Problem sheet

(1) Prove that there are no simple groups of order 312, 616, or 2014.
(2) Let $1 \longrightarrow A \xrightarrow{\mu} E \xrightarrow{\epsilon} G \longrightarrow 1$ be a group extension, where A is abelian and $G=\langle g\rangle$ cyclic of order n. Choose $x \in E$ with $x^{\epsilon}=q$, and let $a=x^{n}$. Define a transversal function $\tau: G \rightarrow E$ by $\left(g^{i}\right)^{\tau}=x^{i}$ for $0 \leq i<n$. Prove that the corresponding factor set $\phi: G \times G \rightarrow A$ is given by

$$
\left(g^{i}, g^{j}\right) \phi=\left\{\begin{array}{lll}
0 & : & i+j<n \\
a & : & i+j \geq n
\end{array} .\right.
$$

(3) Find all equivalence classes of extensions of $C_{4} \times C_{2}$ by C_{2}. Which groups arise this way?
(4) Let G be a finite nilpotent group and N a non-trivial normal subgroup of G. Show the following:
(a) $[N, G]$ is a proper subgroup of N.
(b) Some maximal proper subgroup of N is normal in G.
(c) Suppose that G is a p-group and M and N normal subgroups of G with $N<M$. Prove that there exists $K \triangleleft G$ such that $N \leq K<M$ and $|M: K|=p$.
(5) Suppose that $G=H N^{\prime}$, where $H \leq G$ and $N \triangleleft G$. Prove that $G=$ $H \gamma_{i}(N)$ for all i.

