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Some important problems
“All groups are finite”

Classify all groups of given order up to isomorphism.

Classify all finite groups up to some common property.

Describe the structure of given groups.

Find a way of constructing new finite groups from known ones.

Count the number of groups of order n.
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Abelian groups
How a classification result should really look like

Theorem (Fundamental Theorem of Abelian Groups)

Every finitely generated abelian group is a direct product of cyclic
groups

Cm1 × Cm2 × · · · × Cmr × C k
∞,

where mi |mi+1 for all i = 1, . . . , r − 1. Two groups of this form are
isomorphic if and only if the numbers m1, . . . ,mr and k are the
same for the two groups.

Alternatively, all finite abelian groups are direct products of cyclic
groups of prime power order.
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Sylow theorems
Basic structure of finite groups

Theorem (Sylow’s theorems)

Let G be a group of order pa ·m, where m is not divisible by the
prime p. Then the following holds:

1 G contains at least one subgroup of order pa. Any two
subgroups of this order are conjugate in G. They are called the
Sylow p-subgroups of G .

2 For each n ≤ a, G contains at least one subgroup of order pn.
Every such subgroup is contained in a Sylow p-subgroup.

3 Let sp be the number of Sylow p-subgroups of G . Then sp ≡ 1
mod p and sp divides m.
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Example: groups of order pq, p > q

Example

Let P be a Sylow p-subgroup, and Q a Sylow q-subgroup of G .
Then Sylow’s theorem implies that sp = 1, i.e., P is a normal
subgroup of G . Similarly, sq ∈ {1, p}, and sp = 1 if and only if
p ≡ 1 mod q. We separate the two cases:

1 sq = 1. One can prove G ∼= Cp × Cq
∼= Cpq.

2 sq = p. Then q divides p− 1. We get a group with presentation

〈a, b | ap = bq = 1, ab = ak〉

for some k satisfying kq ≡ 1 mod p, k 6≡ 1 mod p.
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GAP
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GAP
Just because nobody wants to get her/his hands dirty

http://www.gap-system.org/

GAP is a system for computational discrete algebra, with
particular emphasis on Computational Group Theory. GAP
provides a programming language, a library of thousands of
functions implementing algebraic algorithms written in the
GAP language as well as large data libraries of algebraic
objects.

Large library of mathematical functions

Programming language

Interactive environment

Extensive documentation and support

Open source
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GAP libraries of groups

Some basic groups, such as cyclic groups, abelian groups or
symmetric groups,

Classical matrix groups,

The transitive permutation groups of degree at most 30,

A library of groups of small order,

The finite perfect groups of size at most 106,

The primitive permutation groups of degree < 2499,

The irreducible solvable subgroups of GL(n, p) for n > 1 and
pn < 256,

The irreducible maximal finite integral matrix groups of
dimension at most 31,

The crystallographic groups of dimension at most 4.
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Small group library

Those of order at most 2000 except 1024 (423 164 062 groups);

Those of cubefree order at most 50 000 (395 703 groups);

Those of order p7 for the primes p = 3, 5, 7, 11 (907 489
groups);

Those of order pn for n ≤ 6 and all primes p;

Those of order qn · p for qn dividing 28, 36, 55 or 74 and all
primes p with p 6= q;

Those of squarefree order;

Those whose order factorises into at most 3 primes.
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Example

gap> S4 := SymmetricGroup( 4 );

Sym( [ 1 .. 4 ] )

gap> Order( S4 );

24

gap> el := Elements( S4 );

[ (), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2),

(1,2)(3,4), (1,2,3), (1,2,3,4), (1,2,4,3), (1,2,4),

(1,3,2), (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4),

(1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), (1,4),

(1,4,2,3), (1,4)(2,3) ]

gap> a := el[ 4 ];

(2,3,4)

gap> b := el[ 7 ];

(1,2)

gap> a * b;

(1,2,3,4)
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More examples

gap> G := SymmetricGroup( 5 );

Sym( [ 1 .. 5 ] )

gap> H := Subgroup( G, [(1, 2), (1, 3)]);

Group([ (1,2), (1,3) ])

gap> Order( H );

6

gap> (1,2,3,4) in H;

false

gap> N := NormalClosure(G, H);

Group([ (2,3), (1,3,2), (2,4), (3,5) ])

gap> Order( N );

120

gap> StructureDescription( H );

"S3"

gap> StructureDescription( N );

"S5"



Introduction GAP Decomposing groups Finite simple groups Extension theory Nilpotent groups Finite p-groups Enumeration of finite groups

Normal subgroups

gap> G := SymmetricGroup( 4 );

Sym( [ 1 .. 4 ] )

gap> norm := NormalSubgroups( G );

[ Sym( [ 1 .. 4 ] ), Group([ (2,4,3), (1,4)(2,3),

(1,3)(2,4) ]), Group([ (1,4)(2,3), (1,3)(2,4) ]),

Group(()) ]

gap> List( norm, StructureDescription );

[ "S4", "A4", "C2 x C2", "1" ]

gap> Q := G / norm[ 2 ];

Group([ f1 ])

gap> StructureDescription( Q );

"C2"
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Homomorphisms

gap> G := SymmetricGroup( 4 );;

gap> norm:= NormalSubgroups( G );;

gap> N:=norm[ 2 ];

Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ])

gap> hom := NaturalHomomorphismByNormalSubgroup( G, N );

[ (1,2,3,4), (1,2) ] -> [ f1, f1 ]

gap> Kernel( hom ) = N;

true

gap> StructureDescription( Image( hom ) );

"C2"
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Linear groups

gap> G := GL( 2, 4);

GL(2,4)

gap> Order( G );

180

gap> el := Elements( G );;

gap> a := el[ 5 ];

[ [ 0*Z(2), Z(2)^0 ], [ Z(2^2), 0*Z(2) ] ]

gap> b := el[ 7 ];

[ [ 0*Z(2), Z(2)^0 ], [ Z(2^2), Z(2^2) ] ]

gap> Determinant( a );

Z(2^2)

gap> a * b^2;

[ [ Z(2^2)^2, Z(2)^0 ], [ Z(2^2)^2, Z(2^2)^2 ] ]

gap> H := SL( 2, 4 );

SL(2,4)

gap> Order( H );

60

gap> StructureDescription( H );

"A5"
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Small groups and GAP

gap> AllSmallGroups( 16 );;

gap> NrSmallGroups( 512 );

10494213

gap> AllSmallGroups(Size, 16, IsAbelian, true);;

gap> List( last, StructureDescription );

[ "C16", "C4 x C4", "C8 x C2", "C4 x C2 x C2",

> "C2 x C2 x C2 x C2" ]

gap> G := DihedralGroup( 64 );

<pc group of size 64 with 6 generators>

gap> IdGroup( G );

[ 64, 52 ]
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How GAP presents groups?
1 Permutation groups;
2 Matrix groups;
3 Finitely presented (fp) groups;
4 Polycyclic (pc) groups (finite solvable groups.

Warning

A group can be represented in several different ways; GAP does not
consider them as identical objects.

gap> F := FreeGroup("x", "y");;

gap> AssignGeneratorVariables(F);;

#I Assigned the global variables [ x, y ]

gap> G := F / [x^2, y^3, (x*y)^2];;

gap> StructureDescription(G);

"S3"

gap> G = SymmetricGroup(3);

false
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How many groups are there?
Hint: Look for big jumps.

gap> List([1..64], i -> [i, NrSmallGroups(i)]);

[ [ 1, 1 ], [ 2, 1 ], [ 3, 1 ], [ 4, 2 ], [ 5, 1 ],

[ 6, 2 ], [ 7, 1 ], [ 8, 5 ], [ 9, 2 ], [ 10, 2 ],

[ 11, 1 ], [ 12, 5 ], [ 13, 1 ], [ 14, 2 ], [ 15, 1 ],

[ 16, 14 ], [ 17, 1 ], [ 18, 5 ], [ 19, 1 ], [ 20, 5 ],

[ 21, 2 ], [ 22, 2 ], [ 23, 1 ], [ 24, 15 ], [ 25, 2 ],

[ 26, 2 ], [ 27, 5 ], [ 28, 4 ], [ 29, 1 ], [ 30, 4 ],

[ 31, 1 ], [ 32, 51 ], [ 33, 1 ], [ 34, 2 ], [ 35, 1 ],

[ 36, 14 ], [ 37, 1 ], [ 38, 2 ], [ 39, 2 ], [ 40, 14 ],

[ 41, 1 ], [ 42, 6 ], [ 43, 1 ], [ 44, 4 ], [ 45, 2 ],

[ 46, 2 ], [ 47, 1 ], [ 48, 52 ], [ 49, 2 ], [ 50, 5 ],

[ 51, 1 ], [ 52, 5 ], [ 53, 1 ], [ 54, 15 ], [ 55, 2 ],

[ 56, 13 ], [ 57, 2 ], [ 58, 2 ], [ 59, 1 ], [ 60, 13 ],

[ 61, 1 ], [ 62, 2 ], [ 63, 4 ], [ 64, 267 ] ]
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Decomposing groups
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Composition series
Prime decomposition of groups

Definition

A group G is simple if {1} and G are the only normal subgroups of
G .

The abelian simple groups are precisely Cp where p is a prime.

Definition

A composition series of a group G is a sequence of subgroups

{1} = G0 / G1 / G2 / · · · / Gr = G

such that all the factors Gi+1/Gi are simple groups.
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Jordan-Hölder theorem

Every finite group has a composition series.

Theorem (Jordan-Hölder Theorem)

Any two composition series of a finite group G give rise, up to the
order and isomorphism type, to the same list of composition factors.
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Example: C12

Possible composition series of C12:

1 / C2 / C6 / C12

1 / C2 / C4 / C12

1 / C3 / C6 / C12

List of composition factors: C2,C2,C3.
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How to construct all finite groups?
Grand plan

If N is a normal subgroup of G , we say that G is an extension of N
by G/N.

Algorithm

1 Given groups N and Q, find a way of construction all groups G
with N / G and G/N ∼= Q (Extension Problem).

2 Classify all finite simple groups.

3 Use these repeatedly to construct all groups with prescribed
composition series.



Introduction GAP Decomposing groups Finite simple groups Extension theory Nilpotent groups Finite p-groups Enumeration of finite groups

Finite simple groups
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Simple groups
Building blocks

Definition

A group G is simple if {1} and G are the only normal subgroups of
G .

Examples of finite simple groups:

Cp where p is a prime;

Alternating groups An, where n ≥ 5;

PSL(n, p), except in the two cases, n = 2, p = 2 or n = 2,
p = 3.

In the notes we prove that PSL(2, 2) ∼= S3 and PSL(2, 3) ∼= A4.

gap> StructureDescription(PSL(2, 2));

"S3"

gap> StructureDescription(PSL(2, 3));

"A4"
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Classification (CFSG)

1 Cyclic groups of prime order;

2 Alternating groups An for n ≥ 5;

3 Groups of Lie type; these groups arise as automorphism
groups of simple Lie algebras. An example is PSL(n,F ).

4 26 sporadic groups; these do not fall into any infinite family
of simple groups described above. They are usually defined as
symmetry groups of various algebraic or combinatorial
configurations. The largest of them has order

808017424794512875886459904961710757005754368000000000

and is called the Monster Group.

A common way of proving theorems about finite groups:

Reduction to finite simple groups;

List checking.
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ATLAS of finite groups

http://brauer.maths.qmul.ac.uk/Atlas/

It lists basic information about 93 finite simple groups, the
information being generally:

order,

Schur multiplier,

outer automorphism group,

various constructions (such as presentations),

conjugacy classes of maximal subgroups (with characters group
action they define),

character tables.
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Finite simple groups and GAP

Simple groups up to order 106 are available in GAP. The notations
GAP uses are consistent with that of ATLAS.

gap> AllSmallNonabelianSimpleGroups( [1..1000000] );

[ A5, PSL(2,7), A6, PSL(2,8), PSL(2,11), PSL(2,13),

PSL(2,17), A7, PSL(2,19), PSL(2,16), PSL(3,3), PSU(3,3),

PSL(2,23), PSL(2,25), M11, PSL(2,27), PSL(2,29),

PSL(2,31), A8, PSL(3,4), PSL(2,37), PSp(4,3), Sz(8),

PSL(2,32), PSL(2,41), PSL(2,43), PSL(2,47), PSL(2,49),

PSU(3,4), PSL(2,53), M12, PSL(2,59), PSL(2,61), PSU(3,5),

PSL(2,67), J_1, PSL(2,71), A9, PSL(2,73), PSL(2,79),

PSL(2,64), PSL(2,81), PSL(2,83), PSL(2,89), PSL(3,5),

M22, PSL(2,97), PSL(2,101), PSL(2,103), J_2, PSL(2,107),

PSL(2,109), PSL(2,113), PSL(2,121), PSL(2,125), PSp(4,4)]
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Extension theory – building new groups from old
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Formal definition
A group extension of a group N by a group G is a short exact
sequence

1 //N
µ //E

ε //G //1 .

A morphism between extensions N // µ // E
ε // // G and

N̄ // µ̄ // Ē
ε̄ // // Ḡ is a triple of group homomorphisms (α, β, γ)

such that the following diagram commutes:

N

α

��

// µ //E

β

��

ε // //G

γ

��
N̄ // µ̄ // Ē

ε̄ // //Ḡ

.

The collection of all group extensions and morphisms between them
is a category.
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Semidirect products – external version

Suppose that H and N are groups and that we have a
homomorphism

α : H → Aut(N).

The (external) semidirect product H nα N of N and H is the set
of all pairs (h, n), where h ∈ H, n ∈ N, with the operation

(h1, n1)(h2, n2) = (h1h2, n
hα2
1 n2).

This is a group with the identity element (1H , 1N), and the inverse
of (h, n) is (h−1, n−(hα)−1

).
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Semidirect products – internal version

We have embeddings H → H nα N and N → H nα N given by
h 7→ (h, 1N) and n 7→ (1H , n), respectively. If H∗ and N∗ are images
of these maps, then N∗ / H nα N, H∗ ∩ N∗ = 1 and
H∗N∗ = H nα N. We say that

H nα N

is the internal semidirect product of N∗ and H∗. The group H∗ is
said to be a complement of N∗ in G . The group G is an extension
of N∗ by H∗; we say that this extension is a split extension.
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Examples of semidirect products

The direct product H × N is a special case of semidirect
product; H acts trivially on N.

Groups of order pq, where p > q; we have either Cp × Cq or

〈a, b | ap = bq = 1, ab = ak〉 = 〈b〉n 〈a〉,

where the action is given by ab = ak .
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Example: C4 n (C2 × C2)
Let us build all possible semidirect products of C2 × C2 by C4:

gap> H := CyclicGroup(4);;

gap> N := AbelianGroup([2,2]);;

<pc group of size 4 with 2 generators>

gap> hom := AllHomomorphisms(H, AutomorphismGroup(N));;

gap> for map in hom do

> Print(IdGroup(SemidirectProduct(H, map, N)),"\n");

> od;

[ 16, 10 ]

[ 16, 3 ]

[ 16, 3 ]

[ 16, 3 ]

gap> StructureDescription(SmallGroup(16,10));

"C4 x C2 x C2"

gap> StructureDescription(SmallGroup(16,3));

"(C4 x C2) : C2"
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The Schur-Zassenhaus theorem

Theorem

Suppose that A and G are finite groups satisfying gcd(|A|, |G |) = 1.
Then every extension of A by G splits.
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Wreath product

Let G and H be groups and let H act on the set
X = {x1, x2, . . . , xn}. We take

GX =
n∏

i=1

Gxi

to be the direct product of n copies of G indexed by the set X .
Then H also acts on GX by the rule

(gx1 , gx2 , . . . , gxn)h = (gx1h, gx2h, . . . , gxnh).

Therefore we have a homomorphism α : H → Aut(GX ) and we can
form the semidirect product H nα GX which is denoted by G oX H
and called the wreath product of G by H.
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Standard wreath product

A special case is when X = H, and H acts on X by right
multiplication. Then the corresponding wreath product is denoted
by G o H and called the regular (standard) wreath product.

gap> G := StandardWreathProduct(CyclicGroup(2), CyclicGroup(4));

<group of size 64 with 3 generators>

gap> IdGroup(G);

[ 64, 32 ]

Alternatively, we can think of C4 as the group 〈(1 2 3 4)〉 acting on
C 4

2 by permuting the indices:

gap> G := SemidirectProduct(Group((1,2,3,4)), GF(2)^4);

<matrix group of size 64 with 2 generators>

gap> IdGroup(G);

[ 64, 32 ]
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Importance of wreath products

Wreath products are important in the theory of extensions because
of the following:

Theorem

Every extension of G by H is isomorphic to a subgroup of G o H.

Also:

Theorem

a Sylow p-subgroup of Spn is isomorphic to

(· · · (Cp o Cp) o · · · ) o Cp,

the number of factors being n.
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Equivalence of extensions

A morphism of the type

N

1

��

// µ //E

β

��

ε // //G

1

��
N // µ̄ // Ē

ε̄ // //G

is said to be an equivalence of extensions.

Main problem

Classify all extensions of N by G up to equivalence.



Introduction GAP Decomposing groups Finite simple groups Extension theory Nilpotent groups Finite p-groups Enumeration of finite groups

Extensions with abelian kernel – transversals

Consider

A // µ // E
ε // // G ,

where A is an abelian group (written additively).

When choosing a transversal T to M = imµ = ker ε in E , we get a
function τ : G → E defined by g τ = x , where x ∈ T is such that
g = xε . The function τ is called a transversal function.

Note that τ is not necessarily a homomorphism. We also see that
τε = 1G , and that any function τ : G → E with the property
τε = 1G determines a transversal to M in E , namely {g τ | g ∈ G}.
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Extensions with abelian kernel – action

A // µ // E
ε // // G .

Suppose that we have fixed τ . Then the elements {g τ : g ∈ G} act
on M by conjugation. Since µ : A→ M is an isomorphism, we can
define gχ ∈ Aut(A) by the rule

(ag
χ

)µ = (g τ )−1aµ(g τ )

for a ∈ A and g ∈ G . We obtain a function χ : G → Aut(A).

The map χ : G → Aut(A) is a homomorphism which arises by
conjugation in imµ by elements of E .
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Why is equivalence so good?

A // µ // E
ε // // G

Let χ : G → Aut(A) be a homomorphism. Then χ induces a
G -action A given by a · g = ag

χ
. We say that A is a G -module.

Theorem

Equivalent extensions of A by G , where A is abelian, induce the
same G -module structure on A.
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Factor sets a.k.a. cocycles

Choose a transversal function τ : G → E , Let x , y ∈ G . As xτy τ

and (xy)τ belong to the same coset of ker ε = imµ in E , we may
write

xτy τ = (xy)τ ((x , y)φ)µ

for some (x , y)φ ∈ A. Thus we get a function φ : G × G → A
defined by

((x , y)φ)µ = (xy)−τxτy τ .

From the associative law xτ (y τzτ ) = (xτy τ )zτ we get that φ
satisfies the identity

(x , yz)φ+ (y , z)φ = (xy , z)φ+ (x , y)φ · z .

A function φ : G × G → A satisfiying this functional equation is
called a factor set (or a 2-cocycle).



Introduction GAP Decomposing groups Finite simple groups Extension theory Nilpotent groups Finite p-groups Enumeration of finite groups

The group of cocycles

The set Z 2(G ,A) of all 2-cocycles in G with coefficients in the
G -module A has the structure of an abelian group with the operation

(x , y)(φ1 + φ2) = (x , y)φ1 + (x , y)φ2.

Example

In the situation above, what happens if (x , y)φ = 0 for all x , y ∈ G ?
In this case, the transversal map τ : G → E is a homomorphism. It
is easy to see that the image of τ is then a complement of imµ ∼= A
in E , therefore E ∼= G nχ A.
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How does the choice of τ affect φ?
Let τ ′ be another transversal function for given extension. Then we
get another factor set φ′, i.e., xτ

′
y τ
′

= (xy)τ
′
((x , y)φ′)µ.

As xτ and xτ
′

belong to the same coset of ker ε = imµ, we can
write xτ

′
= xτ ((x)ψ)µ for some (x)ψ ∈ A.

(x , y)φ = (x , y)φ′ + (xy)ψ − (x)ψ · y − (y)ψ.

Define ψ∗ : G × G → A by

(x , y)ψ∗ = (y)ψ − (xy)ψ + (x)ψ · y ,

so that φ′ = φ+ ψ∗. It follows that ψ∗ ∈ Z 2(G ,A). The 2-cocycle
ψ∗ is called a 2-coboundary. 2-coboundaries form a subgroup
B2(G ,A) of Z 2(G ,A). We have proved:

Proposition

The extension A // µ // E
ε // // G , where A is abelian, determines

a unique element φ+ B2(G ,A) of the group Z 2(G ,A)/B2(G ,A).
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Does every factor set induce an extension?

Let A be a G -module and φ : G × G → A a factor set. Let E (φ) be
(as a set) G × A, with the operation

(x , a)(y , b) = (xy , ay + b + (x , y)φ).

E (φ) becomes a group. Define µ : A→ E (φ) by the rule

aµ = (1, a− (1, 1)φ),

and ε : E (φ)→ G by the rule

(x , a)ε = x .

Then we have

A // µ // E (φ)
ε // // G .
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Classification of extensions with abelian kernel

Proposition

Let A be a G -module and φ : G × G → A a factor set. Then the
extension

A // µ // E (φ)
ε // // G

induces the given G -module structure. There exists a transversal
τ : G → E (φ) such that φ is the factor set for this extension with
respect to τ .

Theorem

Let G be a group and A a G -module. Then there is a bijection
between the set of equivalence classes of of extensions of A by G
inducing the given module structure and the group
Z 2(G ,A)/B2(G ,A). The split extension corresponds to B2(G ,A).
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Extensions and GAP

GAP can compute extensions of elementary abelian p-groups by
solvable groups, which have to be presented as pc groups.

One has to define an elementary abelian group A together with an
action of G on A as a MeatAxe module for G over a finite field.

In this case, Z 2(G ,A), B2(G ,A) and H2(G ,A) are elementary
abelian p-groups and can be considered as vector spaces over GF(p).
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All extensions of A = Z2 ⊕ Z2 by G = D8 (trivial action)

gap> G := DihedralGroup(8);;

gap> mats := List( Pcgs( G ), x -> IdentityMat( 2, GF(2) ) );;

gap> A := GModuleByMats( mats, GF(2) );;

gap> co := TwoCocycles( G, A );;

gap> Extension( G, A, co[2] );;

gap> StructureDescription(last);

"C2 x (C4 : C4)"

gap> SplitExtension( G, A );;

gap> StructureDescription(last);

"C2 x C2 x D8"

gap> ext := Extensions( G, A );;

gap> Length(ext);

64

gap> DuplicateFreeList(List(ext, IdGroup));

[ [ 32, 46 ], [ 32, 40 ], [ 32, 22 ], [ 32, 39 ],

[ 32, 9 ], [ 32, 23 ], [ 32, 13 ], [ 32, 41 ],

[ 32, 10 ], [ 32, 2 ], [ 32, 14 ] ]
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Second cohomology H2(D8,Z2 ⊕ Z2)

gap> z2 := AdditiveGroupByGenerators(co);;

gap> Length(Elements(z2));

256

gap> h2 := TwoCohomology(G, A);;

h2.cohom;

<linear mapping by matrix, <vector space of dimension

8 over GF(2)> -> ( GF(2)^6 )>

gap> dimensionZ2 := Dimension(Source(h2.cohom));

8

gap> dimensionB2 := Dimension(Kernel(h2.cohom));

2

gap> dimensionH2 := Dimension(Image(h2.cohom));

6

The last line tells us that H2(G ,A) ∼= C 6
2 .
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Nilpotent groups
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Nilpotent groups

We call
1 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G

a normal series of G if each of its members is a normal subgroup of
G .

Definition

A group G is nilpotent if it has a central series, i.e. a normal series

1 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G

in which each factor Gi+1/Gi is contained in the center of G/Gi .

The length of the shortest central series of G is called the
nilpotency class of G .
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Basic properties

All nilpotent groups are solvable.

Nilpotent groups of class no more than 1 are abelian.

The smallest solvable non-nilpotent group is S3.

Proposition

Subgroups, homomorphic images and finite direct products of
nilpotent groups are nilpotent.

Nilpotency is not closed under extensions, since S3 is an extension of
C3 by C2.
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Examples

gap> l := AllSmallGroups(Size, 54, IsNilpotent, true);

[ <pc group of size 54 with 4 generators>,

<pc group of size 54 with 4 generators>,

<pc group of size 54 with 4 generators>,

<pc group of size 54 with 4 generators>,

<pc group of size 54 with 4 generators> ]

gap> NilpotencyClassOfGroup(l[3]);

2

gap> ForAll(AllSmallGroups(54), IsNilpotent);

false

gap> G:= First(AllSmallGroups(54), x->not IsNilpotent(x));;

gap> StructureDescription(G);

"D54"

gap> List(l, StructureDescription);

[ "C54", "C18 x C3", "C2 x ((C3 x C3) : C3)", "C2 x (C9 : C3)",

"C6 x C3 x C3" ]
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Very important examples

Theorem

All finite p-groups are nilpotent.

Proof.

First prove that Z (G ) is nontrivial. Now use induction on the order
of G to show that G/Z (G ) is nilpotent. From here it easily follows
that G is nilpotent as well.
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Unitriangular groups

Let S be the ring of all n× n matrices over a commutative ring with
identity R. Further, let N be the subring of all strictly upper
triangular matrices. It is not hard to see

U = 1 + N

is a group with respect to ring multiplication.

Let Ui consist of all upper unitriangular matrices whose first i − 1
super diagonals are zero. It is easy to prove that this is a central
series of U, and that U is nilpotent of class exactly n − 1.

In the case that R = GF(p) we find U to be a finite p-group of
order pn(n−1)/2.
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Characterizations of finite nilpotent groups

Theorem

The following conditions are equivalent for a finite group G :

1 G is nilpotent;

2 every subgroup of G is subnormal;

3 Every proper subgroup H of G is properly contained in its
normalizer;

4 Every maximal subgroup of G is normal;

5 G is the direct product of its Sylow subgroups.
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Commutators

A simple commutator of length n of elements x1, . . . , xn ∈G is
defined inductively by [x1] = x1 and

[x1, x2, . . . , xn] = [[x1, . . . , xn−1], xn]

= [x1, . . . , xn−1]−1·[x1, . . . , xn−1]xn .

Lemma

Let x , y , z be elements of a group. Then

1 [x , y ] = [y , x ]−1;

2 [xy , z ] = [x , z ]y [y , z ] and [x , yz ] = [x , z ][x , y ]z ;

3 [x , y−1] = ([x , y ]y
−1

)−1 and [x−1, y ] = ([x , y ]x
−1

)−1;

4 (the Hall-Witt identity) [x , y−1, z ]y [y , z−1, x ]z [z , x−1, y ]x = 1.
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Proof by computer

gap> F := FreeGroup( "x", "y", "z" );;

gap> AssignGeneratorVariables( F );;

gap> Comm( x * y, z ) = Comm( x, z )^y * Comm( y, z );

true
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Lower central series

There are two canonical central series of a given group.

Definition

Define γ1(G ) = G and inductively

γn+1(G ) = [γnG ,G ].

The result is the lower central series

G = γ1G > γ2G > · · ·

of fully invariant (and therefore normal) subgroups of G .
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Upper central series

Definition

Define Z0(G ) = 1 and inductively

Zn+1(G )/Zn(G ) = Z (G/Zn(G )).

We obtain the upper central series

1 = Z0(G ) 6 Z1(G ) 6 Z2(G ) 6 · · ·

of characteristic (and therefore normal) subgroups of G .
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Nilpotency

Proposition

If 1 = G0 6 G1 6 · · · 6 Gn = G is a central series of a nilpotent
group G , then

1 γi (G ) 6 Gn−i+1 so that γn+1G = 1;

2 Gi 6 Zi (G )so that Zn(G ) = G ;

3 the nilpotency class of G equals the length of the upper central
series which also equals the length of the lower central series.
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Example

gap> G := SmallGroup(128, 50);;

gap> NilpotencyClassOfGroup(G);

4

gap> LowerCentralSeriesOfGroup(G);

[ <pc group of size 128 with 7 generators>,

Group([ f3, f5, f7 ]), Group([ f5, f7 ]),

Group([ f7 ]), Group([ <identity> of ... ]) ]

gap> UpperCentralSeriesOfGroup(G);

[ Group([ f6, f7, f5, f3, f4, f1, f2 ]),

Group([ f6, f7, f5, f3, f4 ]),

Group([ f6, f7, f5 ]),

Group([ f6, f7 ]), Group([ ]) ]
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The Fitting subgroup

Theorem (Fitting)

Let M and N be normal nilpotent subgroups of a group G . If c and
d are nilpotency classes of M and N, then L = MN is nilpotent of
class ≤ c + d.

Definition

The subgroup Fit(G ) generated by all the normal nilpotent
subgroups of a group G is called the Fitting subgroup of G .

If the group G is finite, then Fit(G ) is nilpotent. In these cases,
Fit(G ) is the unique largest normal nilpotent subgroup of G .

Theorem

Let G be a finite group. For a prime p let Op(G ) be the largest
normal p-subgroup of G . Then Fit(G ) is equal to the direct product
of all Op(G ), where p divides |G |.
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The Frattini subgroup

Definition

The Frattini subgroup Frat(G ) of G is the intersection of all
maximal subgroups of G . Clearly Frat(G ) is a characteristic
subgroup of G .

We say that g ∈ G is a nongenerator of G if G = 〈g ,X 〉 implies
G = 〈X 〉 for every X ⊆ G .

Theorem

Frat(G ) equals the set of nongenerators of G .
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Proof

Proof.

Let g ∈ Frat(G ), G = 〈g ,X 〉, but G 6= 〈X 〉. There exists M ≤ G
which is maximal subject to 〈X 〉 ≤ M and g /∈ M. M is a maximal
subgroup of G , hence g ∈ M, a contradiction.

Let g be a nongenerator and g /∈ Frat(G ). Thus g /∈ M for some
maximal subgroup M. It follows 〈g ,M〉 = G , hence G = M, a
contradiction.
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Theorem of Gaschütz

Theorem (Gaschütz)

Let G be a group.

(a) If Frat(G ) ≤ H ≤ G , where H is finite and H/Frat(G ) is
nilpotent, then H is nilpotent.

(b) If G is finite, Frat(G ) is nilpotent.

(c) Define FFrat(G ) by

FFrat(G )/Frat(G ) = Fit(G/Frat(G )).

If G is finite, then FFrat(G ) = Fit(G ).

(d) If G is finite, FFrat(G )/Frat(G ) is the product of all the
abelian minimal normal subgroups of G/Frat(G ).
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Another characterization of finite nilpotent groups

Proposition

Let G be a finite group. Then G is nilpotent if and only if
G ′ ≤ Frat(G ).

Proof.

If G is nilpotent and M a maximal subgroup of G , then G ′ ≤ M.
Conversely, if G ′ ≤ Frat(G ) then every maximal subgroup of G is
normal.
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Finite p-groups
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Burnside basis theorem

Theorem (The Burnside Basis Theorem)

Let G be a finite p-group. Then Frat(G ) = γ2(G )Gp. Also if
|G : Frat(G )| = pr , then every set of generators of G has a subset of
r elements which also generates G .
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Extraspecial p-groups

Definition

A finite p-group is said to be extraspecial if

G ′ = Z (G ) ∼= Cp.

Proposition

Let G be a nonabelian group of order p3. If p is odd, then G is
isomorphic with

〈x , y | xp = yp = 1, [x , y ]x = [x , y ]y = [x , y ]〉

or
〈x , y | xp2

= 1 = yp, xy = x1+p〉.

These groups have exponent p and p2 respectively. If p = 2, then G
is isomorphic with D8 or quaternion group Q8. In particular, all
non-abelian groups of order p3 are extraspecial.
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Characterization of extraspecial p-groups

Definition

A group G is said to be the central product of its normal
subgroups G1, . . . ,Gn if G = G1 · · ·Gn, [Gi ,Gj ] = 1 for i 6= j , and
Gi ∩

∏
j 6=i Gj = Z (G ).

Theorem

An extraspecial p-group is a central product of n nonabelian
subgroups of order p3, and has order p2n+1. Conversely, a finite
central product of nonabelian groups of order p3 is an extraspecial
p-group.
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Classification of p-groups of given order

1 Cp are the only groups of order p;

2 All groups of order p2 are abelian, hence Cp × Cp or Cp2 ;

3 Groups of order p3 are classified above;

4 Groups of order p4 are also known; 15 isomorphism types;

5 Groups of order p5 or p6: James (1988);

6 Groups of order p7: O’Brien, Vaughan-Lee (2005).
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Coclass

Proposition

Let G be a group of order pn, n > 1, and let c be its nilpotency
class. Then c < n.

Definition

Under the above notations, the number

n − c

is called the coclass of G .

Finite p-groups of coclass 1 are also known as p-groups of
maximal class.
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Coclass graph G(p, r)

The vertices of G(p, r) correspond to the isomorphism types of
p-groups of coclass r .

Two vertices G and H are joined by a directed edge from G to
H if and only if G ∼= H/γcl(H)(H).
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Coclass trees

Definition

If a group is an inverse limit of p-groups of coclass r , then it said to
be a pro-p group of coclass r .

Every infinite pro-p group S of coclass r determines a maximal
coclass tree T (S) in G(p, r), namely, the subtree of G(p, r)
consisting of all descendants of S/γi (S), where i is minimal such
that S/γi (S) has coclass r and S/γi (S) is not a quotient of another
infinite pro-p group R of coclass r not isomorphic to S .
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Coclass conjectures; now theorems

E Given p and r , there are only finitely many isomorphism types
of infinite solvable pro-p groups of coclass r .

D Given p and r , there are only finitely many isomorphism types
of infinite pro-p groups of coclass r .

C Pro-p groups of finite coclass are solvable.

B For some function g , every finite p-group of coclass r has
derived length bounded by g(p, r).

A For some function f , every finite p-group of coclass r has a
normal subgroup N of class 2 (1 if p = 2) whose index is
bounded by f (p, r).
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Consequence for the coclass graph

The coclass theorems imply that G(p, r) consists of finitely many
maximal coclass trees and finitely many groups lying outside these
trees.
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Shaved trees and periodicity theorem

Let S be an infinite pro-p group of coclass r .

The subtree T (S , k) of T (S) containing all groups of distance at
most k from the main line is called a shaved tree. We denote its
branches by Bj(S , k).

Theorem P (du Sautoy, 2001)

Let S be an infinite pro-p group of coclass r . Then there exist
integers d = d(T (S , k)) and f = f (T (S , k)) such that Bj(S , k) and
Bj+d(S , k) are isomorphic as rooted trees for all j ≥ f .



Introduction GAP Decomposing groups Finite simple groups Extension theory Nilpotent groups Finite p-groups Enumeration of finite groups

p-groups of maximal class

Proposition

Let G be a group of order pn, wher n ≥ 3, and of maximal class.
Then

1 G ab is an elementary abelian p-group of order p2 and
|γi (G ) : γi+1(G )| = p for 2 ≤ i ≤ n − 1. The group G can be
generated by two elements.

2 For every i ≥ 2 we have that γi (G ) is the only normal subgroup
of G of index pi .

3 Zi (G ) = γn−i (G ) for all i = 0, . . . , n − 1.
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Examples of p-groups of maximal class

Groups of order p2;

Nonabelian groups of order p3;

Cp o Cp;

Generalized quaternion groups
Q2n = 〈x , y | y 2n−1

= 1, x2 = y 2n−2
, y x = y−1〉;

Dihedral groups D2n ;

Semidihedral groups
SD2n = 〈x , y | y 2n−1

= 1, x2 = 1, y x = y 2n−2−1〉, n > 3.
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2-groups of maximal class

Theorem

2-groups of maximal class are precisely the following:

1 C2 × C2 and C4;

2 Dihedral 2-groups;

3 Semidihedral 2-groups;

4 Generalized quaternion groups.
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The coclass graph for 2-groups of maximal class

There is an isolated vertex C4 and one infinite tree

V4

Q8 D8

Q16 SD16 D16

Q32 SD32 D32

...
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Enumeration of finite groups
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Numerical evidence

there are
49, 910, 529, 484

different isomorphism classes of groups of order at most 2000, and

49, 487, 365, 422

which is just over 99%, are groups of order 1024.

gap> Sum(List([1..2000], i -> NrSmallGroups(i)));

49910529484

gap> Float(NrSmallGroups(1024) / last);

0.991522
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Asymptotic result

Theorem (Phillip Hall)

The number of isomorphism classes of groups of order pn is

p
2

27
n3+O(n8/3).

We will sketch a proof of the fact that the number of groups of
order pn is roughly pn3

.
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Higman’s PORC conjecture

Conjecture (Higman’s PORC conjecture)

For each positve integer n there exists a positive integer m such that
the number of isomorphism types of groups of order pn is a
polynomial in p which depends on residue classes modulo m.

Example (James, 1988)

If p > 3, then the number of groups of order p6 is

13p2 + 145p + 80(p − 1, 3) + 45(p − 1, 4) + 8(p − 1, 5) + 8(p − 1, 6)

4
.
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Elementary bound

A group of order n is determined by its multiplication table. Hence
there are at most nn2

groups of order n.

Lemma

A group G of order n can be generated by a set of at most log2 n
elements.

Proposition

The number of groups of order n is at most nn log2 n.
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Less (but still) elementary way of counting p-groups

Let r be a positive integer and Fr a free group on {x1, . . . , xr}.
Denote

Gr = Fr/F p2

r γ2(Fr )pγ3(F ).

We identify xi with their images in Gr , so x1, . . . , xr generate Gr .

Definition

A finite p-group G is said to have Φ-class 2 if there exists a central
elementary abelian subgroup H of G such that G/H is elementary
abelian. In other words, G is a central extension of an elementary
abelian group by an elementary abelian group.

Every group of Φ-class 2 is a homomorphic image of some Gr .
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The group Gr

Lemma

1 The group Gr is a finite p-group.

2 The Frattini subgroup Frat(Gr ) is central of order pr(r+1)/2 and
index pr .

3 Any automorphism α ∈ Aut(Gr that induces an identity
mapping on Gr/Frat(Gr ) fixes Frat(Gr ) pointwise.

Lemma

Let N1 and N2 be subgroups of Frat Gr . Then Gr/N1
∼= Gr/N2 if

and only if there exists α ∈ Aut Gr such that Nα
1 = N2.



Introduction GAP Decomposing groups Finite simple groups Extension theory Nilpotent groups Finite p-groups Enumeration of finite groups

Counting

Proposition

Let r be a positive integer, and s an integer such that
1 ≤ s ≤ r(r + 1)/2. Then there are at least prs(r+1)/2−r2−s2

isomorphism classes of groups of order pr+s .

Idea of proof

Let Gr be as above. Let X be the set of subgroups N ≤ Frat Gr of
index ps in Frat Gr . Each N ∈ X gives rise to a group Gr/N of order
pr+s .

The above discussion implies that the set of isomorphism classes of
these groups is in 1-1 correspondence with the set of orbits of Aut Gr

acting on X . Now count the orbits using the above auxiliary results.
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Lower bound

The above result yields roughly px2yn3/2 groups with Frattini
subgroup of index pxn and order pyn. Maximizing the function
z = x2y/2 under the constraint x + y = 1 yields the maximum value
z = 2/27.

Theorem

The number of groups of order pn is at least

p
2

27
n2(n−6).
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An elementary upper bound – preparations
Let G be a group of order pn and let

G = G0 ≥ G1 ≥ · · · ≥ Gn−1 ≥ Gn = {1}

be its chief series. For each i choose gi ∈ Gi−1 − Gi . Then every
g ∈ G may be written uniquely in normal form g = gα1

1 · · · gαn
n ,

where αi ∈ {0, 1, . . . , p − 1}.

We have

gp
i = g

βi,i+1

i+1 · · · g
βi,n
n

and
[gj , gi ] = g

γi,j,j+1

j+1 · · · gγi,j,nn

for some βi ,j , γi ,j ,k ∈ {0, 1, . . . , p − 1}, j > i .

It is easy to see that the above generators and relations form a
presentation for G (called a power commutator presentation or
polycyclic presentation).
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An example

GAP calls the groups given by power-commutator presentations pcp

groups. Here is an example of how GAP prints out presentations of
pcp groups:

gap> G := PcGroupToPcpGroup(DihedralGroup(16));;

gap> PrintPcpPresentation(G);

g1^2 = id

g2^2 = g3

g3^2 = g4

g4^2 = id

g2 ^ g1 = g2 * g3 * g4

g3 ^ g1 = g3 * g4

Note that the conjugation relations can be rewritten into
commutator ones using the identity xy = x [x , y ], and that the trivial
commutator relations are left out.
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An upper bound

Theorem

The number of groups of order pn is at most

p
1
6

(n3−n).

Proof.

Let G be as above. The isomorphism class of G is determined by
the values of βi ,j and γi ,j ,k . There are at most p choices for each of

these (n3 − n)/6 elements, so there are at most p
1
6

(n3−n)

isomorphism classes of groups of order pn.
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Pyber’s result

Theorem (Pyber, 1993)

The number of groups of order n =
∏

pai
i is at most

n
2

27
µ(n)2+O(µ(n)5/3),

where µ(n) = max ai .

Special case: solvable groups;

General case: using CFSG.
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