Seminar
 Planar functions versus
 bent functions

Enes Pasalic
Rogla, May 18, 2014

Planar functions versus bent functions - outline

- Introduction to Boolean and bent functions
- Correspondence to Cayley graphs
- Planar functions and relations to bent functions
- Finding nonquadratic planar mappings (some ideas)
- Final comments

Short introduction to (vectorial) Boolean functions

- Mathematical notation : $f: G F(2)^{n} \rightarrow G F(2)^{m}$ (Boolean if $m=1$)
- Denote the set of Boolean respectively vectorial Boolean functions by \mathfrak{B}_{n} and \mathfrak{B}_{n}^{m}.
- Finding optimal functions is elusive - the space is $2^{m 2^{n}}$!

Short introduction to (vectorial) Boolean functions

- Mathematical notation : $f: G F(2)^{n} \rightarrow G F(2)^{m}$ (Boolean if $m=1$)
- Denote the set of Boolean respectively vectorial Boolean functions by \mathfrak{B}_{n} and \mathfrak{B}_{n}^{m}.
- Finding optimal functions is elusive - the space is $2^{m 2^{n}}$!
- Associate the mapping with a polynomial in a Boolean ring and define ANF of $f \in \mathfrak{B}_{n}$ e.g.

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2} \oplus x_{3} x_{4},
$$

where $f: G F(2)^{4} \rightarrow G F(2)$, and f is bent in the sense defined pretty soon.

Some applications in cryptography

Nonlinear filtering generator

Figure: SP network using S-boxes - a block cipher

- S is nonlinear permutation substitution (S-box for confusion) and P is a linear permutation (diffusion):

$$
S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n} \quad P: \mathbb{F}_{2}^{t} \rightarrow \mathbb{F}_{2}^{t} \quad t=r n ; r \in \mathbb{N} .
$$

Boolean functions - truth table and ANF

x_{1}	x_{2}	x_{3}	$f(x)$	$g(x)$
0	0	0	0	$*$
0	0	1	0	$*$
0	1	0	0	$*$
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	0	$*$
1	1	1	1	0

- The ANF (algebraic normal form) is $f(x)=x_{1} x_{2} \oplus x_{2} x_{3} \oplus x_{3}$ (unique). The degree is $\operatorname{deg}(f)=2$, the maximum length of the terms in ANF.

Boolean functions - truth table and ANF

x_{1}	x_{2}	x_{3}	$f(x)$	$g(x)$
0	0	0	0	$*$
0	0	1	0	$*$
0	1	0	0	$*$
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	0	$*$
1	1	1	1	0

- The ANF (algebraic normal form) is $f(x)=x_{1} x_{2} \oplus x_{2} x_{3} \oplus x_{3}$ (unique). The degree is $\operatorname{deg}(f)=2$, the maximum length of the terms in ANF.
- Cayley graph: Define the support of $f-S_{f}=\left\{x \in \mathbb{F}_{2}^{n}: f(x)=1\right\}$
- Set of vertices $V_{n}=\mathbb{F}_{2}^{n}=G F(2)^{n}$ and set of edges

$$
E_{f}=\left\{(u, w) \in \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n} \mid f(\mathbf{u} \oplus \mathbf{w})=1\right\}
$$

- Any $\Gamma_{f}=\left(V_{n}, E_{f}\right)$ is $\left|S_{f}\right|-$ regular (elementary additive Abelian group)

Bent functions - as a special class

- Favourite combinatorial objects (difference sets, coding ...).
- Fix a basis of $G F\left(2^{n}\right)$ to get isomorphism $G F\left(2^{n}\right) \cong G F(2)^{n}$ and define for $f: G F\left(2^{n}\right) \rightarrow G F(2)$, Walsh transform

$$
W_{f}(a)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{f(x)+\operatorname{Tr}(a x)}=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{f(x)+a \cdot x},
$$

for $a \in \mathbb{F}_{2^{n}}$. If $\left|W_{f}(a)\right|=2^{n / 2}$ for all $a \in G F\left(2^{n}\right)$ then f is bent.

Bent functions - as a special class

- Favourite combinatorial objects (difference sets, coding ...).
- Fix a basis of $G F\left(2^{n}\right)$ to get isomorphism $\operatorname{GF}\left(2^{n}\right) \cong G F(2)^{n}$ and define for $f: G F\left(2^{n}\right) \rightarrow G F(2)$, Walsh transform

$$
W_{f}(a)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{f(x)+\operatorname{Tr}(a x)}=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{f(x)+a \cdot x},
$$

for $a \in \mathbb{F}_{2^{n}}$. If $\left|W_{f}(a)\right|=2^{n / 2}$ for all $a \in G F\left(2^{n}\right)$ then f is bent.

- Maximum distance (uniform) to affine functions $a \cdot x, n$ even !!
- Parseval's equality : $\sum_{a \in \mathbb{F}_{2}^{n}} W_{f}(a)^{2}=2^{2 n}$, for any $f \in \mathfrak{B}_{n}$!
- So what (as Miles Davis would put it) ?

Graph theoretic aspects

- Well, Γ_{f} is strongly regular with parameters $\left(V_{n}, S_{f}, e, d\right)$ where :
e : the number of vertices adjacent to both u and v if u, v are adjacent, for all $u, v \in V$
d : the number of vertices adjacent to both u and v if u, v are nonadjacent, for all $u, v \in V$

Graph theoretic aspects

- Well, Γ_{f} is strongly regular with parameters $\left(V_{n}, S_{f}, e, d\right)$ where :
e : the number of vertices adjacent to both u and v if u, v are adjacent, for all $u, v \in V$
d : the number of vertices adjacent to both u and v if u, v are nonadjacent, for all $u, v \in V$
- Furthermore, $f \in \mathfrak{B}_{n}$ is bent IFF $e=d$!
- For a bent function $f\left(x_{1}, \ldots, x_{4}\right)=x_{1} x_{2} \oplus x_{3} x_{4}$, we have $\left|S_{f}\right|=6$ (valency is 6) and $e=d=2$!

Graph theoretic aspects

- Well, Γ_{f} is strongly regular with parameters $\left(V_{n}, S_{f}, e, d\right)$ where :
e : the number of vertices adjacent to both u and v if u, v are adjacent, for all $u, v \in V$
d : the number of vertices adjacent to both u and v if u, v are nonadjacent, for all $u, v \in V$
- Furthermore, $f \in \mathfrak{B}_{n}$ is bent IFF $e=d$!
- For a bent function $f\left(x_{1}, \ldots, x_{4}\right)=x_{1} x_{2} \oplus x_{3} x_{4}$, we have $\left|S_{f}\right|=6$ (valency is 6) and $e=d=2$!
- The Cayley graph of a bent function f is not bipartite.
- If Γ_{f} is triangle-free (no path of the form $u v w u$ for distinct $u, v, w \in V$) then f is not bent. Converse, not true!

Designing non-bent functions

- Assume you need $W_{f}(\mathbf{0})=0$, i.e., $\#\{x: f(x)=0\}=\#\{x: f(x)=1\}=2^{n-1}$.
- Consequence : There exists $a \in \mathbb{F}_{2}^{n}$ so that $\left|W_{f}(a)\right|>2^{n / 2}$ (smaller distance to linear function $a \cdot x$!).

Designing non-bent functions

- Assume you need $W_{f}(\mathbf{0})=0$, i.e., $\#\{x: f(x)=0\}=\#\{x: f(x)=1\}=2^{n-1}$.
- Consequence : There exists $a \in \mathbb{F}_{2}^{n}$ so that $\left|W_{f}(a)\right|>2^{n / 2}$ (smaller distance to linear function $a \cdot x$!).

Construction (ZhangPasalic) Let for $1 \leq i \leq n-1, E_{i} \subseteq \mathbb{F}_{2}^{i}$ and $E_{i}^{\prime}=E_{i} \times \mathbb{F}_{2}^{n-i}$ such that $\bigcup_{i=1}^{n-1} E_{i}^{\prime}=\mathbb{F}_{2}^{n}$, and

$$
E_{i_{1}}^{\prime} \cap E_{i_{2}}^{\prime}=\emptyset, \quad 1 \leq i_{1}<i_{2} \leq n-1 .
$$

Let $X_{n}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{2}^{n}, X_{i}^{\prime}=\left(x_{1}, \ldots, x_{i}\right) \in \mathbb{F}_{2}^{i}$ and $X_{n-i}^{\prime \prime}=\left(x_{i+1}, \ldots, x_{n}\right) \in \mathbb{F}_{2}^{n-i}$. Let ϕ_{i} be a mapping from \mathbb{F}_{2}^{i} to \mathbb{F}_{2}^{n-i}. A GMM type Boolean function $f \in \mathfrak{B}_{n}$ can be constructed as follows:

$$
\begin{equation*}
f\left(X_{n}\right)=\phi_{i}\left(X_{i}^{\prime}\right) \cdot X_{n-i}^{\prime \prime} \oplus g_{i}\left(X_{i}^{\prime}\right), \quad \text { if } X_{i}^{\prime} \in E_{i}, i=1, \ldots, n-1, \tag{1}
\end{equation*}
$$

where $g_{i} \in \mathfrak{B}_{i}$.

Graph spectra

- Define Hadamard transform as $W_{f}^{H}(a)=\sum_{x \in \mathbb{F}_{2}^{n}} f(x)(-1)^{a \cdot x}$, then the spectra of f is $W_{f}^{H}=H_{n} f^{T}$, where H_{n} is the Hadamard matrix defined (recursively),

$$
H_{1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad H_{n}=\left(\begin{array}{cc}
H_{n-1} & H_{n-1} \\
H_{n-1} & -H_{n-1}
\end{array}\right) .
$$

- Introduce ordering $W_{f}^{H}=\left\{W_{f}^{H}(0, \ldots, 0), W_{f}^{H}(1, \ldots, 0), \ldots, W_{f}^{H}(1, \ldots, 1)\right\}$.
- The entries of H_{n} are $h_{i, j}=(-1)^{\mathbf{u}_{i} \cdot v_{j}}$ for $i, j=0, \ldots, 2^{n}-1$. Use binary representation of i, j e.g. $\mathbf{u}_{3}=(1,1,0, \ldots, 0)$.

Graph spectra

- Define Hadamard transform as $W_{f}^{H}(a)=\sum_{x \in \mathbb{F}_{2}^{n}} f(x)(-1)^{a \cdot x}$, then the spectra of f is $W_{f}^{H}=H_{n} f^{T}$, where H_{n} is the Hadamard matrix defined (recursively),

$$
H_{1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad H_{n}=\left(\begin{array}{cc}
H_{n-1} & H_{n-1} \\
H_{n-1} & -H_{n-1}
\end{array}\right) .
$$

- Introduce ordering $W_{f}^{H}=\left\{W_{f}^{H}(0, \ldots, 0), W_{f}^{H}(1, \ldots, 0), \ldots, W_{f}^{H}(1, \ldots, 1)\right\}$.
- The entries of H_{n} are $h_{i, j}=(-1)^{\mathbf{u}_{i} \cdot v_{j}}$ for $i, j=0, \ldots, 2^{n}-1$. Use binary representation of i, j e.g. $\mathbf{u}_{3}=(1,1,0, \ldots, 0)$.

Theorem Let $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$, and let $\lambda_{i}, 0 \leq i \leq 2^{n}-1$ be the eigenvalues of its associated graph Γ_{f}. Then $\lambda_{i}=W_{f}\left(\mathbf{b}_{i}\right)$, for any i.

Proof: The eigenvectors of the Cayley graph Γ_{f} are the characters $Q_{w}(x)=(-1)^{\mathbf{w} \cdot x}$ of \mathbb{F}_{2}^{n} [?]. Moreover, the i-th eigenvalue of A_{f} (adjacency matrix), corresponding to the eigenvector $Q_{\mathbf{b}_{i}}$ is given by $\lambda_{i}=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{\mathbf{b}_{i} \cdot x} f(x)=W_{f}^{H}\left(\mathbf{b}_{i}\right)$.

Diameter of the graph versus ANF

- The length $\max _{(u, v)} d(u, v)$ of the " longest shortest path" between any two graph vertices u, v of a graph - diameter of the graph.
- What about ANF of bent functions versus diameter ?

Diameter of the graph versus ANF

- The length $\max _{(u, v)} d(u, v)$ of the "longest shortest path" between any two graph vertices u, v of a graph-diameter of the graph.
- What about ANF of bent functions versus diameter ?
- We had $f\left(x_{1}, \ldots, x_{4}\right)=x_{1} x_{2} \oplus x_{3} x_{4}$ and $\operatorname{deg}(f)=2$. What is connected here ?
- Consider "primitive cubes" (a canonical basis of \mathbb{F}_{2}^{4} if you want) $u=(1000)$ and $v=(0100) . u$ and v are connected (edge between them) since $f(u \oplus v)=f(1100)=1!$
- Is there a path between $u=(1000), v=(0100)$ and $w=(0010)$. NO !
- Diameter $=\operatorname{deg}(f)$

Equivalence classes - groups of automorphisms

- Affine Equivalence (EA) in cryptography defined as $f \sim g$ for $f, g \in \mathfrak{B}_{n}$ IFF

$$
\begin{equation*}
g(x)=f(A x+b)+\mu \cdot x+\epsilon \text { for all } x \in \mathbb{F}_{2}^{n} \tag{2}
\end{equation*}
$$

where $A \in G L\left(V_{n}\right), b, \mu \in \mathbb{F}_{2}^{n}$.

- FACTS : Hard problem since checking if $f \sim g$ requires $O\left(2^{n^{2}}\right)$ operations !
- EA preserves the degree of f and only permutes Walsh spectra (some other parameters invariant as well)

Equivalence classes - groups of automorphisms

- Affine Equivalence (EA) in cryptography defined as $f \sim g$ for $f, g \in \mathfrak{B}_{n}$ IFF

$$
\begin{equation*}
g(x)=f(A x+b)+\mu \cdot x+\epsilon \text { for all } x \in \mathbb{F}_{2}^{n} \tag{2}
\end{equation*}
$$

where $A \in G L\left(V_{n}\right)$, $b, \mu \in \mathbb{F}_{2}^{n}$.

- FACTS : Hard problem since checking if $f \sim g$ requires $O\left(2^{n^{2}}\right)$ operations !
- EA preserves the degree of f and only permutes Walsh spectra (some other parameters invariant as well)

Group of automorphisms - group of permutations (under composition) of vertices preserving adjacency. Correspondence :

- Composition of permutations - product of invertible matrices in $G L\left(V_{n}\right)$
- Should be the case the spectra of Γ_{f} is not affected by applying automorphism to a graph.
- Diameter of a graph is invariant under action of $\operatorname{Aut}\left(\Gamma_{f}\right)$.

Equivalence classes - example

- Let us, for $n=2 k$, identify \mathbb{F}_{2}^{n} with $\mathbb{F}_{2}^{k} \times \mathbb{F}_{2}^{k}$. Suppose $\pi: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}^{k}$ is a permutation and $g \in \mathfrak{B}_{k}$. Then, $f: \mathbb{F}_{2}^{k} \times \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}$ defined by

$$
\begin{equation*}
f(x, y)=x \cdot \pi(y)+g(y), \text { for all } x, y \in \mathbb{F}_{2}^{k}, \tag{3}
\end{equation*}
$$

is a bent function. Let now $S_{g}=\cup_{i=1}^{2^{k-1}} u_{i} \mathbb{F}_{2^{k}}$, where $u_{i}=\alpha^{i\left(2^{k}-1\right)}$ and α primitive in $\mathbb{F}_{2^{n}}$.

- Notice $\mathcal{U}=\left\{u_{0}, u_{1}, \ldots, u_{2^{k}}\right\}$ is the cyclic group of $\left(2^{k}+1\right)$-th roots of unity.

Equivalence classes - example

- Let us, for $n=2 k$, identify \mathbb{F}_{2}^{n} with $\mathbb{F}_{2}^{k} \times \mathbb{F}_{2}^{k}$. Suppose $\pi: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}^{k}$ is a permutation and $g \in \mathfrak{B}_{k}$. Then, $f: \mathbb{F}_{2}^{k} \times \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2}$ defined by

$$
\begin{equation*}
f(x, y)=x \cdot \pi(y)+g(y), \text { for all } x, y \in \mathbb{F}_{2}^{k}, \tag{3}
\end{equation*}
$$

is a bent function. Let now $S_{g}=\cup_{i=1}^{2^{k-1}} u_{i} \mathbb{F}_{2^{k}}$, where $u_{i}=\alpha^{i\left(2^{k}-1\right)}$ and α primitive in $\mathbb{F}_{2^{n}}$.

- Notice $\mathcal{U}=\left\{u_{0}, u_{1}, \ldots, u_{2^{k}}\right\}$ is the cyclic group of $\left(2^{k}+1\right)$-th roots of unity.
- Then $f \nsim g$! HOW ??
- Compare the second order derivatives !! Derivative (1st order) of f at a is $D_{f}(a)=f(x) \oplus f(x+a)$ again Boolean function of course!
- How are graphs of $f(x)$ and $f(x+a)$ related to the graph of $D_{f}(a)$??

Multiple output bent functions

- Nyberg proved in 1992 that for $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{k}$ the maximum output bent space is $n / 2$ in binary case !

Multiple output bent functions

- Nyberg proved in 1992 that for $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{k}$ the maximum output bent space is $n / 2$ in binary case!
- Meaning: One can find $f_{1}, \ldots, f_{k}, f_{i}: G F(2)^{n} \rightarrow G F(2), k \leq n / 2$, (multiple bent $\left.F: G F(2)^{n} \rightarrow G F(2)^{k}\right)$ such that

$$
a_{1} f_{1}+\ldots+a_{k} f_{k} \quad \text { is bent } \forall a \in G F(2)^{k} \backslash\{0\}
$$

- Hence at most $2^{n / 2}-1$ SRG graphs related to a single vectorial bent function!

Finding vectorial bent functions

- How to find such classes ?
- Use the relative trace $\operatorname{Tr}_{k}^{n}(x)=x+x^{2}+x^{2^{2}}+\ldots+x^{2^{n-k}}$, a function from $G F\left(2^{n}\right) \rightarrow G F\left(2^{k}\right)$.
- Consider $F(x)=\operatorname{Tr}_{k}^{n}\left(\sum_{i=0}^{2^{k}} a_{i} x^{i\left(2^{k}-1\right)}\right)$, where $a_{i} \in \mathbb{F}_{2^{n}}$

Finding vectorial bent functions

- How to find such classes ?
- Use the relative trace $\operatorname{Tr}_{k}^{n}(x)=x+x^{2}+x^{2^{2}}+\ldots+x^{2^{n-k}}$, a function from $G F\left(2^{n}\right) \rightarrow G F\left(2^{k}\right)$.
- Consider $F(x)=\operatorname{Tr}_{k}^{n}\left(\sum_{i=0}^{2^{k}} a_{i} x^{i\left(2^{k}-1\right)}\right)$, where $a_{i} \in \mathbb{F}_{2^{n}}$

Theorem [MPB] Let $n=2 k$, and define $F(x)=\operatorname{Tr}_{k}^{n}(P(x))$, where $P(x)=\sum_{i=1}^{t} a_{i} x^{i\left(2^{k}-1\right)}$ and $t \leq 2^{k}$. Then the following conditions are equivalent:

1. F is a vectorial bent function of dimension k.
2. $\sum_{u \in \mathcal{U}}(-1)^{T_{1}^{k}(\lambda F(u))}=1$ for all $\lambda \in K^{*}$.
3. There are two values $u \in \mathcal{U}$ such that $F(u)=0$, and furthermore if $F\left(u_{0}\right)=0$, then F is one-to-one and onto from $\mathcal{U}_{0}=\mathcal{U} \backslash u_{0}$ to K.

All credits go to Dillon!

- The exponent $2^{k}-1$ is known as Dillon's exponent, and for $n=2 k$ we have $2^{n}-1=\left(2^{k}-1\right)\left(2^{k}+1\right)$.
- Note that $\# G F\left(2^{k}\right) \backslash 0=2^{k}-1$, and there is a cyclic group U of $\left(2^{k}+1\right)$ th roots of unity of size $2^{k}+1$!!
- Take a primitive $\alpha \in G F\left(2^{n}\right)$ and consider: $\left\{\alpha^{\left(2^{k}-1\right) i}: i=0, \ldots 2^{k}\right\}=U$.

All credits go to Dillon!

- The exponent $2^{k}-1$ is known as Dillon's exponent, and for $n=2 k$ we have $2^{n}-1=\left(2^{k}-1\right)\left(2^{k}+1\right)$.
- Note that $\# G F\left(2^{k}\right) \backslash 0=2^{k}-1$, and there is a cyclic group U of $\left(2^{k}+1\right)$ th roots of unity of size $2^{k}+1$!!
- Take a primitive $\alpha \in G F\left(2^{n}\right)$ and consider: $\left\{\alpha^{\left(2^{k}-1\right) i}: i=0, \ldots 2^{k}\right\}=U$.
- Meaning: $G F\left(2^{n}\right)^{*}=\cup_{u \in U} u G F\left(2^{k}\right)^{*}$ so that $x=u y$, for $u \in U, y \in \mathbb{F}_{2^{k}}$ and

$$
P(u y)=\sum_{i=1}^{t} a_{i}(u y)^{i\left(2^{k}-1\right)}=\sum_{i=1}^{t} a_{i} u^{i\left(2^{k}-1\right)}=P(u)
$$

as $y^{i\left(2^{k}-1\right)}=1$ for any y because $y \in \mathbb{F}_{2^{k}}^{*}$.

- Recent result : we can count all bent F of this form and compute a_{i} explicitly [MPR2014] !!

Planar mappings

- From quadratic planar mappings you get commutative semifields (not associative) and affine/projective planes !
- Definition:

$$
F(x+a)-F(x),
$$

a permutation for any nonzero $a \in \mathbb{F}_{q}$ and $F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$!

Planar mappings

- From quadratic planar mappings you get commutative semifields (not associative) and affine/projective planes !
- Definition:

$$
F(x+a)-F(x)
$$

a permutation for any nonzero $a \in \mathbb{F}_{q}$ and $F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$!

- Example : $F(x)=x^{2}$ is planar over any field of odd characteristic.
- PROOF: $F(x+a)-F(x)=x^{2}+2 a x+a^{2}-x^{2}=2 a x+a^{2}$, permutation since any linear polynomial is permutation! But $F(x)$ CANNOT be a permutation, check for $x^{2}, \operatorname{gcd}\left(2, p^{n}-1\right)=2 \neq 1$!

Planar mappings

- From quadratic planar mappings you get commutative semifields (not associative) and affine/projective planes !
- Definition:

$$
F(x+a)-F(x)
$$

a permutation for any nonzero $a \in \mathbb{F}_{q}$ and $F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$!

- Example : $F(x)=x^{2}$ is planar over any field of odd characteristic.
- PROOF: $F(x+a)-F(x)=x^{2}+2 a x+a^{2}-x^{2}=2 a x+a^{2}$, permutation since any linear polynomial is permutation! But $F(x)$ CANNOT be a permutation, check for $x^{2}, \operatorname{gcd}\left(2, p^{n}-1\right)=2 \neq 1$!
- What if the characteristic of \mathbb{F}_{q} is $p=2$?

Planar mappings

- From quadratic planar mappings you get commutative semifields (not associative) and affine/projective planes !
- Definition:

$$
F(x+a)-F(x)
$$

a permutation for any nonzero $a \in \mathbb{F}_{q}$ and $F: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$!

- Example : $F(x)=x^{2}$ is planar over any field of odd characteristic.
- PROOF: $F(x+a)-F(x)=x^{2}+2 a x+a^{2}-x^{2}=2 a x+a^{2}$, permutation since any linear polynomial is permutation! But $F(x)$ CANNOT be a permutation, check for $x^{2}, \operatorname{gcd}\left(2, p^{n}-1\right)=2 \neq 1$!
- What if the characteristic of \mathbb{F}_{q} is $p=2$?
- NO planar mappings over $G F\left(2^{n}\right)$ since for any b if x_{0} is a solution to $F(x+a)+F(x)=b$ so is $x_{0}+a$

Bent versus planar mappings

- CONCLUSION: Planar $=$ Multiple bent of dimension $n!!$

Bent versus planar mappings

- CONCLUSION: Planar $=$ Multiple bent of dimension $n!!$
- For $p=2$ there are no planar mappings, but there are no bent functions of full space, recall bent space $\leq n / 2$
- PROBLEM: Define a set of bent functions

$$
f_{i}: G F\left(p^{n}\right) \rightarrow G F(p), \quad i=1, \ldots, n,
$$

so that all linear combinations are bent $=$ PLANAR FUNCTION !!

- If F is planar then F is not a permutation - bent functions are not balanced either !!

Known planar mappings

- By quadratic polynomials we mean Dembrovski-Ostrom polynomials

$$
F(x)=\sum_{0 \leq k, j<n} \lambda_{k, j} x^{p^{k}+p^{j}}, \quad \lambda_{k, j} \in \mathbb{F}_{p^{n}},
$$

added an affine function $A(x)=\sum_{0 \leq i<n} a_{i} x^{p^{i}}$

Known planar mappings

- By quadratic polynomials we mean Dembrovski-Ostrom polynomials

$$
F(x)=\sum_{0 \leq k, j<n} \lambda_{k, j} x^{p^{k}+p^{j}}, \quad \lambda_{k, j} \in \mathbb{F}_{p^{n}},
$$

added an affine function $A(x)=\sum_{0 \leq i<n} a_{i} x^{p^{i}}$

- Derivatives are linearized polynomials, easy to handle !
- Nontrivial interesting class of planar mappings is: $F(x)=x^{\frac{3^{t}+1}{2}}$ over $\mathbb{F}_{3^{n}}$, where t is odd and $\operatorname{gcd}(t, n)=1$.
- The only example of nonquadratic planar mappings - hard to find !!!

Open problem : Let $n \geq 8$ be even. Find a permutation F over $\operatorname{GF}\left(2^{n}\right)$ such that $F(x)+F(x+a)=b$ has either 0 or 2 solutions for any $a \in \mathbb{F}_{2^{n}}^{*}$ and $b \in \mathbb{F}_{2^{n}}$. Publish anywhere !!

Dillon's exponents - generalization

- IDEA: Use Dillon's exponents for $p>2$! Can we derive planar mappings as $F(x)=\sum_{i=0}^{p^{n / 2}} b_{i} x^{i\left(p^{n / 2}-1\right)} ?$
- For even $n=2 k$ we consider $\operatorname{Tr}\left(\lambda \sum_{i=0}^{p^{n / 2}} b_{i} x^{i\left(p^{n / 2}-1\right)}\right)$, and show that such a function from $G F\left(p^{n}\right)$ to $G F(p)$ is bent for any nonzero λ, i.e.,

$$
\left|\mathcal{F}_{F}(a)\right|=\left|\sum_{x \in \mathbb{F}_{p}^{n}} \omega^{\operatorname{Tr}(F(x))+\operatorname{Tr}(a x)}\right|=p^{n / 2}, \quad \omega=e^{\frac{2 \pi z}{p}}
$$

Dillon's exponents - generalization

- IDEA: Use Dillon's exponents for $p>2$! Can we derive planar mappings as $F(x)=\sum_{i=0}^{p^{n / 2}} b_{i} x^{i\left(p^{n / 2}-1\right)} ?$
- For even $n=2 k$ we consider $\operatorname{Tr}\left(\lambda \sum_{i=0}^{p^{n / 2}} b_{i} x^{i\left(p^{n / 2}-1\right)}\right)$, and show that such a function from $G F\left(p^{n}\right)$ to $G F(p)$ is bent for any nonzero λ, i.e.,

$$
\left|\mathcal{F}_{F}(a)\right|=\left|\sum_{x \in \mathbb{F}_{p}^{n}} \omega^{\operatorname{Tr}(F(x))+\operatorname{Tr}(a x)}\right|=p^{n / 2}, \quad \omega=e^{\frac{2 \pi z}{p}}
$$

- Cannot use U any longer since $\operatorname{gcd}\left(p^{k}-1, p^{k}+1\right)=2$.
- Use a set $V=1, \alpha, \ldots, \alpha^{p^{k}}$ and $\mathbb{F}_{p^{k}}^{*}$ as α^{i} can be written as

$$
\alpha^{\left(p^{k}-1\right) m} \alpha^{\prime}, \quad 0 \leq 1 \leq p^{k}-2,0 \leq m \leq p^{k} .
$$

- We specified the conditions that $F(x)=\operatorname{Tr}_{k}^{n} \sum_{i=0}^{p^{n / 2}} b_{i} x^{i\left(p^{n / 2}-1\right)}$ is vectorial bent [BPRG2014]. But dimension is only $n / 2$!!

Some concluding remarks

- What these generalized bent functions $(p>2)$ has to do with graphs ?
- Well, a LOT !! Again the graphs are strongly regular and are related to association schemes! Some of these classes gives you new classes of SRG non-isomorphic to known classes !!
- Planar mappings are nice and elegant problem, surprisingly small number of nontrivial (nonquadratic) examples.
- We expect (hopefully) that a vivid research will be activated if managing to propose a single nontrivial example.

Some concluding remarks II

- Can we define suitable graphs for permutations over finite fields ?
- Well, a collection of n Cayley graphs w.r.t. component functions ?
- We lose the property of being strongly regular but important to investigate e.g. x^{-1} over $G F\left(2^{8}\right)$. All encryption today is done using this permutation as S-box.
- Does it make sense to define graphs to investigate $F(x)+F(x+a)=b$? For a fixed $a \neq 0$ and b we may say a and b are connected via x_{0} iff x_{0} is a solution to $F(x)+F(x+a)=b$?! What kind of graph is that ?
- Research ideas : Correspondence of graphs to derivatives, planar mappings, equivalence classes, minimal ANF representation ...

