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CONSTRUCTION TECHNIQUES FOR GRAPH EMBEDDINGS

Mark Ellingham, Vanderbilt University, USA

Mathematicians have been trying to construct embeddings of specific graphs in surfaces since
at least the 1890s. However, until the 1960s the construction techniques were usually fairly ad
hoc, although some general ideas such as ‘schemes of cyclic sequences’ had emerged. This changed
with the development of current graphs by Gustin and others in the 1960s, which provided a
unified framework for many earlier constructions and played an important role in the proof of the
Map Colour Theorem. Fifty years later we have a number of useful general tools for constructing
embeddings of graphs. These lectures will survey tools of various kinds. We will look at algebraic
methods such as current, voltage and transition graphs; surgical tools such as the diamond sum
and adding handles or crosscaps around a vertex; lifting constructions due to Bouchet and his
collaborators; and techniques that use objects from design theory, such as latin squares, to construct
embeddings.

Note on presentation: These are lecture notes for a course that will survey a lot of material in
a short amount of time, so the presentation is often informal and rigorous details are omitted.

The figures are taken from a number of different sources. Some are handdrawn, others are
drawn using software packages. The author apologizes for the lack of consistency!
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1. EMBEDDINGS OF GRAPHS

Surfaces

Definition: A surface is a 2-manifold without boundary. Examples: sphere, torus, projective
plane, Klein bottle (all compact); plane, open Möbius strip (not compact).

Theorem, Classification of Surfaces: Every compact surface is homeomorphic to the sphere
S0, a sphere with h ≥ 1 handles added Sh, or a sphere with k ≥ 1 crosscaps added Nk.

Definition: Adding a handle: delete a disk, glue a punctured torus on to the boundary. Adding
a crosscap: delete a disk, glue a punctured projective plane (i.e., a Möbius strip) on to the
boundary.

Surfaces Sh, h ≥ 0, are orientable: can define consistent clockwise orientation everywhere. Surfaces
Nk, k ≥ 1 are nonorientable: can travel in surface, maintaining locally consistent clockwise
orientation, in such a way that orientation is reversed when you return to your starting point.

In an orientable surface all closed curves are 2-sided ; nonorientable surfaces have 1-sided closed
curves.

Question: What if add mixture of handles and crosscaps? Adding a crosscap and a handle is
equivalent to adding three crosscaps. Consequently, if add h ≥ 0 handles, k ≥ 1 crosscaps, get
N2h+k.

Definition: The genus of a surface is the number of added handles or crosscaps: genus of Sh is h,
genus of Nk is k.

Convention: From now on ‘surface’ means ‘compact surface’ unless otherwise specified.

Representing surfaces

Polygon representation: Proof of classification theorem shows that every surface can be repre-
sented in a standard way as a polygon (possibly a 2-gon) with sides identified in pairs. Use
inverse notation when sides identified in opposite directions.

Sphere S0: (aa
−1)

Sh, h ≥ 1: (a1b1a
−1
1 b−1

1 . . . ahbha
−1
h b−1

h )
Nk, k ≥ 1: (a1a1a2a2 . . . akak)
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Surfaces can also be represented in other ways as polygons with identified sides, e.g. ‘usual’
representation of Klein bottle is not standard one.

Planar representation with handle or crosscap gadgets: Can also represent surfaces in
plane: think of sphere as plane with implicit point at infinity, then add handles or crosscaps
which we treat as ‘gadgets’ allowing curves to cross in certain ways.

We can mix the above two representations: use polygon representation and then add handles or
crosscaps.

Graph embeddings

Definition: Loosely, an embedding Ψ of graph G in surface Σ, which we denote Ψ : G →֒ Σ, is
a drawing of G in Σ with no crossing edges. Can make this rigorous, but concept should be
clear.
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Can represent embedding by drawing on either representation above (polygon with identified sides,
or plane plus handle/crosscap gadgets), or on mixed representation. But if embedding nice,
can represent in purely combinatorial ways or by simpler drawings.

Definition: Embedding of graph is cellular or open 2-cell or just 2-cell if every face is homeomor-
phic to an open disk.

What prevents an embedding being 2-cell? Face has multiple boundary components, or face
contains handles or crosscaps.

Even stronger definition: embedding is closed 2-cell if the closure of every face is homeomorphic
to a closed disk. Equivalent to open 2-cell and boundary of every face is a cycle (not just a
closed walk) in the graph. Closed 2-cell embeddings give cycle double covers. Closed 2-cell is
usually a stronger property than we need or want.

Representation of 2-cell embeddings

Since all faces are open disks, just need to know how to glue faces onto graph.

Band decompositions or ribbon graphs: Take small disk around each vertex, small band
(or strip) along each edge, throw rest of surface away. Get a ‘fattened’ version of graph.
Can reconstruct entire surface by gluing a disk along each boundary component of resulting
complex.

Rotation schemes: If our surface is orientable and we know a consistent global clockwise orien-
tation, we can describe the embedding just by giving the clockwise order (rotation) of ends of
edges at each vertex. This is a pure rotation system. Essentially known by Heffter in 1891,
formalized by Edmonds in 1960.

More general definition: If we do not know a consistent global clockwise orientation (always
true if our surface is nonorientable, but surface could also be orientable) then we use a local
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clockwise orientation for each vertex to give the order of ends of edges. But then we need to
say whether rotations at two ends of an edge match up.

An edge is type 0 or signature 1 or untwisted if the local clockwise rotation of the vertex at one
end can be followed along the edge and agrees with the local clockwise rotation of the vertex
at the other end. Otherwise the edge is type 1 or signature −1 or twisted .

A rotation scheme in general consists of the orders of ends of edges around each vertex plus the
type of each edge. This is a purely combinatorial description.

We can tell if a closed walk in a graph is 1-sided from this. A walk is 1-sided if and only if it
contains an odd number of twisted (type 1) edges.

Rotation projections: However, it is convenient to represent a rotation scheme geometrically by
a rotation projection. We just draw the graph in the plane, with edge crossings allowed, so
that the clockwise order of ends of edges around each vertex agrees with the local clockwise
orientation of the surface at that vertex. We indicate twisted (type 1) edges by putting an ‘X’
in the middle of them.

Face tracing for rotation projections: We can determine the face boundaries by following along
the sides of edges, taking corners in the natural way, ignoring edge crossings, and switching
sides in the middle of a twisted edge (at the ‘X’).

Orientability detection for rotation projections: The presence of twisted edges does not
necessarily mean the embedding is nonorientable. Take spanning tree, start at root vertex, flip
rotations so that all edges in tree become untwisted. Embedding orientable if and only if all
edges now untwisted.

Gem representation: Due to Neil Robertson, 1971. Make band decomposition into 3-edge-
coloured cubic graph:

Corner → vertex.
Vertex/face boundary → yellow edge.
Vertex/edge boundary → red edge.
Edge/face boundary → blue edge.

Embedded graphs ↔ 3-edge-coloured graphs in which every red-blue cycle (edge) is a 4-cycle.
Red-yellow cycles represent vertices, blue-yellow cycles represent faces.

Theory of gems developed extensively in book by Bonnington and Little [BL].
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Facial walk description: Give collection of closed walks that cover every edge exactly twice.
Can glue a disk along each such walk to get a surface provided have ‘proper rotation’ at each
vertex, determined using ‘rotation graph’.

Definition: The rotation graph at v has as vertices the ends of edges incident with v. Join two
ends of edges if there is a face that passes through them consecutively. Rotation graph is
proper if it consists of a single cycle.

Rotation graphs useful for building embeddings, basis of idea of transition graphs later.
Rotation graphs are useful for relative (partial) embeddings. E.g., rephrasing of theorem of Škoviera

and Širáň, 1986: Given a graph G, a collection of closed walks using each edge at most twice
can be completed to an embedding if and only if each rotation graph is a subgraph of a cycle
(so is a spanning cycle, or is a collection of paths possibly including isolated vertices).

Embedding described by collection of facial walks is orientable if and only if can orient each walk
so that every edge is used once in each direction.

Euler’s formula

We have a fundamental counting relationship for graphs with 2-cell embeddings on surfaces.

Euler’s formula: Suppose we have a 2-cell embedding of a connected graph G on a surface Σ,
where G has v vertices, e edges, and the embedding has f faces. Then

v − e+ f = χ

where χ = χ(Σ) is a constant that depends only on the surface; in particular,
χ(Sh) = 2− 2h for h ≥ 0 and
χ(Nk) = 2− k for k ≥ 1.

Definition: χ(Σ) is the Euler characteristic and can often be used to handle both orientable and
nonorientable surfaces at the same time. But often convenient and more intuitive to have a
nonnegative number with the same property. Define the Euler genus ε(Σ) by

ε(Sh) = 2h for h ≥ 0 and
ε(Nk) = k for k ≥ 1

so that χ(Σ) = 2− ε(Σ).

Example: K5 on torus S1: v = 5, e = 10, f = 5, v − e+ f = 5− 10 + 5 = 0 = 2− 2× 1.

Important note: For Euler’s formula to work, graph must be connected and embedding must be
2-cell. (There are more general versions that work if we relax these restrictions, but we need
them for the basic formula above.)

Euler’s formula and face degrees: Euler’s formula gives an important implication involving
the degrees of faces (lengths of facial walks) in an embedding. Since ε = 2 − v + e − f , for
a minimum genus embedding of a given graph G (meaning v and e are fixed) we want to
maximize f . Since the sum of the face degrees is 2e, which is fixed, this means we want many
faces of small degree. For a simple graph, we want triangular faces.

Based on considerations like this we can often find obvious lower bounds on the genus of
embeddings of a given graph G. We then want to show that this lower bound can be achieved
by constructing an embedding.
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2. VOLTAGE GRAPHS

Note: Main reference for this section and next is Gross and Tucker’s book [GT]. My notation and
setup is similar to [GT], but not exactly the same.

Voltage graphs

Basic construction: Start with base graph G, orient each edge e arbitrarily to get directed edge
e+ in oriented graph ~G, reverse of e+ is e−. (Oriented graph here refers to putting a direction
on each edge, nothing to do with surfaces.)

Have voltaage group Γ (usually assumed to be finite), every edge assigned a weight or voltage α(e+).
Implicitly α(e−) = α(e)−1. Form derived graph Gα as follows:

V (Gα) = V (G) × Γ.

For each e+ from u to v in ~G with α(e+) = a, add an (oriented) edge (e+, g) in Gα from
(u, g) to (v, ga) for every g ∈ Γ. (Reverse of (e+, g) is (e−, ga).) Edge directions can
now be ignored.

Note: We multiply edge weights on right; could equally well define with edge weights multiplying
on left.

At this point we have just constructed a graph, no embeddings yet.

Remark: A Cayley graph is just a connected graph derived from a 1-vertex base voltage graph.
Since G has only one vertex, vertices of Gα can be identified with elements of Γ.

Embedded voltage graphs

Extension to embedded graphs: Suppose base graph G has 2-cell embedding Ψ in surface.
Describe using rotation projection. Construct 2-cell embedding of derived graph with following
additional rules:

Around each vertex (v, g) of Gα the edges follow the order of their images in G (rotations
are lifted).

Each edge in Gα has the same type (untwisted or twisted) as its image in G.
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Can actually describe in more abstract terms without using rotation projection, but equivalent.
Resulting derived embedding Ψα does not depend on specific rotation projection. Objects in
Ψ or G are said to lift to corresponding objects in Ψα or Gα.

Lifting walks: Suppose uv-walk W in G corresponds to sequence of edges/reverse edges in ~G that
is f1f2 . . . fd. Say net voltage of W is α(W ) = α(f1)α(f2) . . . α(fd). If start at a vertex (u, g)
in Gα and follow lifted walk W̃ in Gα, will end at (v, gα(W )).

In particular, if W is a facial walk in G starting at u, will end at (u, gα(W )). Will come
back to original vertex (u, g) if repeat r times where r is the order of α(W ) in Γ. Thus, each
face of degree d in G becomes a face of degree dr in Gα where r is the order in Γ of the net
voltage of the facial walk. Face length does not change exactly when net voltage is the identity
(face satisfies Kirchoff Voltage Law, KVL).

Orientability: If original embedding of G is orientable, derived embedding will be orientable. If
original embedding is nonorientable derived embedding could end up being orientable if all
1-sided walks lift to 2-sided walks.

Gross and Tucker [GT, 4.1.6] have algorithm based on reducing voltages in a spanning
tree to the identity; won’t discuss details.

But if voltage group has odd order all 1-sided closed walks have net voltage of odd order,
must be repeated an odd number of times to close up in derived embedding, stay
1-sided, so embedding stays nonorientable.

More general voltage graphs

Permutation/group action voltage graphs: Gross and Tucker describe ‘permutation voltage
graphs’ using permutation groups. Permutation groups are equivalent to group actions so can
also describe that way. Suppose have right action of group Γ on set S: for each s ∈ S, g ∈ Γ
can form sg obeying natural rules.

Then given graph G with edges oriented and voltage α(e+) ∈ Γ for each edge e, can form derived
graph with

V (Gα) = V (G) × S.
For each e+ from u to v in G with α(e+) = a, add an edge (e+, s) in Gα from (u, s) to

(v, sa) for every s ∈ Γ. (Reverse of (e+, s) is (e−, sa).)
Can lift embedding of G to derived embedding of Gα in same way as for ordinary voltage
graphs: lift vertex rotations and edge twists.

Final remark: Voltage graphs are straightforward to understand but may not be most convenient
representation for particular applications. For very symmetric graphs a voltage graph repre-
sentation of an embedding may have only one or two vertices and many edges, making it hard
to keep track of where the edges go. So will look at alternative, current graphs, and then later
another alternative, transition graphs.

Mark Ellingham 8 Vanderbilt University



Rogla Summer School Construction techniques for graph embeddings June/July 2014

3. CURRENT GRAPHS

Background: Current graphs were invent-
ed before voltage graphs, even though
less intuitive. Used in proof of Map
Colour Theorem, determination of min-
imum genus of complete graphs. Equiv-
alent voltage graphs would have very
few vertices, so it would be very hard
to keep track of where the edges go.

Current graphs are duals of voltage graphs (so apply to embedded voltage graphs). Faces of current
graph correspond to vertices in a voltage graph, and vice versa. However, tricky to deal with
duals when have edge weights: need to turn them 90◦, but which way? Hard to decide without
globally consistent orientation (which never have in nonorientable case, and may not be given
in orientable case).

See Gross and Tucker [GT] for general treatment. For simplicity we will restrict to current graphs
given as rotation projections in plane.

Current graphs without twisted edges (hence orientable)

Basic construction: We are given oriented graph with weights or currents on edges, from current
group Γ. For applications convenient to have two sorts of vertices (although only really need
one sort):

solid • = clockwise vertices,
open ◦ = anticlockwise vertices.

Obtain derived embedding as follows:
Vertices of derived embedding have form (f, t) with f a face of the base graph and t ∈ Γ.

To get faces of base graph with globally consistent rotations, trace faces in current graph
in such a way that every edge is used once in each direction (trace all clockwise, or all
anticlockwise). Order of edges along face f specify rotation around each vertex (f, t) in
derived embedding.

Edges of derived embedding have form (f, t)(g, ta), where f and g are faces of base graph
meeting along an edge of current a; decide which way current applies based on rules
below.

Faces of derived embedding come from vertices of base graph. For each vertex multiply
currents of incident edges together in direction of vertex to get net current. Order r of
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net current in current group specifies how many times that sequence of edges is repeated
to give a face of the derived graph, so vertex of degree d yields face of degree dr.

If net current of vertex is the identity, say vertex obeys the Kirchoff Current
Law, KCL. Then vertex of degree d yields face of degree d.

Standard tracing algorithm:
at each vertex follow natural rotation;
if an edge has vertices of different directions at its ends, cross over in the middle;
if we are leaving a clockwise vertex on an edge with face f on left, face g on right, current is a,

then in derived graph (f, t) is joined to (g, ta) for each t ∈ Γ (current acts 90◦ clockwise
because vertex is clockwise); for an anticlockwise vertex swap left ↔ right (current acts
90◦ anticlockwise).

There are alternative ways to trace faces that are more convenient in some ways.

Clockwise-biased tracing algorithm:
at clockwise vertices follow natural rotation;
at anticlockwise vertices follow reversed rotation;
if going along an edge with face f on left, face g on

right, current is a, then in derived graph (f, t) is
joined to (g, ta) for each t ∈ Γ (currents always act
90◦ clockwise).

Advantage is that we don’t have to worry about vertex rotations until we are actually at vertex.
Also less complicated when have to deal with twisted edges, later.

Also have anticlockwise-biased tracing algorithm: swap clockwise ↔ anticlockwise, left ↔ right.
Can choose whether to use clockwise-biased or anticlockwise-biased algorithm depending on
whether more clockwise or anticlockwise vertices.

All tracing algorithms give same result. In each case, resulting list of edges, destination faces, and
(outgoing) currents is called log of face.

In above examples, only one face, and edges uniquely identified by current, so can just write log by
listing currents:
8 9 7 4 −2 −9 −1 5 −3 −7 2 6 1 −8 −5 −6 −4 3

Current graphs with twisted edges

Principle for handling twisted edges: Twisted edges reverse whether we cross over in the
middle of the edge or not. To maintain consistency of rules about the way currents act, when
we go through a twist on an edge, current must reverse. Current reverses in middle of edge,
so twisted edges have same current going in opposite directions on opposite ends.
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Modifying standard tracing algorithm: When traverse a twisted edge, cross over in middle if
vertices at ends have same direction, do not cross if vertices have opposite directions.

Modifying clockwise- or anticlockwise-biased tracing algorithms: Always cross over in
middle of a twisted edge.

Dealing with lack of global orientation in derived graph: Unless base embedding is actually
orientable, cannot trace faces in consistent way, using each edge once in each direction. Give
each vertex (f, t) local (clockwise) rotation based on order edges encountered when tracing
face f . In derived embedding suppose edge e′ = (f, t)(g, ta) is derived from e with f, g on
either side. Then e′ is twisted if both f and g trace e in the same direction, untwisted if they
trace it in opposite directions.

Example: For Z13 current graph above, again just one face, edges uniquely identified by currents.
Log of face is
2 1∗ −1∗ −2 6 3∗ −3∗ −6 5 9∗ −9∗ −5
where ∗ denotes twisted edge in derived embedding.

Even with twisted edges derived embedding may be orientable (just as for nonorientable voltage
graphs). Will always be nonorientable if base graph is actually nonorientable and current
group has odd order.

Example: See figure above. Face logs need to show edge, current applied, face representing other
end in derived embedding, and also whether edges are twisted (denoted by ∗).
f : e∗1 e∗2 e∗1 e3 e4

3 −1 3 −1 −2
f g f g g

g : e4 e3 e∗2
2 1 1
f f f

We show the equivalent voltage graph.

Final remarks on current graphs

Map Colour Theorem: Current graphs were used heavily to determine the minimum genus
of the complete graph Kn, generally by finding triangular embeddings. This often meant
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using current graphs with one face (‘index one’) and with most vertices of degree 3 and net
(additive) current 0 (satisfying KCL). Ringel’s book on this [Ri] uses current graphs very
heavily; presentation sometimes disagrees with modern conventions.

Using both voltages and currents together: Won’t go into details, but can use voltages and
currents simultaneously on an embedding by applying voltages to edges of gem representation,
in such a way that net voltage of each red-blue cycle (corresponding to an edge) is the identity.
Equivalent to a construction by Dan Archdeacon [Ar92] that puts voltages on edges of medial
graph.

Exercise: Suppose we have a voltage graph G and we take a vertex v and a constant g ∈ Γ. If
we right multiply all voltages on edges into v by g, and left multiply all voltages on edges out
of v by g−1, then the derived graph stays unchanged, except that vertex (v, h) is now labelled
vertex (v, hg) for each h ∈ Γ.

Prove that if we have a gem with assigned voltages, such that the net voltage around every
red-blue cycle is the identity, then we can modify the voltages as in the previous paragraph, so
that all red and blue edges have identity voltage. [Then all nontrivial voltages are on yellow
edges; this is the main step in proving that assigning voltages to gems is effectively the same
as Archdeacon’s assignment of voltages to the medial graph.]

4. BOUCHET’S DIAMOND SUM

Definition: To take the diamond sum of two
graphs G and G′ we take vertices v in G
and v′ in G′, so that degG(v) = degG′(v′),
delete the two vertices, and identify their
neighbours together. We denote this as
G ⋄ G′ (where v, v′, and the particular
identification of their neighbours are un-
derstood to be known).

We can extend this to two embeddings Ψ of
G and Ψ′ of G′: when we delete v and v′

we cut along a curve through their neigh-
bours, and we glue the surfaces together
(to get connected sum surface Σ#Σ′). The
neighbours must be identified in rotation
order. We denote this as Ψ ⋄Ψ′.

Note that if Ψ, Ψ′ have Euler genus ε, ε′ respec-
tively, then Ψ ⋄Ψ′ has Euler genus ε+ ε′.
So if both embeddings are orientable, or
both are nonorientable, we can just add
the genera of the surfaces.

Σ Σ′

|
delete, identify, glue

↓

Σ#Σ′

History: Used by Bouchet [Bo78a] in dual form for new proof of minimum genus of Km,n, 1978.
Primal form used by Mohar, Parsons and Pisanski [MPP85], and Magajna, Mohar and Pisanski
[MMP86], mid-1980s. Mohar and Thomassen [MT] give primal version of Bouchet’s proof in
their book and use diamond notation, hence name ‘diamond sum’. General form stated by
Kawarabayashi, Stephens and Zha [KSZ04].

Theorem: The minimum genus of an orientable genus embedding of Km,n is g(Km,n) = ⌈(m −
2)(n − 2)/4⌉.
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Proof: This was first proved by Ringel, 1965. But we will give a proof based on the diamond
sum, following the one in Mohar and Thomassen [MT]. Will use straightforward primal arguments
instead of Bouchet’s dual arguments.

Euler’s formula and the fact that face degrees must be at least 4 (since graph is simple and
bipartite) gives a lower bound of f0(m,n) = (m − 2)(n − 2)/4 on genus, which is achieved if we
have a quadrangular embedding (all facial walks are 4-cycles). Since genus is integral, can round
up: g(Km,n) ≥ f(m,n) = ⌈f0(m,n)⌉ = ⌈(m− 2)(n − 2)/4⌉.

F (m,n) is the statement that g(Km,n = f(m,n). We prove it for m,n ≥ 2 by induction on
m + n by constructing an embedding. Note that F (m,n) ⇔ F (n,m). True if m = 2 or n = 2 so
suppose m,n ≥ 3.

Claim D: If F (m,n) and F (p, n) hold and at least one of f0(m,n) and f0(p, n) is integral, then
F (m+ p− 2, n) holds.
Proof: Take the diamond sum of minimum genus embeddings of Km,n and Kp,n, deleting a vertex
in the first part of each bipartition. The resulting graph is Km+p−2,n with an embedding of genus

f(m,n) + f(p, n) = ⌈f0(m,n)⌉ + ⌈f0(p, n)⌉

= ⌈f0(m,n) + f0(p, n)⌉ as long as one of f0(m,n), f0(p, n) is integral

= ⌈
(m− 2)(n − 2)

4
+

(p− 2)(n − 2)

4
⌉ = ⌈

(m+ p− 4)(n − 2)

4
⌉

= ⌈f0(m+ p− 2, n)⌉ = f(m+ p− 2, n)

and so F (m+ p− 2, n) holds.

Claim B: F (3, 6) and F (4, 4) hold.
Proof:

Claim S: F (m, 6) holds for all m.
Proof: By repeated diamond sums with K3,6 we can build up K3,6 → K4, 6 → K5, 6 → . . ., and
since f0(3, 6) = 1 is integral the result follows from Claim D.

Claim B+: F (m,n) holds if m,n ≤ 6.
Proof: Use Claim S if m = 6 or n = 6. Claim B covers F (4, 4), and also F (3, 6) from which we
also get F (3, 3), F (3, 4) and F (3, 6). We get F (4, 5) from F (4, 6), and F (5, 5) from F (5, 6).

Now we just use induction. Without loss of generality m ≤ n and n ≥ 7. Now F (m,n − 4)
and F (m, 6) give F (m,n) by Claim D.

Nonorientable genus of Km,n: In a similar way can prove that Km,n has nonorientable genus
g̃(Km,n) = ⌈(m− 2)(n − 2)/2⌉.
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Minimum genus of complete tripartite graphs

Use of diamond sums suggested by Kawarabayashi, Stephens and Zha [KSZ04]. Used by Ellingham,
Stephens and Zha [ESZ06] (together with transition graphs and surgical techniques) to find
nonorientable genus of all complete tripartite graphs.

Lower bound from Euler’s formulas, conjectured to give actual genus: assume ℓ ≥ m ≥ n:
g(Kℓ,m,n) ≥ ⌈(ℓ− 2)(m+ n− 2)/4⌉,
g̃(Kℓ,m,n) ≥ ⌈(ℓ− 2)(m+ n− 2)/2⌉.

Note that lower bound is just genus of Kℓ,m+n. So if this is really the genus, a minimum genus
embedding of Kℓ,m,n just consists of a minimum genus embedding of Kℓ,m+n with the edges
of a Km,n inserted into the faces without changing the surface.

So diamond sum works in a way similar to complete bipartite graphs, but we have extra edges of a
Km,n on one side of the diamond sum. Specifically, we can take diamond sum of Kℓ,m,n with
Kp,m+n, deleting vertex in first part of partition of each graph. Result is Kℓ+p−2,m,n. Means
that we can start with embeddings of Kℓ,m,n for only a small number of values of ℓ close to m
(at worst m,m+ 1 in nonorientable case or m,m+ 1,m+ 2,m+ 3 in orientable case: stop at
first value where no rounding occurs in formula above) and then get all other values of ℓ by
diamond sum.

Genus of families of graphs from hamilton cycle embeddings

The situation with complete tripartite graphs suggested looking at graphs that look like complete
bipartite graphs with some extra edges added on one side of the bipartition. Turns out to be
related to embeddings where all facial walks are hamilton cycles.

h.c.

face

h.c.

face

h.c.

face

↔ ↔

Hamilton cycle embedding of some r-regular n-vertex G
↔ Triangular (hence min. genus) embedding of join Kr +G
↔ Quadrangular (hence min. genus) embedding of Kr,n.

So the middle step here is a complete bipartite graph with edges added on one side, and the last
step tells us that we added edges to a minimum genus embedding of Kr,n. So we can now
proceed as follows:

Hamilton cycle embedding of r-regular n-vertex G
l
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Triangular (hence minimum genus) embedding of join Kr +G
|

because contains min. genus emb. of Kr,n

↓
Minimum genus embedding of join Kr +H for any spanning subgraph H of G

|
diamond sum with min. genus embedding of Kn,s−r+2

↓
Guaranteed minimum genus embedding of Ks +H for all s ≥ r and spanning H ⊆ G.

Exercise: Prove that the nonorientable genus of Km,n is ⌈(m − 2)(n − 2)/2⌉ for m,n ≥ 3, given
that this is known to be a lower bound on the genus. First find an embedding of K3,4 in the
projective plane N1. Then use the diamond sum for induction.

5. TRANSITION GRAPHS

Comment on the name: In retrospect ‘transition graph’ is not a great name. Should really
be called ‘global rotation graphs’ or something like that: name comes from fact that edges in
rotation graph represent ‘transitions’ between two edges as we pass through a vertex.

General idea: Given an embedded voltage graph, take rotation graph around each vertex Rv.
Now for each edge e from u to v identify the vertex of Ru corresponding to an end of e
with the vertex of Rv corresponding to the other end of e. Result is actually medial graph
of voltage graph. Add some information corresponding to embedding of medial graph, edge
twists, voltages.

Will not give formal definition. If desired, see [ESZ06].

Scope and usefulness: This is a general construction, equivalent to embedded voltage graphs
(or to current graphs).

We saw that current graphs were more convenient than voltage graphs for finding triangular em-
beddings of complete graphs. Similarly, transition graphs are more convenient for embeddings
of regular complete bipartite graphs Km,m with control over face sizes (usually want faces to be
either 4-cycles or bamilton cycles). Play a key role in determining genus of complete tripartite
graphs.

Controlled embeddings of Km,m

Motivation: For complete tripartite graphs of form Km,m,n, may get min. genus embedding from
embedding of Km,m with

n hamilton cycle faces,
all other faces 4-cycles.

Can then add n new vertices in the hamilton cycle faces.
For joins of edgeless and complete graphs of form Km +Km, may get min. genus embedding from

embedding of Km,m with room in faces to add edges of a Km.
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Structure of a transition graph: Construction has
group Γ, directed graph D,
vertices (not edges) labelled by voltages in Γ,
edges partitioned into directed cycles,
each vertex traversed exactly twice by directed cycles,
vertices (not edges) may have twist (solid vertex •).

For embeddings of Km,m generally have
group Γ = Zm,
exactly two directed cycles (solid, dashed).

� = Z

8

0

1

2

34

5

6

7

Deriving the embedding:
Directed cycle → vertices indexed by Γ,
vertex → class of edges with given “slope”,
twisted vertex → twisted edges,
directed cycles show rotations.

Example:
� = Z

8

0

1

2

34

5

6

7

solid → ai, i ∈ Z8

dashed → bi, i ∈ Z8

gives as part of derived embedding

3

2

1

0

4

5

6

7

0

7

6

5

4

2

1

a

3

b

5

b

4

b

3

b

7

b

0

b

1

b

2

b

6

a

6

a

0

a

1

a

2

a

7

a

5

a

4

Tracing faces:
Follow edges in transition graph,
switching directed cycles at each vertex,
at twisted vertex also switch directions.

Results: (0, 1, 7, 6), (1, 2, 3, 2), (4, 0, 3, 7), (6, 5), (5, 4) – give
consecutive slopes (voltages) of edges in faces.

0

1

2

34

5

6

7
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a

3

a

4

a

5

a

6

a

7

a

0

a

1

a

2

b

0

b

1

b

2

b

3

b

4

b

5

b

6

b

7

(6; 5)

a

0

a

1

a

2

a

3

a

4

a

5

a

6

a

7

b

0

b

1

b

2

b

3

b

4

b

5

b

6

b

7

(0; 1; 7; 6)

translate

a

0

a

1

a

2

a

3

a

4

a

5

a

6

a

7

b

0

b

1

b

2

b

3

b

4

b

5

b

6

b

7

(1; 2; 3; 2)

translate

Advantages of transition graphs
• Can be built up from small patterns representing groups of faces of a particular size (H, I, V ,

X, S, . . .).
• Can be used to build whole families of embeddings at once, by making substitutions involving

small patterns (2H ↔ V , 4H ↔ 2X).
• Can be used to build relative (partial) embeddings, then complete with “gadgets” (non-

algebraic constructions), when completely algebraic construction is impossible.
• Allow very precise control of emb. structure:

set up places to add edges;
set up ways to extend embedding using vertex duplication or special diamond sums.

Building up from small patterns
Easy to build transition graphs from small patterns: specific face sizes.

i

i + k

H

gcd(k;m) = 1

i

i+

m

2

I

i

i + k

i + j + k

i+ j

X

i

i+ k

i+ 2k

V

one
ham.
cycle

m/2
4-cycles

m
4-cycles

m
4-cycles
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0

1

2

34

5

6

7
Embedding of K8,8:

X I
8+8+4+4 = 24 4-cycle faces

H
1 + 1 = 2 ham. cycle faces

→ min. genus embedding of K8,8,2 on S12.

Building families of embeddings
0

1

2

3

4

56

7

8

9

10

11

�!

0

1

2

3

4

56

7

8

9

10

11

.

.

.

�!

0

1

2

3

4

56

7

8

9

10

11

• Switch 2H → V (nonorientable):

K12,12 with 10 ham. cycle faces
→ Ori. min. genus emb. of K12,12,10

which is modified to give

K12,12 with 8, 6, 4, 2 ham. cycle faces
→ Nonori. min. genus emb. of K12,12,8/6/4/2

0

1

2

3

4

56

7

8

9

10

11

�!

0

1

2

3

4

56

7

8

9

10

11

�!

0

1

2

3

4

56

7

8

9

10

11

• Switch 4H → 2X:

K12,12 with 10 ham. cycle faces
→ Ori. min. genus emb. of K12,12,10

which is modified to give

K12,12 with 6, 2 ham. cycle faces
→ Ori. min. genus emb. of K12,12,6/2
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Gadgets

Sometimes there is no purely algebraic way to construct an embedding of Km,m,n using a transition
graph. Instead use a partial transition graph together with a gadget , a set of faces not perfectly
symmetric under the action of Zm, but which easily generalizes.

Detailed faces in gadget:

Special transition graphs (adding edges)

Can also do other things with transition graphs. For example, by controlling the lengths of edges
(length of i → j is j − i) we can control which vertices share faces. If we get edges of one type
(solid or dashed) with all possible lengths, means vertices in one class share a face with every
other vertex in the same class, so can add a complete graph on that side of the bipartition.
Used for example to construct orientable minimum genus embeddings of Kn +Kn for even n.

Exercise: Find a transition graph that generates an embedding of K14,14 with twelve hamilton
cycle faces and all other faces being 4-cycles.

Now repeat for eleven hamilton cycle faces.
(These allow us to get minimum genus embeddings of K14,14,12 and K14,14,11.)
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6. SURGERY

Surgery (cutting and pasting) can be used in many ways. Two very typical ways are for local
modification of embeddings and for recursive constructions. Will give illustrations for each.

Local modifications

Merging faces around a vertex: Can use a single crosscap to merge two faces around the same
vertex into a single face. Similarly, can use a handle to merge three faces around the same
vertex into a single face.

By repeating this process we can merge enough faces around a given vertex v into a single face so
that we can add into the new face a new vertex v′ that is adjacent to all neighbours of v. We
call this duplicating a vertex . See [ESZ06]; similar ideas also used by other people.

The problem is often that we wish (when constructing minimum genus embeddings) to use only a
certain number of crosscaps or handles. We may have to be careful and creative in how we
place the crosscaps or handles.

Recursive constructions

‘Tripling’ for triangulations of complete graphs: Grannell, Griggs and Širáň [GGS98] use
2-face-colourable triangulation of Kn to construct 2-face-colourable triangulation of K3n−2.
(Face colouring is important.)

• Take triangulation of Kn, cut out one vertex z, now have Kn−1 on surface with boundary S.
• Take three copies of S: S0, S1, S2, where vi on Si corresponds to v on S, etc.
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• For each white triangle t = (uvw) cut out t0, t1, t2 and
glue on 2-face-colourable toroidal embedding of K3,3,3

with vertex classes {u0, u1, u2}, {v0, v1, v2}, {w0, w1, w2}
which has three black triangles (uiviwi) deleted. Gives
all edges of K3n−3 except those xiyj where i 6= j and
xy incident with boundary and black triangle (then no
white triangle containing that edge), and edges of form
xixj where i 6= j.

• Now suppose boundary is (x1x2 . . . xn−1) (where n − 1 is even) where x1x2, x3x4, . . . are
incident with only black triangles. Construct derived embedding from Z3-voltage graph shown:
contains

cycles (xi
1x

i
2 . . . x

i
n−1) to glue on to boundaries of S0, S1, S2,

assuming 3 6 |n− 1, hamilton cycle (x0
1x

1
2x

1
3x

2
4 . . . x

0
n−1) in which to add extra vertex, and

all missing edges;

This construction is important: by varying the way the K3,3,3 embeddings are glued on, was first

construction of large number (cn
2

) of nonisomorphic triangular embeddings of given complete
graphs Kn [BGGS00].

‘Doubling’ and ‘tripling’ for hamilton cycle embeddings of complete graphs: Due to
Ellingham and Stephens [ES09]/Ellingham and Schroeder [ES14b] Use hamilton cycle embed-
ding of regular complete bipartite/tripartite graph (known) to glue together hamilton cycle
embeddings of Kn to get hamilton cycle embedding of K2n−2 or K3n−3.
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For ‘tripling’, glue together:
(a) three hamilton cycle embeddings of Kn, each

with one vertex deleted, and
(b) one hamilton cycle embedding of

Kn−1,n−1,n−1 with at least one abc-pattern
face (which we remove).

Result is hamilton cycle embedding ofK3n−3. Rotation
around b1 shown to see how it works.

a0 b0 c0

a1 b1 c1

7. CONNECTIONS WITH DESIGN THEORY

Designs can often be used to help construct embeddings. Often need some kind of extra condition
to make sure we get proper rotations.

Biembeddings of Steiner triple systems

If we have a 2-face-colourable triangular embedding of Kn, then each colour class forms a partition
of the edges of Kn into triangles. In other words, we have a set of triples chosen from n elements
so that every pair occurs in exactly one triple: a Steiner triple system (STS). Altogether this
is a biembedding of Steiner triple systems.

Example: 2-face-colourable embedding of K7 on torus, shown below, is a biembedding of the Fano
plane (the unique up to isomorphism STS of order 7) with itself.

In general if we just take two arbitrary Steiner triple systems then we do not get an embedding:
we have a set of closed walks covering each edge twice, but may not have proper rotations.

If we take two Steiner triple systems T1 and T2, not clear when T1 can be biembedded with
something isomorphic to T2. At least one case known where this cannot be done if we insist
that the embedding must be orientable.
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Biembeddings of Latin squares

Definition: A latin square is an n × n array of n symbols so that every symbol occurs exactly
once in each row and each column.

Suppose we have a 2-face-colourable triangular embedding of a complete tripartite graph Kn,n,n

with tripartition (A,B,C) where A = {a1, a2, . . . , an}, etc. Take one colour class of faces, then
we have a partition of the edges of Kn,n,n into triangles. If we interpret a triangle (aibjck)
as telling us to put symbol k in row i, column j, then we get a latin square for each colour
class. Altogether this is a biembedding of latin squares. If this exists, the surface is necessarily
orientable.

Again, if we take two arbitrary latin squares, it is not clear if we can biembed them. But there is
one positive result with very useful consequences.

Definition: A latin square L is consecutive-row-hamiltonian if for every two (cyclically) consecutive
rows, the permutation we get by mapping symbols in the first row to the symbols in the same
column in the second row is a cyclic (hamiltonian!) permutation.

Simple example: Zn, the addition table of Zn, is consecutive-row-hamiltonian.

Theorem (Grannell and Griggs [GG08]): Any latin square that is consecutive-row-hamiltonian
has a biembedding with something isomorphic to itself (in fact, to itself with all rows shifted up
one position).

This was used as part of first construction of nan2

nonisomorphic triangulations of Kn for certain
n. Overall construction used ideas related to earlier result giving cn

2

such triangulations
(mentioned in section on surgery).

Latin squares and hamilton cycle embeddings of complete tripartite graphs

Can also use latin squares to get other embeddings of complete tripartite graphs: ones where all
facial walks are hamilton cycles. Need two conditions. First, latin square must be consecutive-
entry-hamiltonian (similar to consecutive-row-hamiltonian, and in fact could use that instead).
Second, latin square L must have an orthogonal mate: another latin square L′ such that for
every symbol s of L and every symbol s′ of L′ there is some row and column that contains s
in L and s′ in L′.

Theorem (Ellingham and Schroeder): An n×n latin square that is consecutive-entry-hamilton-
ian and has an orthogonal mate can be used to construct a 2-face-colourable hamilton cycle em-
bedding of Kn,n,n. Every face has an abc-pattern (useful for tripling construction mentioned in
section on surgery). If n ≥ 3 is not twice a prime then such a latin square exists.

For n odd can again use Zn, addition table of Zn. Much trickier for even n.

8. BOUCHET’S COVERING TRIANGULATIONS

Idea: Lift triangulation of G to triangulation of G[Km] = G(m), graph where we replace each
x ∈ V (G) by m independent vertices (x, i), i ∈ Zm, and (x, i)(y, j) ∈ E(G(m) ⇔ xy ∈ E(G),
i.e. each edge is replaced by a copy of Km,m. Original paper is [Bo78b].

Definition: Suppose G is eulerian (every vertex has even degree) and Ψ is a triangulation of G.
Let T = T (Ψ) be the set of triangles of Ψ. An m-valuation is a map φ : T → Zm. An
m-valuation is generative if the alternating sum around every vertex is a generator of Zm.
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Formalization: Make a bit more precise: a corner of the embedding is represented by a (vertex,
triangle) pair (x, t). Assign a sign ε(x, t) ∈ {−1, 1} to each corner so that the signs alternate
around every vertex. Define

φ(x) =
∑

x∈t ε(x, t)φ(t)

for each vertex x. Then we want every φ(x) to be a generator of Zm.

Theorem: If φ is a generative m-valuation then we have a triangulation of G(m) whose triangles
are given by

{( (x, i)(y, j)(z, k) ) | (xyz) ∈ T, i+ j + k = φ(t)}.
This has the same orientability as the original triangulation.

• Clear that we get two triangles containing every (x, i)(y, j), corresponding to the two original
triangles (wxy) and (xyz): values of i and j force values of h and k for third vertices (w, h)
and (z, k).

• So just need to verify proper rotations. When we follow triangles around a vertex (x, i) from
edge (x, i)(y, j) will end up at edge (x, i)(y, j ± φ(x)) after going around x once: since φ(x)
generates Zm, we end up with all neighbours of (x, i) after doing this m times.

Finding a generative m-valuation

Restate question in more formal algebraic way.

• Consider ZmV = formal Zm-linear combinations of vertices in G, Zm-module.

• For each triangle t define t =
∑

x∈t ε(x, t)x ∈ ZmV . Define φ =
∑

t∈T φ(t)t. φ is generative

m-valuation if coefficient of φ for vertex x is a generator of Zm for all x: in that case say that
φ is generative element of ZmV . This coefficient is just what we called φ(x) before: formal
Zm-linear combinations are equivalent to Zm-valued functions.

• Define submodule T generated by {t | t ∈ T}. Want to know if any generative element in T .
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• Depends on structure of diagonal graph D = D(Ψ): V (D) = V (G), join w and z if they are in
adjacent triangles (wxy) and (xyz).

◦ If wz ∈ E(D) then one of w + z, w − z is in T : call it α(w, z).

◦ If u and v are in the same component of D then one of u+ v, u− v is in T : again call it
α(u, v). (Use induction on previous statement.)

◦ So if could partition each component of D into pairs of vertices (ui, vi), add up all α(ui, vi)
and all coefficients ±1, so have a generative element.

• What do components of D look like? For a given triangle t and x ∈ T , for any other triangle
t′ there is x′ ∈ t′ such that x and x′ are in the same component of D. So D has at most three
components, and each component contains a fixed number of vertices of each triangle.

For example, in the octahedron (as shown) there are three components of D with even
vertex sets {p, q}, {w, y}, {x, z}. Take

(t1 + t5) + (t1 + t4) + (t1 + t2) = 3t1 + t2 + t4 + t5

= ±(p± q)± (w ± y)± (x± z)

which is generative for any m (even or odd).

Theorem: Suppose m is odd and Ψ is a triangulation of eulerian G. Then Ψ has a generative
m-valuation and hence a triangular embedding of G(m) of the same orientability as Ψ.
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Proof:
• Fix a triangle t = (xyz). Choose ε values so ε(x, t) = ε(y.t) = ε(z, t) = 1.
• Partition each component of D into pairs of vertices, as follows:

- if there is a leftover vertex make sure it is a vertex of t;
- if a vertex of t is in one of the pairs (ui, vi), make sure it is ui (so its coefficient is

definitely 1, not −1).
If all components of D are even, just add up all α(ui, vi) as mentioned above: all

coefficients are ±1.
• If some component of D is odd then adding up all α(ui, vi) will leave out some element(s)

of t. So add up all α(ui, vi) and add t = x + y + z. Now all coefficients ±1 except possibly
coefficients of 2 for x, y or z: since m is odd, still generative.

Example: In K2 + C6 as shown, D has three components with vertex sets {p, q}, {u,w, y} and
{v, x, z}. Assuming all ε values of t1 are +1, we take t1+α(q, p) +α(u,w) +α(v, x) which has
coefficient 2 for q and coefficient ±1 for everything else.

Note: As mentioned earlier, if all components of D are even order then works for any m; Bouchet
gives other conditions that will guarantee this.

Folded coverings

If we want to extend Theorem above to even m, will be enough to do it for m = 2, then can use
induction for powers of 2 and combine with result for odd m. But it can be shown that it is
not always possible to get a generative 2-valuation.

Instead, need to use folded coverings [Bo82]. Original coverings have property that two triangles
containing given edge (x, i)(y, j) correspond to the two distinct triangles containing xy in G.
But for folded covering, may have fold on edge (x, i)(y, j): both triangles containing this edge
correspond to same original triangle (xyz).

Theorem: Suppose Ψ is a triangulation of eulerian G. Then there is a triangular embedding of
G2) of the same orientability as Ψ, obtained by a folded covering.

Proof: Assign ε(x, t) values as previously (±1 values at corners, alternating around each vertex).

• For each x ∈ V (G) let (x,−1) and (x, 1) be corresponding vertices in G(2).

• Given a triangle t = (xyz) in Ψ with a = ε(x, t), b = ε(y, t), c = ε(z, t), replace by four
triangles

( (x, a)(y, b)(z, c) ) (primary triangle),
( (x,−a)(y, b)(z, c) ), ( (x, a)(y,−b)(z, c) ), ( (x, a)(y, b)(z,−c) ) (three secondary triangles).

Note that each edge (x, a)(y, b), (x, a)(z, c), (y, b)(z, c) appears in two triangles coming from
(xyz) so each of these edges is a fold.

• Each edge occurs in two triangles: suppose we also have original triangle t′ = (wxy). Then
(x, a)(y, b) occurs in two triangles from t = (xyz); (x,−a)(y,−b) occurs in two triangles from
t′ = (wxy) (also a fold) because ε(x, t′) = −ε(x, t) = −a and ε(y, t′) = −ε(y, t) = −b;
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(x, a)(y,−b) and (x,−a)(y, b) each appear in one triangle from t = (xyz) and one triangle
from t′ = (wxy) (so not folds).

• Can follow triangles around each vertex (x,±1): close up because original degree of x was
even, so have proper rotation.

• Map local orientation of triangles in Ψ to new triangulation: use same orientation for pri-
mary triangles, reverse for secondary triangles. Consistent if and only if original orientation
consistent.

Other important results by Bouchet and coauthors

Theorem: If Ψ is a triangulation of an eulerian complete multipartite graph then G(m) has a
triangulation of the same orientability as Ψ, obtained using a generative m-valuation, for all m ≥ 2.
Proof shows that we can avoid odd order components of diagonal graph when m is even.

Theorem: If p is an odd prime and Ψ is a triangulation of a graph G such that Ψ∗ (the dual of
Ψ) has a nowhere zero p-flow then there is a triangular embedding of G(p) of the same orientability
as Ψ.

Note: Since all 2-connected graphs have nowhere zero 6-flows (Seymour), can always do this for
p ≥ 7. If 5-flow conjecture is true, would always work for p = 5, too. In special cases can work
for p = 3 or 5 (e.g., see below).

Theorem: If Ψ is a triangulation of a 4-colourable graph G 6∼= K4, then we get a triangular
embedding of G(m) of the same orientability as Ψ for m = 3 and hence (by repetition, and using
the fact that a 4-face-colourable graph has a nowhere zero 4-flow) for all odd m.

Non-triangular embeddings

Bouchet’s constructions are for triangulations. But can use, perhaps in modified form, if convert
other embeddings into triangulations by adding extra edges or vertices. A couple of examples:

1. Lifting embeddings where all faces have even lengths, paper by Bouchet. First add a new
vertex inside each face so we have an Eulerian triangulation. Now find an m-valuation φ
so that values/coefficients of φ are generators of Zm for original vertices, but are 0 for new
vertices.

2. In some cases it makes sense to just directly apply Bouchet’s results after converting to a
triangulation. For example, Ellingham and Schroeder [ES12] used Bouchet’s results to help
construct hamilton cycle embeddings of regular complete tripartite graphs:

hamilton cycle embedding of Kt,t,t

→ triangulation of K2t,t,t,t (add vertex in each face)
and apply Bouchet lifting to get

triangulation of K2mt,mt,mt,mt

→ hamilton cycle embedding of Kmt,mt,mt (delete first vertex class).
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