Automorphisms of Cayley Graphs that Respect Partitions

Joy Morris

University of Lethbridge
PhD Summer School in Discrete Mathematics, Rogla, Slovenia, July 2, 2014

REPUBLIKA SLOVENIJA MINISTRSTVO ZA IZOBRAŽEVANJE, ZNANOST IN ŠPORT

Definition of a Circulant Graph

Definition

$\operatorname{Circ}(n ; S)$ is the digraph whose vertices are the elements of \mathbb{Z}_{n}, with m adjacent to $m+s$ iff $s \in S$.

Definition of a Circulant Graph

Definition

$\operatorname{Circ}(n ; S)$ is the digraph whose vertices are the elements of \mathbb{Z}_{n}, with m adjacent to $m+s$ iff $s \in S$.

Definition of a Circulant Graph

Definition

$\operatorname{Circ}(n ; S)$ is the digraph whose vertices are the elements of \mathbb{Z}_{n}, with m adjacent to $m+s$ iff $s \in S$. For a graph, we require $S=-S, 0 \notin S$.

Example

$$
n=10, S=\{1,2,4\}
$$

Definition of a Cayley Graph

Definition

$\operatorname{Cay}(G ; S)$ is the digraph whose vertices are the elements of G, with g adjacent to $g s$ iff $s \in S$.

Definition of a Cayley Graph

Definition

$\operatorname{Cay}(G ; S)$ is the digraph whose vertices are the elements of G, with g adjacent to $g s$ iff $s \in S$. For a graph, we require $S=S^{-1}$, $1 \notin S$.

Notice...
there is a natural partition of the edges of $\operatorname{Circ}(n ; S)$ (or more generally of $\operatorname{Cay}(G ; S)$) by the elements of S.

Notice...
there is a natural partition of the edges of $\operatorname{Circ}(n ; S)$ (or more generally of $\operatorname{Cay}(G ; S))$ by the elements of S.

$$
n=10, S=\{1,2,4\}
$$

Furthermore...

there is a natural refinement of this partition of the edges of $\operatorname{Circ}(n ; S)$ (or more generally of $\operatorname{Cay}(G ; S)$) by making each cycle of the previous partition, a part of the new partition.

Furthermore...

there is a natural refinement of this partition of the edges of $\operatorname{Circ}(n ; S)$ (or more generally of $\operatorname{Cay}(G ; S)$) by making each cycle of the previous partition, a part of the new partition.

Definition

We say that an automorphism of a graph respects a partition of the edge set of the graph, if it takes every set of edges that is an element of the partition, to a set of edges that is also an element of the partition.

Definition

We say that an automorphism of a graph respects a partition of the edge set of the graph, if it takes every set of edges that is an element of the partition, to a set of edges that is also an element of the partition. So the sets of edges in the partition are treated as blocks by the automorphism.

Proposition

In a connected Cayley digraph $\operatorname{Cay}(G ; S)$, any automorphism α that respects the first partition and fixes the vertex 1, is an automorphism of G.

Proposition

In a connected Cayley digraph $\operatorname{Cay}(G ; S)$, any automorphism α that respects the first partition and fixes the vertex 1, is an automorphism of G.

Proof.
Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$.

Proposition

In a connected Cayley digraph $\operatorname{Cay}(G ; S)$, any automorphism α that respects the first partition and fixes the vertex 1, is an automorphism of G.

Proof.

Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$. Since the automorphism α respects the first partition, we have any edge $\left(g, g s_{i}\right)$ is mapped to $\left(\alpha(g), \alpha(g) s_{\pi(i)}\right)$ for some permutation π of $\{1, \ldots, k\}$.

Proposition

In a connected Cayley digraph $\operatorname{Cay}(G ; S)$, any automorphism α that respects the first partition and fixes the vertex 1, is an automorphism of G.

Proof.
Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$. Since the automorphism α respects the first partition, we have any edge $\left(g, g s_{i}\right)$ is mapped to $\left(\alpha(g), \alpha(g) s_{\pi(i)}\right)$ for some permutation π of $\{1, \ldots, k\}$.
We must show that for any $g, h \in G, \alpha(g h)=\alpha(g) \alpha(h)$.

Proposition

In a connected Cayley digraph $\operatorname{Cay}(G ; S)$, any automorphism α that respects the first partition and fixes the vertex 1, is an automorphism of G.

Proof.
Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$. Since the automorphism α respects the first partition, we have any edge $\left(g, g s_{i}\right)$ is mapped to $\left(\alpha(g), \alpha(g) s_{\pi(i)}\right)$ for some permutation π of $\{1, \ldots, k\}$.
We must show that for any $g, h \in G, \alpha(g h)=\alpha(g) \alpha(h)$. Since the graph is connected, we can write g as a word in s_{1}, \ldots, s_{k}. What we will actually show is that for any $g=s_{i_{1}} \ldots s_{i_{m}}$, we must have $\alpha(g)=s_{\pi\left(i_{1}\right)} \ldots s_{\pi\left(i_{m}\right)}$; this is sufficient.

Proposition

In a connected Cayley digraph $\operatorname{Cay}(G ; S)$, any automorphism α that respects the first partition and fixes the vertex 1 , is an automorphism of G.

Proof.
Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$. Since the automorphism α respects the first partition, we have any edge $\left(g, g s_{i}\right)$ is mapped to $\left(\alpha(g), \alpha(g) s_{\pi(i)}\right)$ for some permutation π of $\{1, \ldots, k\}$.
We must show that for any $g, h \in G, \alpha(g h)=\alpha(g) \alpha(h)$. Since the graph is connected, we can write g as a word in s_{1}, \ldots, s_{k}. What we will actually show is that for any $g=s_{i_{1}} \ldots s_{i_{m}}$, we must have $\alpha(g)=s_{\pi\left(i_{1}\right)} \ldots s_{\pi\left(i_{m}\right)}$; this is sufficient. We work by induction on m.

Proposition

In a connected Cayley digraph $\operatorname{Cay}(G ; S)$, any automorphism α that respects the first partition and fixes the vertex 1 , is an automorphism of G.

Proof.
Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$. Since the automorphism α respects the first partition, we have any edge ($g, g s_{i}$) is mapped to $\left(\alpha(g), \alpha(g) s_{\pi(i)}\right)$ for some permutation π of $\{1, \ldots, k\}$.
We must show that for any $g, h \in G, \alpha(g h)=\alpha(g) \alpha(h)$. Since the graph is connected, we can write g as a word in s_{1}, \ldots, s_{k}. What we will actually show is that for any $g=s_{i_{1}} \ldots s_{i_{m}}$, we must have $\alpha(g)=s_{\pi\left(i_{1}\right)} \ldots s_{\pi\left(i_{m}\right)}$; this is sufficient. We work by induction on m. If $g=s_{i}$, then $(1, g)=\left(1, s_{i}\right)$ is an edge, and is mapped to $\left(1, s_{\pi(i)}\right)$,

Proposition

In a connected Cayley digraph $\operatorname{Cay}(G ; S)$, any automorphism α that respects the first partition and fixes the vertex 1 , is an automorphism of G.

Proof.
Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$. Since the automorphism α respects the first partition, we have any edge ($g, g s_{i}$) is mapped to $\left(\alpha(g), \alpha(g) s_{\pi(i)}\right)$ for some permutation π of $\{1, \ldots, k\}$.
We must show that for any $g, h \in G, \alpha(g h)=\alpha(g) \alpha(h)$. Since the graph is connected, we can write g as a word in s_{1}, \ldots, s_{k}. What we will actually show is that for any $g=s_{i_{1}} \ldots s_{i_{m}}$, we must have $\alpha(g)=s_{\pi\left(i_{1}\right)} \ldots s_{\pi\left(i_{m}\right)}$; this is sufficient. We work by induction on m. If $g=s_{i}$, then $(1, g)=\left(1, s_{i}\right)$ is an edge, and is mapped to $\left(1, s_{\pi(i)}\right)$, so we have $\alpha(g)=s_{\pi(i)}$.

Proposition

In a connected Cayley digraph $\operatorname{Cay}(G ; S)$, any automorphism α that respects the first partition and fixes the vertex 1 , is an automorphism of G.

Proof.
Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$. Since the automorphism α respects the first partition, we have any edge ($g, g s_{i}$) is mapped to $\left(\alpha(g), \alpha(g) s_{\pi(i)}\right)$ for some permutation π of $\{1, \ldots, k\}$.
We must show that for any $g, h \in G, \alpha(g h)=\alpha(g) \alpha(h)$. Since the graph is connected, we can write g as a word in s_{1}, \ldots, s_{k}. What we will actually show is that for any $g=s_{i_{1}} \ldots s_{i_{m}}$, we must have $\alpha(g)=s_{\pi\left(i_{1}\right)} \ldots s_{\pi\left(i_{m}\right)}$; this is sufficient. We work by induction on m. If $g=s_{i}$, then $(1, g)=\left(1, s_{i}\right)$ is an edge, and is mapped to $\left(1, s_{\pi(i)}\right)$, so we have $\alpha(g)=s_{\pi(i)}$. Suppose now that $g=s_{i_{1}} \ldots s_{i_{m}}, \alpha(g)=s_{\pi\left(i_{1}\right)} \ldots s_{\pi\left(i_{m}\right)}$, and $h=g s_{j}$.

Proposition

In a connected Cayley digraph $\operatorname{Cay}(G ; S)$, any automorphism α that respects the first partition and fixes the vertex 1 , is an automorphism of G.

Proof.

Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$. Since the automorphism α respects the first partition, we have any edge ($g, g s_{i}$) is mapped to $\left(\alpha(g), \alpha(g) s_{\pi(i)}\right)$ for some permutation π of $\{1, \ldots, k\}$.
We must show that for any $g, h \in G, \alpha(g h)=\alpha(g) \alpha(h)$. Since the graph is connected, we can write g as a word in s_{1}, \ldots, s_{k}. What we will actually show is that for any $g=s_{i_{1}} \ldots s_{i_{m}}$, we must have $\alpha(g)=s_{\pi\left(i_{1}\right)} \ldots s_{\pi\left(i_{m}\right)}$; this is sufficient. We work by induction on m. If $g=s_{i}$, then $(1, g)=\left(1, s_{i}\right)$ is an edge, and is mapped to $\left(1, s_{\pi(i)}\right)$, so we have $\alpha(g)=s_{\pi(i)}$. Suppose now that $g=s_{i_{1}} \ldots s_{i_{m}}, \alpha(g)=s_{\pi\left(i_{1}\right)} \ldots s_{\pi\left(i_{m}\right)}$, and $h=g s_{j}$. We know that $(g, h)=\left(g, g s_{j}\right)$ is an edge and is mapped to $\left(\alpha(g), \alpha(g) s_{\pi(j)}\right)$.

Proposition

In a connected Cayley digraph Cay(G;S), any automorphism α that respects the first partition and fixes the vertex 1, is an automorphism of G.

Proof.

Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$. Since the automorphism α respects the first partition, we have any edge ($g, g s_{i}$) is mapped to $\left(\alpha(g), \alpha(g) s_{\pi(i)}\right)$ for some permutation π of $\{1, \ldots, k\}$.
We must show that for any $g, h \in G, \alpha(g h)=\alpha(g) \alpha(h)$. Since the graph is connected, we can write g as a word in s_{1}, \ldots, s_{k}. What we will actually show is that for any $g=s_{i_{1}} \ldots s_{i_{m}}$, we must have $\alpha(g)=s_{\pi\left(i_{1}\right)} \ldots s_{\pi\left(i_{m}\right)}$; this is sufficient. We work by induction on m. If $g=s_{i}$, then $(1, g)=\left(1, s_{i}\right)$ is an edge, and is mapped to $\left(1, s_{\pi(i)}\right)$, so we have $\alpha(g)=s_{\pi(i)}$. Suppose now that $g=s_{i_{1}} \ldots s_{i_{m}}, \alpha(g)=s_{\pi\left(i_{1}\right)} \ldots s_{\pi\left(i_{m}\right)}$, and $h=g s_{j}$. We know that $(g, h)=\left(g, g s_{j}\right)$ is an edge and is mapped to $\left(\alpha(g), \alpha(g) s_{\pi(j)}\right)$. Thus $\alpha(h)=\alpha(g) s_{\pi(j)}$, as desired.

Notice...
in a graph (rather than a digraph), this proof won't work immediately, because

Notice...
in a graph (rather than a digraph), this proof won't work immediately, because $\alpha\left(s_{i}\right)$ could be $s_{\pi(i)}$ or $s_{\pi(i)}^{-1}$.

Notice...
in a graph (rather than a digraph), this proof won't work immediately, because $\alpha\left(s_{i}\right)$ could be $s_{\pi(i)}$ or $s_{\pi(i)}^{-1}$.
So $\alpha\left(s_{i} s_{j}\right)$ could be any one of

- $s_{\pi(i)} s_{\pi(j)}$;
- $s_{\pi(i)} S_{\pi(j)}^{-1}$;
- $s_{\pi(i)}^{-1} s_{\pi(j)}$; or
- $s_{\pi(i)}^{-1} s_{\pi(j)}^{-1}$.

Question [Conder, Pisanski, Žitnik]

In the case of circulant graphs, is an automorphism of the graph that fixes the identity vertex and respects the second partition, necessarily an automorphism of the group?

Question [Conder, Pisanski, Žitnik]

In the case of circulant graphs, is an automorphism of the graph that fixes the identity vertex and respects the second partition, necessarily an automorphism of the group? (i.e. a multiplier)

Question [Conder, Pisanski, Žitnik]

In the case of circulant graphs, is an automorphism of the graph that fixes the identity vertex and respects the second partition, necessarily an automorphism of the group? (i.e. a multiplier)

Question [Conder, Pisanski, Žitnik]

In the case of circulant graphs, is an automorphism of the graph that fixes the identity vertex and respects the second partition, necessarily an automorphism of the group? (i.e. a multiplier)

This question arose in the context of studying the structure and automorphism groups of Gl-graphs, which are a generalisation of both

Question [Conder, Pisanski, Žitnik]

In the case of circulant graphs, is an automorphism of the graph that fixes the identity vertex and respects the second partition, necessarily an automorphism of the group? (i.e. a multiplier)

This question arose in the context of studying the structure and automorphism groups of Gl-graphs, which are a generalisation of both generalised Petersen graphs; and

Question [Conder, Pisanski, Žitnik]

In the case of circulant graphs, is an automorphism of the graph that fixes the identity vertex and respects the second partition, necessarily an automorphism of the group? (i.e. a multiplier)

This question arose in the context of studying the structure and automorphism groups of Gl-graphs, which are a generalisation of both generalised Petersen graphs; and the Foster census I-graphs.

Question [Conder, Pisanski, Žitnik]

In the case of circulant graphs, is an automorphism of the graph that fixes the identity vertex and respects the second partition, necessarily an automorphism of the group? (i.e. a multiplier)

This question arose in the context of studying the structure and automorphism groups of Gl-graphs, which are a generalisation of both generalised Petersen graphs; and the Foster census l-graphs. but seemed of interest in its own right.

Question [Conder, Pisanski, Žitnik]

In the case of circulant graphs, is an automorphism of the graph that fixes the identity vertex and respects the second partition, necessarily an automorphism of the group? (i.e. a multiplier)

This question arose in the context of studying the structure and automorphism groups of GI-graphs, which are a generalisation of both generalised Petersen graphs; and the Foster census l-graphs. but seemed of interest in its own right.

Answer [M., 2012]
Yes (for connected circulants).

Question [Conder, Pisanski, Žitnik]

In the case of circulant graphs, is an automorphism of the graph that fixes the identity vertex and respects the second partition, necessarily an automorphism of the group? (i.e. a multiplier)

This question arose in the context of studying the structure and automorphism groups of GI-graphs, which are a generalisation of both generalised Petersen graphs; and the Foster census l-graphs. but seemed of interest in its own right.

Answer [M., 2012]
Yes (for connected circulants).

Corollary

For circulant graphs (not just digraphs), a graph automorphism that respects the first partition and fixes the identity vertex, is necessarily a group automorphism.

Main ideas of the proof

Main ideas of the proof

- (By straightforward number theory arguments.) If the graph is connected, then for any graph automorphism α that fixes 0 and respects the second partition,

Main ideas of the proof

- (By straightforward number theory arguments.) If the graph is connected, then for any graph automorphism α that fixes 0 and respects the second partition, there is a group automorphism β such that $\beta \alpha$ fixes the vertex as for every $a \in \mathbb{Z}$ and every $s \in S$.

Main ideas of the proof

- (By straightforward number theory arguments.) If the graph is connected, then for any graph automorphism α that fixes 0 and respects the second partition, there is a group automorphism β such that $\beta \alpha$ fixes the vertex as for every $a \in \mathbb{Z}$ and every $s \in S$.
- (Easy consequence of definitions.) Any such $\beta \alpha$ fixes every coset of $\langle s\rangle$ setwise, for every $s \in S$.

Main ideas of the proof

- (By straightforward number theory arguments.) If the graph is connected, then for any graph automorphism α that fixes 0 and respects the second partition, there is a group automorphism β such that $\beta \alpha$ fixes the vertex as for every $a \in \mathbb{Z}$ and every $s \in S$.
- (Easy consequence of definitions.) Any such $\beta \alpha$ fixes every coset of $\langle s\rangle$ setwise, for every $s \in S$.
- (With a lot of technical details.) If $x, x+s$, and $x+s^{\prime}$ are all fixed by a graph automorphism that respects the second partition, then so is $x+s+s^{\prime}$.

Idea of the technical part - An Example Induct on the size of S.

Idea of the technical part - An Example
Induct on the size of S. Suppose $n=60$, and $s=5, s^{\prime}=3$.

Idea of the technical part - An Example
Induct on the size of S. Suppose $n=60$, and $s=5, s^{\prime}=3$.

Idea of the technical part - An Example
Induct on the size of S. Suppose $n=60$, and $s=5, s^{\prime}=3$.

We know that every row and every "column" of this diagram is fixed setwise, so each of their intersections, i.e. each colour class (coset of $\langle 15\rangle$) is fixed setwise.

Idea of the technical part - An Example
Induct on the size of S. Suppose $n=60$, and $s=5, s^{\prime}=3$.

We know that every row and every "column" of this diagram is fixed setwise, so each of their intersections, i.e. each colour class (coset of $\langle 15\rangle$) is fixed setwise.
But why pointwise? It turns out that if 8 moves to $8+15 z$ with $0<z<4$, we can show that there is some prime that divides both $|3| /|15|$ and $|5| /|15|$, which is not possible.

Theorem

There is a Cayley graph on \mathbb{Z}_{n}^{3} with a graph automorphism that respects the second partition but is not a group automorphism:

Theorem

There is a Cayley graph on \mathbb{Z}_{n}^{3} with a graph automorphism that respects the second partition but is not a group automorphism: namely, $\left(C_{n} \square C_{n}\right)$) C_{n}.

Theorem

There is a Cayley graph on \mathbb{Z}_{n}^{3} with a graph automorphism that respects the second partition but is not a group automorphism: namely, $\left(C_{n} \square C_{n}\right)$) C_{n}.

Some Questions that Remain

Question

Is the same property true for any more general class of groups or of graphs?

Some Questions that Remain

Question

Is the same property true for any more general class of groups or of graphs? E.g. nonabelian groups of square-free order.

Some Questions that Remain

Question

Is the same property true for any more general class of groups or of graphs? E.g. nonabelian groups of square-free order.

Question
Is it true that graph automorphisms that respect the first partition are always group automorphisms (possibly known)?

Some Questions that Remain

Question

Is the same property true for any more general class of groups or of graphs? E.g. nonabelian groups of square-free order.

Question
Is it true that graph automorphisms that respect the first partition are always group automorphisms (possibly known)?

Question
Are there other natural partitions for which we could ask this question?

Some Questions that Remain

Question

Is the same property true for any more general class of groups or of graphs? E.g. nonabelian groups of square-free order.

Question
Is it true that graph automorphisms that respect the first partition are always group automorphisms (possibly known)?

Question
Are there other natural partitions for which we could ask this question? E.g. edges that are mapped to one another by automorphisms of a vertex-transitive graph that is not a Cayley graph?

Thank you!

