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Planar functions versus bent functions - outline

• Introduction to Boolean and bent functions

• Correspondence to Cayley graphs

• Planar functions and relations to bent functions

• Finding nonquadratic planar mappings (some ideas)

• Final comments
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Short introduction to (vectorial) Boolean functions

• Mathematical notation : f : GF (2)n → GF (2)m (Boolean if m = 1)

• Denote the set of Boolean respectively vectorial Boolean functions
by Bn and B

m
n .

• Finding optimal functions is elusive - the space is 2m2n !
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Short introduction to (vectorial) Boolean functions

• Mathematical notation : f : GF (2)n → GF (2)m (Boolean if m = 1)

• Denote the set of Boolean respectively vectorial Boolean functions
by Bn and B

m
n .

• Finding optimal functions is elusive - the space is 2m2n !

• Associate the mapping with a polynomial in a Boolean ring and
define ANF of f ∈ Bn e.g.

f (x1, x2, x3, x4) = x1x2 ⊕ x3x4,

where f : GF (2)4 → GF (2), and f is bent in the sense defined
pretty soon.
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Some applications in cryptography

LFSR

sk−1 sk−2 s1 s0

f

. . .

zt

Nonlinear filtering generator

S S S S

S S S S

P

P

. . . . . . . . .

ciphertext

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

plaintext

Figure : SP network using S-boxes - a block cipher

• S is nonlinear permutation substitution (S-box for confusion) and P
is a linear permutation (diffusion):

S : Fn
2 → F

n
2 P : Ft

2 → F
t
2 t = rn; r ∈ N.
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Boolean functions - truth table and ANF

x1 x2 x3 f (x) g(x)

0 0 0 0 ∗

0 0 1 0 ∗

0 1 0 0 ∗

0 1 1 1 0

1 0 0 1 0

1 0 1 1 0

1 1 0 0 ∗

1 1 1 1 0

• The ANF (algebraic normal form) is f (x) = x1x2 ⊕ x2x3 ⊕ x3 (unique). The
degree is deg(f ) = 2, the maximum length of the terms in ANF.
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Boolean functions - truth table and ANF

x1 x2 x3 f (x) g(x)

0 0 0 0 ∗

0 0 1 0 ∗

0 1 0 0 ∗

0 1 1 1 0

1 0 0 1 0

1 0 1 1 0

1 1 0 0 ∗

1 1 1 1 0

• The ANF (algebraic normal form) is f (x) = x1x2 ⊕ x2x3 ⊕ x3 (unique). The
degree is deg(f ) = 2, the maximum length of the terms in ANF.

• Cayley graph: Define the support of f - Sf = {x ∈ F
n
2 : f (x) = 1}

• Set of vertices Vn = Fn
2 = GF (2)n and set of edges

Ef = {(u,w) ∈ F
n
2 × F

n
2 | f (u⊕ w) = 1}.

• Any Γf = (Vn,Ef ) is |Sf |- regular (elementary additive Abelian group)
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Bent functions - as a special class

• Favourite combinatorial objects (difference sets, coding ...).

• Fix a basis of GF (2n) to get isomorphism GF (2n) ∼= GF (2)n and define for
f : GF (2n) → GF (2), Walsh transform

Wf (a) =
∑

x∈F2n

(−1)f (x)+Tr(ax) =
∑

x∈Fn2

(−1)f (x)+a·x ,

for a ∈ F2n . If |Wf (a)| = 2n/2 for all a ∈ GF (2n) then f is bent.
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Bent functions - as a special class

• Favourite combinatorial objects (difference sets, coding ...).

• Fix a basis of GF (2n) to get isomorphism GF (2n) ∼= GF (2)n and define for
f : GF (2n) → GF (2), Walsh transform

Wf (a) =
∑

x∈F2n

(−1)f (x)+Tr(ax) =
∑

x∈Fn2

(−1)f (x)+a·x ,

for a ∈ F2n . If |Wf (a)| = 2n/2 for all a ∈ GF (2n) then f is bent.

• Maximum distance (uniform) to affine functions a · x , n even !!

• Parseval’s equality :
∑

a∈Fn2
Wf (a)

2 = 22n , for any f ∈ Bn !

• So what (as Miles Davis would put it) ?
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Graph theoretic aspects

• Well, Γf is strongly regular with parameters (Vn,Sf , e, d) where :

e : the number of vertices adjacent to both u and v if u, v are adjacent, for all
u, v ∈ V

d : the number of vertices adjacent to both u and v if u, v are nonadjacent, for
all u, v ∈ V
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Graph theoretic aspects

• Well, Γf is strongly regular with parameters (Vn,Sf , e, d) where :

e : the number of vertices adjacent to both u and v if u, v are adjacent, for all
u, v ∈ V

d : the number of vertices adjacent to both u and v if u, v are nonadjacent, for
all u, v ∈ V

• Furthermore, f ∈ Bn is bent IFF e = d !

• For a bent function f (x1, . . . , x4) = x1x2 ⊕ x3x4, we have |Sf | = 6 (valency is 6)
and e = d = 2 !
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Graph theoretic aspects

• Well, Γf is strongly regular with parameters (Vn,Sf , e, d) where :

e : the number of vertices adjacent to both u and v if u, v are adjacent, for all
u, v ∈ V

d : the number of vertices adjacent to both u and v if u, v are nonadjacent, for
all u, v ∈ V

• Furthermore, f ∈ Bn is bent IFF e = d !

• For a bent function f (x1, . . . , x4) = x1x2 ⊕ x3x4, we have |Sf | = 6 (valency is 6)
and e = d = 2 !

• The Cayley graph of a bent function f is not bipartite.

• If Γf is triangle-free (no path of the form uvwu for distinct u, v ,w ∈ V ) then f

is not bent. Converse, not true !
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Designing non-bent functions

• Assume you need Wf (0) = 0, i.e., #{x : f (x) = 0} = #{x : f (x) = 1} = 2n−1.

• Consequence : There exists a ∈ F
n
2 so that |Wf (a)| > 2n/2 (smaller distance to

linear function a · x !).
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Designing non-bent functions

• Assume you need Wf (0) = 0, i.e., #{x : f (x) = 0} = #{x : f (x) = 1} = 2n−1.

• Consequence : There exists a ∈ F
n
2 so that |Wf (a)| > 2n/2 (smaller distance to

linear function a · x !).

Construction (ZhangPasalic) Let for 1 ≤ i ≤ n − 1, Ei ⊆ Fi
2 and E ′

i
= Ei × F

n−i
2 such

that
⋃n−1

i=1 E ′
i = F

n
2, and

E ′
i1
∩ E ′

i2
= ∅, 1 ≤ i1 < i2 ≤ n − 1.

Let Xn = (x1, . . . , xn) ∈ Fn
2, X

′
i
= (x1, . . . , xi ) ∈ Fi

2 and X ′′
n−i

= (xi+1, . . . , xn) ∈ F
n−i
2 .

Let φi be a mapping from Fi
2 to F

n−i
2 . A GMM type Boolean function f ∈ Bn can be

constructed as follows:

f (Xn) = φi (X
′
i ) · X

′′
n−i ⊕ gi (X

′
i ), if X ′

i ∈ Ei , i = 1, . . . , n − 1, (1)

where gi ∈ Bi .
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Graph spectra

• Define Hadamard transform as W H
f
(a) =

∑

x∈F
n
2
f (x)(−1)a·x , then the spectra

of f is W H
f

= Hnf
T , where Hn is the Hadamard matrix defined (recursively),

H1 =

(

1 1
1 −1

)

, Hn =

(

Hn−1 Hn−1

Hn−1 −Hn−1

)

.

• Introduce ordering W H
f

= {W H
f
(0, . . . , 0),W H

f
(1, . . . , 0), . . . ,W H

f
(1, . . . , 1)}.

• The entries of Hn are hi,j = (−1)ui ·vj for i , j = 0, . . . , 2n − 1. Use binary
representation of i , j e.g. u3 = (1, 1, 0, . . . , 0).
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Graph spectra

• Define Hadamard transform as W H
f
(a) =

∑

x∈F
n
2
f (x)(−1)a·x , then the spectra

of f is W H
f

= Hnf
T , where Hn is the Hadamard matrix defined (recursively),

H1 =

(

1 1
1 −1

)

, Hn =

(

Hn−1 Hn−1

Hn−1 −Hn−1

)

.

• Introduce ordering W H
f

= {W H
f
(0, . . . , 0),W H

f
(1, . . . , 0), . . . ,W H

f
(1, . . . , 1)}.

• The entries of Hn are hi,j = (−1)ui ·vj for i , j = 0, . . . , 2n − 1. Use binary
representation of i , j e.g. u3 = (1, 1, 0, . . . , 0).

Theorem Let f : Fn
2 → F2 , and let λi , 0 ≤ i ≤ 2n − 1 be the eigenvalues of its

associated graph Γf . Then λi = Wf (bi ), for any i .

Proof: The eigenvectors of the Cayley graph Γf are the characters Qw(x) = (−1)w·x

of Fn
2 [?]. Moreover, the i -th eigenvalue of Af (adjacency matrix), corresponding to

the eigenvector Qbi is given by λi =
∑

x∈Fn2
(−1)bi ·x f (x) = W H

f
(bi ).
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Diameter of the graph versus ANF

• The length max(u,v) d(u, v) of the ”longest shortest path” between any two
graph vertices u, v of a graph - diameter of the graph.

• What about ANF of bent functions versus diameter ?
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Diameter of the graph versus ANF

• The length max(u,v) d(u, v) of the ”longest shortest path” between any two
graph vertices u, v of a graph - diameter of the graph.

• What about ANF of bent functions versus diameter ?

• We had f (x1, . . . , x4) = x1x2 ⊕ x3x4 and deg(f ) = 2. What is connected here ?

• Consider ”primitive cubes” (a canonical basis of F4
2 if you want) u = (1000) and

v = (0100). u and v are connected (edge between them) since
f (u ⊕ v) = f (1100) = 1 !

• Is there a path between u = (1000) , v = (0100) and w = (0010). NO !

• Diameter = deg(f )
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Equivalence classes - groups of automorphisms

• Affine Equivalence (EA) in cryptography defined as f ∼ g for f , g ∈ Bn IFF

g(x) = f (Ax + b) + µ · x + ǫ for all x ∈ F
n
2, (2)

where A ∈ GL(Vn), b, µ ∈ F
n
2.

• FACTS : Hard problem since checking if f ∼ g requires O(2n
2
) operations !

• EA preserves the degree of f and only permutes Walsh spectra (some other
parameters invariant as well)
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Equivalence classes - groups of automorphisms

• Affine Equivalence (EA) in cryptography defined as f ∼ g for f , g ∈ Bn IFF

g(x) = f (Ax + b) + µ · x + ǫ for all x ∈ F
n
2, (2)

where A ∈ GL(Vn), b, µ ∈ F
n
2.

• FACTS : Hard problem since checking if f ∼ g requires O(2n
2
) operations !

• EA preserves the degree of f and only permutes Walsh spectra (some other
parameters invariant as well)

Group of automorphisms - group of permutations (under composition) of vertices
preserving adjacency. Correspondence :

• Composition of permutations - product of invertible matrices in GL(Vn)

• Should be the case the spectra of Γf is not affected by applying automorphism
to a graph.

• Diameter of a graph is invariant under action of Aut(Γf ).
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Equivalence classes - example

• Let us, for n = 2k, identify Fn
2 with Fk

2 × Fk
2 . Suppose π : Fk

2 → Fk
2 is a

permutation and g ∈ Bk . Then, f : Fk
2 × F

k
2 → F2 defined by

f (x , y) = x · π(y) + g(y), for all x , y ∈ F
k
2 , (3)

is a bent function. Let now Sg = ∪2k−1

i=1 uiF2k , where ui = αi(2k−1) and α
primitive in F2n .

• Notice U = {u0, u1, . . . , u2k } is the cyclic group of (2k + 1)-th roots of unity.
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Equivalence classes - example

• Let us, for n = 2k, identify Fn
2 with Fk

2 × Fk
2 . Suppose π : Fk

2 → Fk
2 is a

permutation and g ∈ Bk . Then, f : Fk
2 × F

k
2 → F2 defined by

f (x , y) = x · π(y) + g(y), for all x , y ∈ F
k
2 , (3)

is a bent function. Let now Sg = ∪2k−1

i=1 uiF2k , where ui = αi(2k−1) and α
primitive in F2n .

• Notice U = {u0, u1, . . . , u2k } is the cyclic group of (2k + 1)-th roots of unity.

• Then f 6∼ g ! HOW ??

• Compare the second order derivatives !! Derivative (1st order) of f at a is
Df (a) = f (x)⊕ f (x + a) again Boolean function of course !

• How are graphs of f (x) and f (x + a) related to the graph of Df (a) ??
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Multiple output bent functions

• Nyberg proved in 1992 that for F : Fn
2 → F

k
2 the maximum output bent space is

n/2 in binary case !
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Multiple output bent functions

• Nyberg proved in 1992 that for F : Fn
2 → F

k
2 the maximum output bent space is

n/2 in binary case !

• Meaning: One can find f1, . . . , fk , fi : GF (2)
n → GF (2), k ≤ n/2, (multiple bent

F : GF (2)n → GF (2)k ) such that

a1f1 + . . .+ ak fk is bent ∀a ∈ GF (2)k \ {0}.

• Hence at most 2n/2 − 1 SRG graphs related to a single vectorial bent function !
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Finding vectorial bent functions

• How to find such classes ?

• Use the relative trace Trn
k
(x) = x + x2 + x2

2
+ . . .+ x2

n−k
, a function from

GF (2n) → GF (2k ).

• Consider F (x) = Trn
k
(
∑2k

i=0 aix
i(2k−1)), where ai ∈ F2n
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Finding vectorial bent functions

• How to find such classes ?

• Use the relative trace Trn
k
(x) = x + x2 + x2

2
+ . . .+ x2

n−k
, a function from

GF (2n) → GF (2k ).

• Consider F (x) = Trn
k
(
∑2k

i=0 aix
i(2k−1)), where ai ∈ F2n

Theorem [MPB] Let n = 2k, and define F (x) = Trn
k
(P(x)), where

P(x) =
∑t

i=1 aix
i(2k−1) and t ≤ 2k . Then the following conditions are equivalent:

1. F is a vectorial bent function of dimension k.

2.
∑

u∈U (−1)Tr
k
1 (λF (u)) = 1 for all λ ∈ K∗.

3. There are two values u ∈ U such that F (u) = 0, and furthermore if F (u0) = 0,
then F is one-to-one and onto from U0 = U \ u0 to K .
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All credits go to Dillon !

• The exponent 2k − 1 is known as Dillon’s exponent, and for n = 2k we have
2n − 1 = (2k − 1)(2k + 1).

• Note that #GF (2k ) \ 0 = 2k − 1, and there is a cyclic group U of (2k + 1)th
roots of unity of size 2k + 1 !!

• Take a primitive α ∈ GF (2n) and consider: {α(2k−1)i : i = 0, . . . 2k} = U.
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All credits go to Dillon !

• The exponent 2k − 1 is known as Dillon’s exponent, and for n = 2k we have
2n − 1 = (2k − 1)(2k + 1).

• Note that #GF (2k ) \ 0 = 2k − 1, and there is a cyclic group U of (2k + 1)th
roots of unity of size 2k + 1 !!

• Take a primitive α ∈ GF (2n) and consider: {α(2k−1)i : i = 0, . . . 2k} = U.

• Meaning: GF (2n)∗ = ∪u∈UuGF (2
k )∗ so that x = uy , for u ∈ U, y ∈ F2k and

P(uy) =
t

∑

i=1

ai (uy)
i(2k−1) =

t
∑

i=1

aiu
i(2k−1) = P(u),

as y i(2k−1) = 1 for any y because y ∈ F∗
2k
.

• Recent result : we can count all bent F of this form and compute ai explicitly
[MPR2014] !!
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Planar mappings

• From quadratic planar mappings you get commutative semifields (not
associative) and affine/projective planes !

• Definition:
F (x + a)− F (x),

a permutation for any nonzero a ∈ Fq and F : Fq → Fq !
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Planar mappings

• From quadratic planar mappings you get commutative semifields (not
associative) and affine/projective planes !

• Definition:
F (x + a)− F (x),

a permutation for any nonzero a ∈ Fq and F : Fq → Fq !

• Example :F (x) = x2 is planar over any field of odd characteristic.

• PROOF: F (x + a)− F (x) = x2 + 2ax + a2 − x2 = 2ax + a2, permutation since
any linear polynomial is permutation ! But F (x) CANNOT be a permutation,
check for x2, gcd(2, pn − 1) = 2 6= 1 !
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Planar mappings

• From quadratic planar mappings you get commutative semifields (not
associative) and affine/projective planes !

• Definition:
F (x + a)− F (x),

a permutation for any nonzero a ∈ Fq and F : Fq → Fq !

• Example :F (x) = x2 is planar over any field of odd characteristic.

• PROOF: F (x + a)− F (x) = x2 + 2ax + a2 − x2 = 2ax + a2, permutation since
any linear polynomial is permutation ! But F (x) CANNOT be a permutation,
check for x2, gcd(2, pn − 1) = 2 6= 1 !

• What if the characteristic of Fq is p = 2 ?
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Planar mappings

• From quadratic planar mappings you get commutative semifields (not
associative) and affine/projective planes !

• Definition:
F (x + a)− F (x),

a permutation for any nonzero a ∈ Fq and F : Fq → Fq !

• Example :F (x) = x2 is planar over any field of odd characteristic.

• PROOF: F (x + a)− F (x) = x2 + 2ax + a2 − x2 = 2ax + a2, permutation since
any linear polynomial is permutation ! But F (x) CANNOT be a permutation,
check for x2, gcd(2, pn − 1) = 2 6= 1 !

• What if the characteristic of Fq is p = 2 ?

• NO planar mappings over GF (2n) since for any b if x0 is a solution to
F (x + a) + F (x) = b so is x0 + a
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Bent versus planar mappings

• CONCLUSION: Planar = Multiple bent of dimension n !!
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Bent versus planar mappings

• CONCLUSION: Planar = Multiple bent of dimension n !!

• For p = 2 there are no planar mappings, but there are no bent functions of full
space, recall bent space ≤ n/2

• PROBLEM: Define a set of bent functions

fi : GF (p
n) → GF (p), i = 1, . . . , n,

so that all linear combinations are bent = PLANAR FUNCTION !!

• If F is planar then F is not a permutation – bent functions are not balanced
either !!
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Known planar mappings

• By quadratic polynomials we mean Dembrovski-Ostrom polynomials

F (x) =
∑

0≤k,j<n

λk,jx
pk+pj , λk,j ∈ Fpn ,

added an affine function A(x) =
∑

0≤i<n aix
pi
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Known planar mappings

• By quadratic polynomials we mean Dembrovski-Ostrom polynomials

F (x) =
∑

0≤k,j<n

λk,jx
pk+pj , λk,j ∈ Fpn ,

added an affine function A(x) =
∑

0≤i<n aix
pi

• Derivatives are linearized polynomials, easy to handle !

• Nontrivial interesting class of planar mappings is: F (x) = x
3t+1
2 over F3n , where

t is odd and gcd(t, n) = 1.

• The only example of nonquadratic planar mappings - hard to find !!!

Open problem : Let n ≥ 8 be even. Find a permutation F over GF (2n) such
that F (x) + F (x + a) = b has either 0 or 2 solutions for any a ∈ F∗

2n and
b ∈ F2n . Publish anywhere !!

36 / 40



Dillon’s exponents - generalization

• IDEA: Use Dillon’s exponents for p > 2 ! Can we derive planar mappings as

F (x) =
∑pn/2

i=0 bix
i(pn/2−1)?

• For even n = 2k we consider Tr(λ
∑pn/2

i=0 bix
i(pn/2−1)), and show that such a

function from GF (pn) to GF (p) is bent for any nonzero λ, i.e.,

|FF (a)| = |
∑

x∈Fnp

ωTr(F (x))+Tr(ax)| = pn/2, ω = e
2πı
p
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Dillon’s exponents - generalization

• IDEA: Use Dillon’s exponents for p > 2 ! Can we derive planar mappings as

F (x) =
∑pn/2

i=0 bix
i(pn/2−1)?

• For even n = 2k we consider Tr(λ
∑pn/2

i=0 bix
i(pn/2−1)), and show that such a

function from GF (pn) to GF (p) is bent for any nonzero λ, i.e.,

|FF (a)| = |
∑

x∈Fnp

ωTr(F (x))+Tr(ax)| = pn/2, ω = e
2πı
p

• Cannot use U any longer since gcd(pk − 1, pk + 1) = 2.

• Use a set V = 1, α, . . . , αpk and F
∗
pk

as αi can be written as

α(pk−1)mαl , 0 ≤ l ≤ pk − 2, 0 ≤ m ≤ pk .

• We specified the conditions that F (x) = Trn
k

∑pn/2

i=0 bix
i(pn/2−1) is vectorial bent

[BPRG2014]. But dimension is only n/2 !!
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Some concluding remarks

• What these generalized bent functions (p > 2) has to do with graphs ?

• Well, a LOT !! Again the graphs are strongly regular and are related to
association schemes ! Some of these classes gives you new classes of SRG
non-isomorphic to known classes !!

• Planar mappings are nice and elegant problem, surprisingly small number of
nontrivial (nonquadratic) examples.

• We expect (hopefully) that a vivid research will be activated if managing to
propose a single nontrivial example.
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Some concluding remarks II

• Can we define suitable graphs for permutations over finite fields ?

• Well, a collection of n Cayley graphs w.r.t. component functions ?

• We lose the property of being strongly regular but important to investigate e.g.
x−1 over GF (28). All encryption today is done using this permutation as S-box.

• Does it make sense to define graphs to investigate F (x) + F (x + a) = b ? For a
fixed a 6= 0 and b we may say a and b are connected via x0 iff x0 is a solution to
F (x) + F (x + a) = b ?! What kind of graph is that ?

• Research ideas : Correspondence of graphs to derivatives, planar mappings,
equivalence classes, minimal ANF representation ...
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