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Planar functions versus bent functions - outline

Introduction to Boolean and bent functions

Correspondence to Cayley graphs

Planar functions and relations to bent functions

Finding nonquadratic planar mappings (some ideas)

Final comments
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Short introduction to (vectorial) Boolean functions

e Mathematical notation : f : GF(2)" — GF(2)™ (Boolean if m = 1)

e Denote the set of Boolean respectively vectorial Boolean functions
by B, and B].

e Finding optimal functions is elusive - the space is 22" |



Short introduction to (vectorial) Boolean functions

e Mathematical notation : f : GF(2)" — GF(2)™ (Boolean if m = 1)

e Denote the set of Boolean respectively vectorial Boolean functions
by B, and B].

e Finding optimal functions is elusive - the space is 22" |

e Associate the mapping with a polynomial in a Boolean ring and
define ANF of f € B, e.g.

f(Xl) X2, X3, X4) = X1X2 S¥ X3X4,

where f : GF(2)* — GF(2), and f is bent in the sense defined
pretty soon.



Some applications in cryptography
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Nonlinear filtering generator ciphertext

FIng e . SP network using S-boxes - a block cipher

e S is nonlinear permutation substitution (S-box for confusion) and P
is a linear permutation (diffusion):

S:Fy—F; P:Fy—TF5, t=m;reN.



Boolean functions - truth table and ANF
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® The ANF (algebraic normal form) is f(x) = x1x2 @ x2x3 @ x3 (unique). The
degree is deg(f) = 2, the maximum length of the terms in ANF.
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Boolean functions - truth table and ANF
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The ANF (algebraic normal form) is f(x) = x1x2 @ xox3 @ x3 (unique). The
degree is deg(f) = 2, the maximum length of the terms in ANF.

Cayley graph: Define the support of f - Sf = {x € F] : f(x) =1}
Set of vertices V,, =F§ = GF(2)" and set of edges
Er = {(u,w) € F x F} | f(ud®w) = 1},

Any T'¢ = (Vi, Ef) is | S¢|- regular (elementary additive Abelian group)



Bent functions - as a special class

® Favourite combinatorial objects (difference sets, coding ...).

® Fix a basis of GF(2") to get isomorphism GF(2") 22 GF(2)" and define for
f: GF(2") — GF(2), Walsh transform

Wf(a): Z (71 x)+Tr(ax) Z( 1 +ax7

x€Fon x€FY

for a € Fon. If |Wi(a)| = 27/2 for all a € GF(2") then f is bent.



Bent functions - as a special class

Favourite combinatorial objects (difference sets, coding ...).

Fix a basis of GF(2") to get isomorphism GF(2") = GF(2)" and define for
f: GF(2") — GF(2), Walsh transform

Wf(a) — Z (71) x)+Tr(ax) Z( 1 +ax

x€Fon x€FY
for a € Fon. If |Wi(a)| = 27/2 for all a € GF(2") then f is bent.
Maximum distance (uniform) to affine functions a - x, n even !l
Parseval’s equality : Eaeu«“g We(a)? = 22", for any f € B, |

So what (as Miles Davis would put it) ?



Graph theoretic aspects

® \Well, T is strongly regular with parameters (V;, Sf, e, d) where :

e : the number of vertices adjacent to both u and v if u, v are adjacent, for all
u,vev

d : the number of vertices adjacent to both u and v if u, v are nonadjacent, for
all u,ve Vv
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Graph theoretic aspects

® \Well, T is strongly regular with parameters (V;, Sf, e, d) where :

e .

the number of vertices adjacent to both u and v if u, v are adjacent, for all

u,vev

d

: the number of vertices adjacent to both u and v if u, v are nonadjacent, for

all u,ve Vv

® Furthermore, f € B, is bent IFF e = d !

® For a bent function f(x1,...,xs) = x1x2 @ x3x4, we have |S¢| = 6 (valency is 6)
ande=d =2

11
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Graph theoretic aspects

Well, I'¢ is strongly regular with parameters (V,, S, e, d) where :

e : the number of vertices adjacent to both u and v if u, v are adjacent, for all
u,vev

d : the number of vertices adjacent to both u and v if u, v are nonadjacent, for
all u,ve Vv
Furthermore, f € B, is bent IFF e = d !

For a bent function f(xi,...,x4) = x1x2 ® x3xa, we have |S¢| = 6 (valency is 6)
ande=d =2

The Cayley graph of a bent function f is not bipartite.

If T¢ is triangle-free (no path of the form uvwu for distinct u,v,w € V) then f
is not bent. Converse, not true !
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Designing non-bent functions

® Assume you need W¢(0) =0, i.e., #{x : f(x) = 0} = #{x: f(x) =1} =21,

® Consequence : There exists a € FJ so that |Ws(a)| > 2"/2 (smaller distance to
linear function a - x !).
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Designing non-bent functions

® Assume you need W¢(0) =0, i.e., #{x : f(x) = 0} = #{x: f(x) =1} =21,

® Consequence : There exists a € FJ so that |Ws(a)| > 2"/2 (smaller distance to
linear function a - x !).

Construction (ZhangPasalic) Let for 1 <i<n—1, E; C ]Fé and E/ = E; x ]Fg*" such
that J7-}' E/ = F3, and

E/NE, =0, 1<ihi<ip<n-L1

Let Xp = (x1,-..,%n) € F3, X/ = (x1,...,x) € F and X" ; = (xi41,...,xn) € F§ ",
Let ¢; be a mapping from ]Fé to Fg_i. A GMM type Boolean function f € B, can be
constructed as follows:

f(Xn)=¢i(X])- X", ®gi(X]), ifX €E,i=1,...,n—1, (1)

where g; € B;.
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Graph spectra

Define Hadamard transform as W/(a) = erm‘g f(x)(—1)*, then the spectra
of fis WfH = H,fT, where H, is the Hadamard matrix defined (recursively),

_ 1 1 _ anl anl
w1 A)m=(HD )
Introduce ordering WH = {WH(0,...,0), WH(1,...,0),..., WH(1,...,1)}.

The entries of H, are h; j = (—=1)"" for i,j =0,...,2" — 1. Use binary
representation of i,j e.g. u3 = (1,1,0,...,0).
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Graph spectra

® Define Hadamard transform as W//(a) = er%‘g f(x)(—1)*, then the spectra

of fis WfH = H,fT, where H, is the Hadamard matrix defined (recursively),

_ 1 1 _ anl anl
w1 A)m=(HD )
® Introduce ordering WH = {W}(0,...,0), WH(1,...,0),..., WH(1,..., 1)}

® The entries of Hj are h; j = (—1)"" for i,j=0,...,2" — 1. Use binary
representation of i,j e.g. u3 = (1,1,0,...,0).

Theorem Let f : F] — F> , and let \;, 0 <7 < 2" — 1 be the eigenvalues of its
associated graph I's. Then \; = Ws(b;), for any i.

Proof: The eigenvectors of the Cayley graph s are the characters Qu(x) = (—1)¥*
of FJ [?]. Moreover, the i-th eigenvalue of As (adjacency matrix), corresponding to
the eigenvector Qy, is given by \; = eru,g(—l)bi‘xf(x) = WH(b;). O

1A
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Diameter of the graph versus ANF

® The length max(, ) d(u, v) of the "longest shortest path” between any two
graph vertices u, v of a graph - diameter of the graph.

® What about ANF of bent functions versus diameter ?
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Diameter of the graph versus ANF

The length max(,,,) d(u, v) of the "longest shortest path” between any two
graph vertices u, v of a graph - diameter of the graph.

What about ANF of bent functions versus diameter ?
We had f(x1,...,x4) = x1x2 @ x3xa and deg(f) = 2. What is connected here ?

Consider " primitive cubes” (a canonical basis of F4 if you want) u = (1000) and
v = (0100). u and v are connected (edge between them) since
f(udv) = £(1100) = 1 !

Is there a path between u = (1000) , v = (0100) and w = (0010). NO !

Diameter = deg(f)
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Equivalence classes - groups of automorphisms

Affine Equivalence (EA) in cryptography defined as f ~ g for f,g € B, IFF
g(x) = f(Ax+ b) + p - x + ¢ for all x € F3, (2)

where A € GL(V,), b, n € F.

FACTS : Hard problem since checking if f ~ g requires 0(2"2) operations !

EA preserves the degree of f and only permutes Walsh spectra (some other
parameters invariant as well)
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Equivalence classes - groups of automorphisms

® Affine Equivalence (EA) in cryptography defined as f ~ g for f,g € B, IFF
g(x) = f(Ax+ b) + p - x + ¢ for all x € F3, (2)
where A € GL(V,), b, n € F.

® FACTS : Hard problem since checking if f ~ g requires 0(2"2) operations !

® EA preserves the degree of f and only permutes Walsh spectra (some other
parameters invariant as well)

Group of automorphisms - group of permutations (under composition) of vertices
preserving adjacency. Correspondence :

® Composition of permutations - product of invertible matrices in GL(V})

® Should be the case the spectra of ¢ is not affected by applying automorphism
to a graph.

® Diameter of a graph is invariant under action of Aut(l'¢).
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Equivalence classes - example

® Let us, for n = 2k, identify FJ with ]F’Z‘ X Fé Suppose T : ]F’Z‘ — ]F’Z‘ is a
permutation and g € By. Then, f: Fé X ]F’Z‘ — [ defined by

f(x,y) = x-m(y) + &(y), for all x,y € Fs, ®3)
is a bent function. Let now S; = U?i;lu,-]FZk, where u; = a"(2k*1) and o
primitive in Fon.
® Notice U = {up, u1, ..., uy} is the cyclic group of (2% + 1)-th roots of unity.
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Equivalence classes - example

Let us, for n = 2k, identify F5 with ]F’Z‘ X Fé Suppose T : ]F’Z‘ — ]F’Z‘ is a
permutation and g € By. Then, f: Fé X ]F’Z‘ — [ defined by

f(x,y) = x-m(y) + &(y), for all x,y € Fs, ®3)
is a bent function. Let now S; = U?i;lu,-]FZk, where u; = af(Zk’l) and o
primitive in Fon.
Notice U = {ug, u1, ..., Uy } is the cyclic group of (2% + 1)-th roots of unity.

® Then f £ g ! HOW ??

Compare the second order derivatives !! Derivative (1st order) of f at a is
Dr¢(a) = f(x) @ f(x + a) again Boolean function of course !

How are graphs of f(x) and f(x + a) related to the graph of D¢(a) 77
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Multiple output bent functions

® Nyberg proved in 1992 that for F : F] — ]F’z‘ the maximum output bent space is
n/2 in binary case !
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Multiple output bent functions

® Nyberg proved in 1992 that for F : F] — IF’z‘ the maximum output bent space is
n/2 in binary case !

® Meaning: One can find f,...,f, fi : GF(2)" — GF(2), k < n/2, (multiple bent
F: GF(2)" — GF(2)¥) such that
aifi +...+akfi is bent Ya € GF(2)X \ {0}.

® Hence at most 2"/2 — 1 SRG graphs related to a single vectorial bent function !
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Finding vectorial bent functions

® How to find such classes ?

® Use the relative trace Tr](x) = x + x? + x4+t x2"7k7 a function from
GF(2") — GF(2%).

® Consider F(x) = T’;’:(E,{o aix'@* 1)) where a; € Fan

b1
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Finding vectorial bent functions

® How to find such classes ?

® Use the relative trace Tr](x) = x + x? + x4+t )<2"7k7 a function from
GF(2") — GF(2%).

® Consider F(x) = T’Q(E;{O a;xf(zk’l)), where a; € Fon

Theorem [MPB] Let n = 2k, and define F(x) = Tr](P(x)), where
P(x)=3F, a;xi(2k_1) and t < 2K. Then the following conditions are equivalent:

1. F is a vectorial bent function of dimension k.
2. Zueu(—l)T’f(AF(“)) =1forall A € K*.

3. There are two values u € U such that F(u) = 0, and furthermore if F(up) =0,
then F is one-to-one and onto from Uy = U \ up to K.
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All credits go to Dillon !
The exponent 25 — 1 is known as Dillon’s exponent, and for n = 2k we have
2" —1=(2k —1)(2k +1).

Note that #GF(2%)\ 0 = 2K — 1, and there is a cyclic group U of (2K 4 1)th
roots of unity of size 2k 11

Take a primitive a € GF(2") and consider: {2~V :j =0, .. 25} = U.

7 | A



All credits go to Dillon !

The exponent 25 — 1 is known as Dillon’s exponent, and for n = 2k we have
2" —1=(2k —1)(2k +1).

Note that #GF(2%)\ 0 = 2K — 1, and there is a cyclic group U of (2K 4 1)th
roots of unity of size 2K 41 11

Take a primitive a € GF(2") and consider: {a(zk’l)f 1i=0,...2k} = U.

Meaning: GF(2")* = U,cyuGF(2%)* so that x = uy, for u € U, y € Fy and

t t
P(uy) = > ai(uy) @D =3 i@ D = P(u),
i=1 i=1
as y"(Zk_l) =1 for any y because y € ]F;‘k.

Recent result : we can count all bent F of this form and compute a; explicitly
[MPR2014] !I
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Planar mappings

® From quadratic planar mappings you get commutative semifields (not
associative) and affine/projective planes !

® Definition:
F(x +a) — F(x),

a permutation for any nonzero a € Fq and F : Fq — [y !

290 / A0



Planar mappings

From quadratic planar mappings you get commutative semifields (not
associative) and affine/projective planes !

Definition:
F(x+a) = F(x),
a permutation for any nonzero a € Fq and F : Fq — [y !

Example :F(x) = x? is planar over any field of odd characteristic.

PROOF: F(x + a) — F(x) = x? + 2ax + a® — x2 = 2ax + a?, permutation since
any linear polynomial is permutation ! But F(x) CANNOT be a permutation,
check for x?, ged(2,p" —1) =2 #1!

20
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Planar mappings

From quadratic planar mappings you get commutative semifields (not
associative) and affine/projective planes !

Definition:
F(x+a) — F(x),

a permutation for any nonzero a € Fq and F : Fq — [y !

Example :F(x) = x? is planar over any field of odd characteristic.

PROOF: F(x + a) — F(x) = x? + 2ax + a® — x2 = 2ax + a?, permutation since
any linear polynomial is permutation ! But F(x) CANNOT be a permutation,
check for x?, ged(2,p" —1) =2 #1!

What if the characteristic of Fg is p =27

21
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Planar mappings

From quadratic planar mappings you get commutative semifields (not
associative) and affine/projective planes !

Definition:
F(x+a) = F(x),
a permutation for any nonzero a € Fq and F : Fq — [y !

Example :F(x) = x? is planar over any field of odd characteristic.

PROOF: F(x + a) — F(x) = x? + 2ax + a® — x2 = 2ax + a?, permutation since
any linear polynomial is permutation ! But F(x) CANNOT be a permutation,
check for x?, ged(2,p" —1) =2 #1!

What if the characteristic of Fg is p =27

NO planar mappings over GF(2") since for any b if xp is a solution to
F(x+a)+ F(x)=bsoisxp+a

ll
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Bent versus planar mappings

® CONCLUSION: Planar = Multiple bent of dimension n !!
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Bent versus planar mappings

CONCLUSION: Planar = Multiple bent of dimension n !!

For p = 2 there are no planar mappings, but there are no bent functions of full
space, recall bent space < n/2

PROBLEM: Define a set of bent functions

fi GF(p") = GF(p), i=1,...,n,

so that all linear combinations are bent = PLANAR FUNCTION !!

If F is planar then F is not a permutation — bent functions are not balanced
either !!
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Known planar mappings

® By quadratic polynomials we mean Dembrovski-Ostrom polynomials

F)= 3 Mx® ™, Ay € Fp,
0<k,j<n

added an affine function A(x) = > o<, ., a,-xpi

Y
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Known planar mappings

By quadratic polynomials we mean Dembrovski-Ostrom polynomials

F)= 3 Mx® ™, Ay € Fp,
0<k,j<n

added an affine function A(x) = > o<, ., a,-xpi

Derivatives are linearized polynomials, easy to handle !

Nontrivial interesting class of planar mappings is: F(x) = x" 2 over F3n, where

t is odd and ged(t, n) = 1.

The only example of nonquadratic planar mappings - hard to find !!!

Open problem : Let n > 8 be even. Find a permutation F over GF(2") such
that F(x) 4+ F(x + a) = b has either 0 or 2 solutions for any a € F3, and
b € Fan. Publish anywhere !!

2
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Dillon’s exponents - generalization

® |DEA: Use Dillon’s exponents for p > 2 | Can we derive planar mappings as

F(x) = fN/Z b;xi(pn/z’l)?

n/2 i n
® For even n = 2k we consider Tr(A Zf:g bix/(P /2*1)), and show that such a
function from GF(p") to GF(p) is bent for any nonzero A, i.e.,

21

‘«FF(‘?” _ I Z wTr(F(x))+Tr(ax)| — pn/2, w—ep

n
xG:p

7
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Dillon’s exponents - generalization

IDEA: Use Dillon's exponents for p > 2 ! Can we derive planar mappings as

F(x) = f’N/Z b,-x’-(pn/z’l)?

n/2 i n
For even n = 2k we consider Tr(A Zf’:g bix/(P /2*1)), and show that such a
function from GF(p") to GF(p) is bent for any nonzero A, i.e.,

21

‘FF(QN _ I Z wTr(F(x))+Tr(ax)| — pn/27 w—ep

n
xG:p

Cannot use U any longer since gcd(pX — 1, p¥ +1) = 2.

k ; .
Useaset V=1a,...,aP and ]F:k as ' can be written as

K
alP =mal o< 1< pk—2 0<m<pk.

i .. /2 (o . .
We specified the conditions that F(x) = Tr] fio bixi(P /2-1) is vectorial bent

[BPRG2014]. But dimension is only n/2 !l

2T
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Some concluding remarks

What these generalized bent functions (p > 2) has to do with graphs ?

Well, a LOT !! Again the graphs are strongly regular and are related to
association schemes ! Some of these classes gives you new classes of SRG
non-isomorphic to known classes !!

Planar mappings are nice and elegant problem, surprisingly small number of
nontrivial (nonquadratic) examples.

We expect (hopefully) that a vivid research will be activated if managing to
propose a single nontrivial example.
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Some concluding remarks Il

Can we define suitable graphs for permutations over finite fields ?
Well, a collection of n Cayley graphs w.r.t. component functions ?

We lose the property of being strongly regular but important to investigate e.g.

x~1 over GF(28). All encryption today is done using this permutation as S-box.

Does it make sense to define graphs to investigate F(x) + F(x+a) = b ? For a
fixed a # 0 and b we may say a and b are connected via x iff xp is a solution to
F(x) + F(x + a) = b ?! What kind of graph is that ?

Research ideas : Correspondence of graphs to derivatives, planar mappings,
equivalence classes, minimal ANF representation ...
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