
Billiard arrays and finite-dimensional
irreducible Uq(sl2)-modules

Paul Terwilliger

University of Wisconsin-Madison

Paul Terwilliger Billiard arrays and finite-dimensional irreducible Uq(sl2)-modules



Overview

In this talk we will describe the notion of a Billiard Array.

This is a triangular array of one-dimensional subspaces of a
finite-dimensional vector space, subject to several conditions that
specify which sums are direct.

We will use Billiard Arrays to characterize the finite-dimensional
irreducible Uq(sl2)-modules, for q not a root of unity.
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Motivation: Uq(sl2) and its modules

In order to motivate things, we recall the quantum algebra Uq(sl2).

We will use the equitable presentation.

Let F denote a field. Fix a nonzero q ∈ F that is not a root of
unity.
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The definition of Uq(sl2)

Definition

Let Uq(sl2) denote the associative F-algebra with generators
x , y±1, z and relations yy−1 = y−1y = 1,

qxy − q−1yx

q − q−1
= 1,

qyz − q−1zy

q − q−1
= 1,

qzx − q−1xz

q − q−1
= 1.

The x , y±1, z are called the equitable generators for Uq(sl2).
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The elements νx , νy , νz

The defining relations for Uq(sl2) can be reformulated as follows:

q(1− yz) = q−1(1− zy),

q(1− zx) = q−1(1− xz),

q(1− xy) = q−1(1− yx).

Denote these common values by νx , νy , νz respectively.
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How x , y , z are related to νx , νy , νz

The x , y , z are related to νx , νy , νz as follows:

xνy = q2νyx , xνz = q−2νzx ,

yνz = q2νzy , yνx = q−2νxy ,

zνx = q2νxz , zνy = q−2νyz .
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Uq(sl2)-modules

For the rest of this talk, fix an integer N ≥ 1.

Let V denote an irreducible Uq(sl2)-module, with dimension N + 1.

The x , y , z act on V as follows.

Each of x , y , z is diagonalizable on V . Moreover there exists
ε ∈ {1,−1} such that for each of x , y , z the eigenvalues on V are
{εqN−2i}Ni=0. This ordering and its inversion will be called
standard.

The scalar ε is called the type of V .

Replacing x , y , z by εx , εy , εz the type becomes 1.

From now on, assume that V has type 1.
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Uq(sl2)-modules, cont.

The νx , νy , νz act on V as follows.

Each of νx , νy , νz is nilpotent on V .

Moreover, for ρ ∈ {x , y , z} the subspace ν iρV has dimension

N − i + 1 for 0 ≤ i ≤ N, and νN+1
ρ V = 0.
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Decompositions and flags

In order to clarify how x , y , z and νx , νy , νz act on V , we use the
following concepts.

By a decomposition of V we mean a sequence {Vi}Ni=0 of
one-dimensional subspaces of V whose direct sum is V .

Example

For each of x , y , z the sequence of eigenspaces (in standard
order) is a decomposition of V , said to be standard.
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Decompositions and flags, cont.

By a flag on V we mean a sequence {Ui}Ni=0 of subspaces for V
such that Ui−1 ⊆ Ui for 1 ≤ i ≤ N and Ui has dimension i + 1 for
0 ≤ i ≤ N.

Example

Each of

{νN−ix V }Ni=0, {νN−iy V }Ni=0, {νN−iz V }Ni=0

is a flag on V , said to be standard.
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From decompositions to flags

Given a decomposition {Vi}Ni=0 of V we construct a flag on V as
follows.

Define Ui = V0 + · · ·+ Vi for 0 ≤ i ≤ N. Then the sequence
{Ui}Ni=0 is a flag on V .

This flag is said to be induced by the decomposition {Vi}Ni=0.
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From flags to decompositions

Let {Ui}Ni=0 and {U ′i }Ni=0 denote flags on V .

These flags are called opposite whenever Ui ∩ U ′j = 0 if i + j < N
(0 ≤ i , j ≤ N).

The flags {Ui}Ni=0 and {U ′i }Ni=0 are opposite if and only if there
exists a decomposition {Vi}Ni=0 of V that induces {Ui}Ni=0 and
whose inversion {VN−i}Ni=0 induces {U ′i }Ni=0.

In this case Vi = Ui ∩ U ′N−i for 0 ≤ i ≤ N.

So we say that the decomposition {Vi}Ni=0 is induced by the
opposite flags {Ui}Ni=0 and {U ′i }Ni=0.
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The standard flags and decompositions

Theorem

For our Uq(sl2)-module V , the three standard flags are mutually
opposite.

The standard flags are related to the standard decompositions in
the following way.

Theorem

For our Uq(sl2)-module V ,

(i) each standard decomposition of V induces a standard flag on
V ;

(ii) each ordered pair of distinct standard flags on V induces a
standard decomposition of V .
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A problem in linear algebra

The above theorems suggest a problem in linear algebra.

Consider the three standard flags on our Uq(sl2)-module V .

From these flags we can recover the standard decompositions of V ,
and from them the original Uq(sl2)-module structure.

So these flags should be related in a special way, from a linear
algebraic point of view.

The problem is to describe this relationship.

This is what we will do, for the rest of the talk.
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The set ∆N

Recall the natural numbers N = {0, 1, 2, . . . }.

Definition

Let ∆N denote the set consisting of the three-tuples of natural
numbers whose sum is N. Thus

∆N = {(r , s, t) | r , s, t ∈ N, r + s + t = N}.
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The set ∆N

We arrange the elements of ∆N in a triangular array.

For N = 4, the array looks as follows after deleting all punctuation:

040

130 031

220 121 022

310 211 112 013

400 301 202 103 004

An element in ∆N is called a location.
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The lines in ∆N

040

130 031

220 121 022

310 211 112 013

400 301 202 103 004

In the above array, each horizontal row consists of the locations
with the same middle coordinate.

Call the horizontal rows 2-lines.

The 1-lines and 3-lines are similarly defined.

By a line we mean a 1-line or 2-line or 3-line.
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3-cliques in ∆N

040

130 031

220 121 022

310 211 112 013

400 301 202 103 004

In the above array, each interior location is adjacent to six other
locations.

By a 3-clique we mean a set of three mutually adjacent locations.

There are two kinds of 3-cliques: ∆ (white) and ∇ (black).
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The definition of a Billiard Array

We now define a Billiard Array.

Let V denote a vector space over F with dimension N + 1.

Definition

By a Billiard Array on V we mean a function B that assigns to
each location λ ∈ ∆N a 1-dimensional subspace of V (denoted
Bλ) such that:

(i) for each line L in ∆N the sum
∑

λ∈L Bλ is direct;

(ii) for each white 3-clique C in ∆N the sum
∑

λ∈C Bλ is not
direct.

We say that B is over F. We call N the diameter of B.
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Comments on Billiard Arrays

Let B denote a Billiard Array on V .

It turns out that the function B is injective.

We view B as an arrangement of one-dimensional subspaces of V
into a triangular array, with the subspace Bλ at location λ for all
λ ∈ ∆N .

Thus the subspaces Bλ are the “billiards” in the array.
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Billiard Arrays

Here is our plan for the rest of the talk:

(i) Classify the Billiard Arrays up to isomorphism.

(ii) Describe what the Billiard Arrays have to do with 3-tuples of
mutually opposite flags.

(iii) Use Billiard Arrays to explain what is special about the three
standard flags for a finite-dimensional irreducible
Uq(sl2)-module of type 1.
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The classification of Billiard Arrays; preliminaries

Our next goal is to classify the Billiard Arrays up to isomorphism.

Lemma

Let λ, µ, ν denote locations in ∆N that form a white 3-clique.
Then the subspace Bλ + Bµ + Bν is equal to each of

Bλ + Bµ, Bµ + Bν , Bν + Bλ.

This subspace has dimension 2.

Corollary

Let λ, µ, ν denote locations in ∆N that form a white 3-clique.
Then each of Bλ,Bµ,Bν is contained in the sum of the other two.
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Comments on Billiard Arrays

Among the lines in ∆N , three are on the boundary.

Lemma

Let L denote a boundary line of ∆N . Then

V =
∑
λ∈L

Bλ (direct sum).
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Isomorphisms for Billiard Arrays

Shortly we will classify the Billiard Arrays up to isomorphism.

To prepare for this, we explain what isomorphism means in this
context.

Definition

Let V ′ denote a vector space over F with dimension N + 1. Let
B ′ denote a Billiard Array on V ′. By an isomorphism of
Billiard Arrays from B to B ′ we mean an F-linear bijection
V → V ′ that sends Bλ 7→ B ′λ for all λ ∈ ∆N . The Billiard
Arrays B and B ′ are called isomorphic whenever there exists an
isomorphism of Billiard Arrays from B to B ′.
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The affine braces for a Billiard Array

We now describe the notion of an affine brace.

Definition

Let λ, µ, ν denote locations in ∆N that form a white 3-clique.
By an affine brace (or abrace) for this clique, we mean a set of
vectors

u ∈ Bλ, v ∈ Bµ, w ∈ Bν

that are not all zero, and u + v + w = 0. (In fact each of u, v ,w
is nonzero).
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The affine braces for a Billiard Array, cont.

Here is an example of an abrace.

Example

Let λ, µ, ν denote locations in ∆N that form a white 3-clique.
Pick any nonzero vectors

u ∈ Bλ, v ∈ Bµ, w ∈ Bν .

The vectors u, v ,w are linearly dependent. So there exist
scalars a, b, c in F, not all zero, such that au + bv + cw = 0.
The vectors au, bv , cw form an abrace for the clique.
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The affine braces for a Billiard Array, cont.

Affine braces have the following property.

Lemma

Let λ, µ, ν denote locations in ∆N that form a white 3-clique.
Then each nonzero vector in Bλ is contained in a unique abrace for
this clique.
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The braces for a Billiard Array

We have been discussing affine braces.

We now consider a variation on this concept, called a brace.

Definition

Let λ, µ denote adjacent locations in ∆N . Note that there exists
a unique location ν ∈ ∆N such that λ, µ, ν form a white
3-clique. We call ν the completion of the pair λ, µ.
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The braces for a Billiard Array, cont.

Definition

Let λ, µ denote adjacent locations in ∆N . By a brace for λ, µ
we mean a set of nonzero vectors

u ∈ Bλ, v ∈ Bµ

such that u + v ∈ Bν . Here ν denotes the completion of λ, µ.
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The braces for a Billiard Array, cont.

Braces have the following property.

Lemma

Let λ, µ denote adjacent locations in ∆N . Each nonzero vector in
Bλ is contained in a unique brace for λ, µ.

Paul Terwilliger Billiard arrays and finite-dimensional irreducible Uq(sl2)-modules



The maps B̃λ,µ

We now define some maps B̃λ,µ.

Definition

Let λ, µ denote adjacent locations in ∆N . We define an F-linear
map B̃λ,µ : Bλ → Bµ as follows. This map sends each nonzero
u ∈ Bλ to the unique v ∈ Bµ such that u, v is a brace for λ, µ.
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The maps B̃λ,µ, cont.

Let λ, µ denote adjacent locations in ∆N .

We just defined an F-linear map B̃λ,µ : Bλ → Bµ.

We now consider what happens when we compose the maps of this
kind.
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The maps B̃λ,µ, cont.

Lemma

Let λ, µ denote adjacent locations in ∆N . Then the maps
B̃λ,µ : Bλ → Bµ and B̃µ,λ : Bµ → Bλ are inverses.
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The maps B̃λ,µ, cont.

Lemma

Let λ, µ, ν denote locations in ∆N that form a white 3-clique.
Then the composition around the clique:

Bλ −−−−→
B̃λ,µ

Bµ −−−−→
B̃µ,ν

Bν −−−−→
B̃ν,λ

Bλ

is equal to the identity map on Bλ.
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The maps B̃λ,µ, cont.

Definition

Let λ, µ, ν denote locations in ∆N that form a black 3-clique.
Then the composition around the clique:

Bλ −−−−→
B̃λ,µ

Bµ −−−−→
B̃µ,ν

Bν −−−−→
B̃ν,λ

Bλ

is a nonzero scalar multiple of the identity map on Bλ. The
scalar is called the clockwise B-value (resp. c.clockwise
B-value) of the clique whenever the sequence λ, µ, ν runs
clockwise (resp. c.clockwise) around the clique.
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Clockwise and c.clockwise B-values

Lemma

For each black 3-clique in ∆N , its clockwise B-value and
c.clockwise B-value are reciprocals.

Definition

For each black 3-clique in ∆N , by its B-value we mean the
clockwise B-value.

We have now assigned a nonzero scalar value to each black
3-clique in ∆N .
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The value function B̂

We define a function B̂ on the set of black 3-cliques in ∆N .

The function B̂ sends each black 3-clique to its B-value.

We call B̂ the value function for B.
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The value function B̂ , cont.

It is convenient to view B̂ as a function on ∆N−2, as follows.

Pick (r , s, t) ∈ ∆N−2. Observe that the locations

(r , s + 1, t + 1), (r + 1, s, t + 1), (r + 1, s + 1, t)

are in ∆N and form a black 3-clique.

The B-value of this 3-clique is equal to the image of (r , s, t) under
B̂.
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Abstract value functions

We just defined the value function of a Billiard Array.

We will use these value functions to classify the Billiard Arrays up
to isomorphism.

Definition

By a value function on ∆N we mean a function
ψ : ∆N → F\{0}.
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The classification of Billiard Arrays

We now classify the Billiard Arrays up to isomorphism.

Recall the Billiard Array B and its value function B̂.

Theorem

The map B 7→ B̂ induces a bijection between the following two
sets:

(i) the isomorphism classes of Billiard Arrays over F that have
diameter N;

(ii) the value functions on ∆N−2.
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Billiard Arrays and flags

Our next goal is to describe what Billiard arrays have to do with
3-tuples of mutually opposite flags.

Until further notice let V denote a vector space over F with
dimension N + 1.
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Totally opposite flags

Definition

Suppose we are given three flags on V , denoted {Ui}Ni=0,
{U ′i }Ni=0, {U ′′i }Ni=0. These flags are said to be totally opposite
whenever UN−r ∩ U ′N−s ∩ U ′′N−t = 0 for all integers r , s, t
(0 ≤ r , s, t ≤ N) such that r + s + t > N.
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Totally opposite vs mutually opposite

Given three flags on V , the totally opposite condition is somewhat
stronger than the mutually opposite condition.

This is explained on the next slide.
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Totally opposite vs mutually opposite

Lemma

Given three flags on V , denoted {Ui}Ni=0, {U ′i }Ni=0, {U ′′i }Ni=0. Then
the following are equivalent:

(i) the flags {Ui}Ni=0, {U ′i }Ni=0, {U ′′i }Ni=0 are totally opposite;

(ii) for 0 ≤ n ≤ N the sequences

{Ui}N−ni=0 , {UN−n ∩ U ′n+i}N−ni=0 , {UN−n ∩ U ′′n+i}N−ni=0

are mutually opposite flags on UN−n.
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Billiard Arrays and totally opposite flags

We are going to show that the Billiard Arrays on V are in bijection
with the 3-tuples of totally opposite flags on V .

To get started, we show how to get a Billiard Array on V from a
3-tuple of totally opposite flags on V .
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From totally opposite flags to Billiard Arrays

Lemma

Suppose we are given three totally opposite flags on V , denoted
{Ui}Ni=0, {U ′i }Ni=0, {U ′′i }Ni=0. For each location λ = (r , s, t) in ∆N

define
Bλ = UN−r ∩ U ′N−s ∩ U ′′N−t .

Then the function B on ∆N that sends λ 7→ Bλ is a Billiard Array
on V .

Paul Terwilliger Billiard arrays and finite-dimensional irreducible Uq(sl2)-modules



Totally opposite flags and Billiard Arrays

Consider the following two sets:

(i) the 3-tuples of totally opposite flags on V ;

(ii) the Billiard Arrays on V .

In the previous lemma we described a function from (i) to (ii).

Theorem

The above function is a bijection.
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Conclusion

Our next goal is to use Billiard Arrays to explain what is special
about the three standard flags for a finite-dimensional irreducible
Uq(sl2)-module of type 1.
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The main theorem

Theorem

Let V denote a finite-dimensional irreducible Uq(sl2)-module, with
type 1 and dimension ≥ 2. Then:

(i) the three standard flags on V are totally opposite;

(ii) for the corresponding Billiard Array on V , the value of each
black 3-clique is a constant q2.
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Summary

In this talk, we first considered a finite-dimensional irreducible
Uq(sl2)-module V of type 1.

We defined three flags on V , called the standard flags.

We then introduced the notion of a Billiard Array on a vector
space V .

We classified the Billiard Arrays up to isomorphism, using the
notion of a value function.

We showed how the Billiard Arrays on V are in bijection with the
3-tuples of totally opposite flags on V .

We showed that for the above Uq(sl2)-module V , the three
standard flags are totally opposite, and for the corresponding
Billiard Array the value function is constant, taking the value q2.

Thank you for your attention!

THE END
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