+t>N$.

Given three flags on V, the totally opposite condition is somewhat stronger than the mutually opposite condition.

This is explained on the next slide.

Totally opposite vs mutually opposite

Lemma

Given three flags on V, denoted $\left\{U_{i}\right\}_{i=0}^{N},\left\{U_{i}^{\prime}\right\}_{i=0}^{N},\left\{U_{i}^{\prime \prime}\right\}_{i=0}^{N}$. Then the following are equivalent:
(i) the flags $\left\{U_{i}\right\}_{i=0}^{N},\left\{U_{i}^{\prime}\right\}_{i=0}^{N},\left\{U_{i}^{\prime \prime}\right\}_{i=0}^{N}$ are totally opposite;
(ii) for $0 \leq n \leq N$ the sequences

$$
\left\{U_{i}\right\}_{i=0}^{N-n}, \quad\left\{U_{N-n} \cap U_{n+i}^{\prime}\right\}_{i=0}^{N-n}, \quad\left\{U_{N-n} \cap U_{n+i}^{\prime \prime}\right\}_{i=0}^{N-n}
$$

are mutually opposite flags on U_{N-n}.

Billiard Arrays and totally opposite flags

We are going to show that the Billiard Arrays on V are in bijection with the 3-tuples of totally opposite flags on V.

To get started, we show how to get a Billiard Array on V from a 3-tuple of totally opposite flags on V.

From totally opposite flags to Billiard Arrays

Lemma

Suppose we are given three totally opposite flags on V, denoted $\left\{U_{i}\right\}_{i=0}^{N},\left\{U_{i}^{\prime}\right\}_{i=0}^{N},\left\{U_{i}^{\prime \prime}\right\}_{i=0}^{N}$. For each location $\lambda=(r, s, t)$ in Δ_{N} define

$$
B_{\lambda}=U_{N-r} \cap U_{N-s}^{\prime} \cap U_{N-t}^{\prime \prime}
$$

Then the function B on Δ_{N} that sends $\lambda \mapsto B_{\lambda}$ is a Billiard Array on V.

Totally opposite flags and Billiard Arrays

Consider the following two sets:
(i) the 3-tuples of totally opposite flags on V;
(ii) the Billiard Arrays on V.

In the previous lemma we described a function from (i) to (ii).

Theorem

The above function is a bijection.

Conclusion

Our next goal is to use Billiard Arrays to explain what is special about the three standard flags for a finite-dimensional irreducible $U_{q}\left(\mathfrak{s l}_{2}\right)$-module of type 1 .

Theorem

Let V denote a finite-dimensional irreducible $U_{q}\left(\mathfrak{s l}_{2}\right)$-module, with type 1 and dimension ≥ 2. Then:
(i) the three standard flags on V are totally opposite;
(ii) for the corresponding Billiard Array on V, the value of each black 3-clique is a constant q^{2}.

In this talk, we first considered a finite-dimensional irreducible $U_{q}\left(\mathfrak{s l}_{2}\right)$-module V of type 1 .
We defined three flags on V, called the standard flags.
We then introduced the notion of a Billiard Array on a vector space V.

We classified the Billiard Arrays up to isomorphism, using the notion of a value function.

We showed how the Billiard Arrays on V are in bijection with the 3-tuples of totally opposite flags on V.

We showed that for the above $U_{q}\left(\mathfrak{s l}_{2}\right)$-module V, the three standard flags are totally opposite, and for the corresponding Billiard Array the value function is constant, taking the value q^{2}.

Thank you for your attention!

THE END

Bibliography

T. Ito, P. Terwilliger, C. Weng. The quantum algebra $U_{q}\left(\mathfrak{s l}_{2}\right)$ and its equitable presentation. J. Algebra 298 (2006) 284-301. arXiv:math/0507477.
P. Terwilliger. The universal Askey-Wilson algebra and the equitable presentation of $U_{q}\left(\mathfrak{s l}_{2}\right)$. SIGMA 7 (2011) 099, 26 pages, arXiv:1107. 3544.
P. Terwilliger. Finite-dimensional irreducible $U_{q}\left(\mathfrak{s l}_{2}\right)$-modules from the equitable point of view. Submitted. arXiv:1303.6134.
P. Terwilliger. Billiard Arrays and finite-dimensional irreducible $U_{q}\left(\mathfrak{s l}_{2}\right)$-modules. In preparation.

