PROBLEM SHEET

- (1) Prove that there are no simple groups of order 312, 616, or 2014.
- (2) Let $1 \longrightarrow A \xrightarrow{\mu} E \xrightarrow{\epsilon} G \longrightarrow 1$ be a group extension, where A is abelian and $G = \langle g \rangle$ cyclic of order n. Choose $x \in E$ with $x^{\epsilon} = q$, and let $a = x^n$. Define a transversal function $\tau : G \to E$ by $(g^i)^{\tau} = x^i$ for $0 \leq i < n$. Prove that the corresponding factor set $\phi : G \times G \to A$ is given by

$$(g^i, g^j)\phi = \begin{cases} 0 : i+j < n \\ a : i+j \ge n \end{cases}.$$

- (3) Find all equivalence classes of extensions of $C_4 \times C_2$ by C_2 . Which groups arise this way?
- (4) Let G be a finite nilpotent group and N a non-trivial normal subgroup of G. Show the following:
 - (a) [N, G] is a proper subgroup of N.
 - (b) Some maximal proper subgroup of N is normal in G.
 - (c) Suppose that G is a p-group and M and N normal subgroups of G with N < M. Prove that there exists $K \triangleleft G$ such that $N \leq K < M$ and |M:K| = p.
- (5) Suppose that G = HN', where $H \leq G$ and $N \triangleleft G$. Prove that $G = H\gamma_i(N)$ for all *i*.