Tight distance-regular graphs with classical parameters

Janoš Vidali

Joint work with Aleksandar Jurišić

University of Ljubljana Faculty of Mathematics and Physics Faculty of Computer and Information Science

> University of Primorska Andrej Marušič Institute

> > May 27, 2015

Distance-regular graphs Intersection array

Distance-regular graphs

- ▶ Let Γ be a graph of diameter d with vertex set $V\Gamma$, and $\Gamma_i(u)$ be the set of vertices of Γ at distance i from $u \in V\Gamma$.
- For $u, v \in V\Gamma$ with $\partial(u, v) = h$, let the *intersection numbers* be

 $p_{ij}^h := |\Gamma_i(u) \cap \Gamma_j(v)|$.

The graph Γ is distance-regular if the values of p^h_{ij}(u, v) only depend on the choice of distances h, i, j and not on the particular vertices u, v.

Distance-regular graphs Intersection array

Intersection array

- Distance-regular graphs are regular with valency k := p⁰₁₁ and have subconstituents Γ_i(u) of size k_i := p⁰_{ii} and valency a_i := pⁱ_{1,i} (0 ≤ i ≤ d).
- ► All p_{ij}^h can be determined from the *intersection array* $\{k, b_1, \dots, b_{d-1}; 1, c_2, \dots, c_d\}$, where $b_i := p_{1,i+1}^i$, $c_i := p_{1,i-1}^i$ and $a_i + b_i + c_i = k$ $(0 \le i \le d)$.
- Eigenvalues and their multiplicities can be computed directly from the intersection array.

Classical parameters Known families Open cases

Distance-regular graphs with classical parameters

- A. Neumaier [BCN89] observed that the intersection arrays of many known distance-regular graphs can be expressed in terms of just four parameters.
- A distance-regular graph of diameter d has classical parameters (d, b, α, β) if its intersection array satisfies

 $b_i = ([d] - [i])(\beta - \alpha[i]) \quad (0 \le i \le d - 1) \text{ and} \ c_i = [i](1 + \alpha[i - 1]) \quad (1 \le i \le d),$

where $[n] := [n]_b := \sum_{i=0}^{n-1} b^i$ is the *b*-analogue of *n*.

• The parameter b is an integer distinct from 0 and -1.

Classical DRGs Tight DRGs Tight & classical	Known families Open cases				
name		d	Ь	$\alpha + 1$	$\beta + 1$
Johnson graphs $J(e, d), e \ge 2d$	-	d	1	2	e - d + 1
Grassmann graphs $J_q(e, d), e \ge 2d$		d	q	q+1	[e - d + 1]
Twisted Grassmann graphs $\hat{J}_q(2d+1, d)$		d	q	q+1	[d + 2]
Hamming graphs $H(d, e)$		d	1	1	е
Doob graphs $\hat{H}^{i}(d, 4)$, $1 \leq i \leq d/2$		d	1	1	4
Halved cubes $\frac{1}{2}H(n, 2)$		d	1	3	m + 1
Dual polar graphs $B_d(q)$		d	q	1	q+1
Dual polar graphs $C_d(q)$		d	q	1	q+1
Dual polar graphs $D_d(q)$		d	q	1	2
Hemmeter graphs $D_d(q)$		d	q	1	2
Halved dual polar graphs $D_{n,n}(q)$		d	q^2	[3] _q	$[m + 1]_q$
Ustimenko graphs $\hat{D}_{n,n}(q)$		d	q^2	[3] _q	$[m + 1]_q$
Dual polar graphs ${}^{2}D_{d+1}(q)$		d	q	1	$q^2 + 1$
Dual polar graphs ${}^{2}A_{2d}(q)$		d	q^2	1	$q^{3} + 1$
Dual polar graphs ${}^{2}A_{2d-1}(q)$		d	q^2	1	q+1
	or	d	-q	$\frac{1+q^2}{1-q}$	$\frac{1-(-q)^{d+1}}{1-q}$
Bilinear forms graphs $H_q(d, e)$, $e \ge d$		d	q	q	q^{e}
Alternating forms graphs $Alt_n(q)$		d	q^2	q^2	q^m
Quadratic forms graphs $Q_{n-1}(q)$		d	q^2	q^2	q^m
Hermitean forms graphs $\operatorname{Her}_d(q)$		d	-q	-q	$-(-q)^{d}$
Triality graphs ${}^{3}D_{4,2}(q)$		3	-q	$\frac{1}{1-a}$	[3] _q
Affine $E_6(q)$ graphs		3	q^4	$q^{4'}$	q^9
Exceptional Lie graphs $E_{7,7}(q)$		3	q^4	[5] _q	[10] _q
Gosset graph E ₇ (1)		3	1	5	10
Witt graph M ₂₃		3	-2	$^{-1}$	6
Witt graph M ₂₄	.	3	-2	-3	11
Coset graph of the extended ternary Golay co	de	3	-2	-2	9

Introduction

q is a prime power; m = n = 2d + 1 or m + 1 = n = 2d

Classical parameters Known families Open cases

Open cases

- For many known graphs with classical parameters, uniqueness is not known.
- There are also many open cases.
- All known open cases with diameter at least 4 have either α = b − 1 or α = b [BCN89, Bro11].
- We have proven nonexistence for the cases
 - $(d, b, \alpha, \beta) = (3, 2, 1, 5)$ with 216 vertices [JV12],
 - $(d, b, \alpha, \beta) = (3, 3, 2, 10)$ with 1331 vertices, and
 - $(d, b, \alpha, \beta) = (3, 8, 7, 66)$ with 300763 vertices.

Tight distance-regular graphs Local graphs Equitable partitions

Tight distance-regular graphs

A. Jurišić, J. H. Koolen and P. Terwilliger [JKT00] established the *fundamental bound* for distance-regular graphs:

$$\left(heta_1+rac{k}{a_1+1}
ight)\left(heta_d+rac{k}{a_1+1}
ight)\geq -rac{ka_1b_1}{(a_1+1)^2}.$$

A non-bipartite graph with equality in this bound is called *tight*. Such graphs can be parametrized with d + 1 parameters.

The only known primitive tight graph is the Patterson graph with 22880 vertices, which is uniquely determined by its intersection array {280, 243, 144, 10; 1, 8, 90, 280} [BJK08].

Tight distance-regular graphs Local graphs Equitable partitions

Local graphs of tight graphs

Theorem [JKT00, BCN89]:

For any vertex u of a tight distance-regular graph Γ , the local graph $\Gamma(u)$ is strongly regular with nontrivial eigenvalues

$$au = -1 - rac{b_1}{1+ heta_d}$$
 and $\sigma = -1 - rac{b_1}{1+ heta_1}$

and multiplicities

$$m_{ au} = rac{a_1(a_1-\sigma)(\sigma+1)}{(a_1+\sigma au)(\sigma- au)} \quad ext{and} \quad m_{\sigma} = rac{a_1(a_1- au)(au+1)}{(a_1+\sigma au)(au-\sigma)}.$$

Tight distance-regular graphs Local graphs Equitable partitions

1-homogeneity

A partition $\{C_i\}_{i=1}^t$ of $V\Gamma$ is *equitable* if there exist parameters n_{ij} such that every vertex in C_i has precisely n_{ij} neighbours in C_j .

A graph is distance-regular *iff* the distance partition for every vertex is equitable with the same parameters.

A graph Γ is 1-homogeneous [Nom94] if any partition of the graph corresponding to the distances from two adjacent vertices is equitable with the same parameters.

Tight distance-regular graphs Local graphs Equitable partitions

The CAB property

A graph Γ has the *CAB property* [JK00] if for any two vertices $u, v \in V\Gamma$, the partition of the local graph $\Gamma(u)$ corresponding to the distances from v is equitable with parameters only depending on the distance $\partial(u, v)$.

Tight distance-regular graphs Local graphs Equitable partitions

Characterization

Theorem [JKT00, JK00]: Let Γ be a distance-regular graph with $a_1 \neq 0$ and $a_d = 0$. The following are equivalent:

- Γ is 1-homogeneous,
- Γ has the CAB property,
- Γ is tight.

Condition Parameters of partitions Feasible family Local graphs

Tight distance-regular graphs with classical parameters

Proposition: A distance regular graph with classical parameters (d, b, α, β) and $d \ge 3$ is tight iff

$$\beta = 1 + \alpha[d-1]$$
 and $b, \alpha > 0$.

All known examples have b = 1:

- ▶ halved cubes $\frac{1}{2}H(2d,2)$, $(d, b, \alpha, \beta) = (d, 1, 1, d)$,
- ► Johnson graphs J(2d, d), $(d, b, \alpha, \beta) = (d, 1, 2, 2d 1)$, and
- the Gosset graph $E_7(1)$, $(d, b, \alpha, \beta) = (3, 1, 4, 9)$.

These graphs are uniquely determined by their parameters.

Condition Parameters of partitions Feasible family Local graphs

Parameters of partitions

The parameters of the CAB and 1-homogeneous partitions of a tight distance-regular graphs with classical parameters can be computed explicitly:

 $\alpha_h = 1 + \alpha[h-1], \quad \beta_h = b(1 + \alpha b^h[d-h-1]), \quad \gamma_h = \delta_{h-1} = \alpha(b+1)[h-1],$

 $\rho_i = \alpha b^{i-2}(b+1)[i-1], \ \ \sigma_i = [i-1](1+\alpha[i-1]), \ \ \tau_i = b^{i+1}[d-i-1](1+\alpha b^i[d-i-1]).$

Condition Parameters of partitions Feasible family Local graphs

A feasible family

We find a two-parametrical family of classical parameters for tight distance-regular graphs:

$$(d, b, \alpha, \beta) = (d, b, b - 1, b^{d-1}).$$
 (1)

- $\alpha = b 1$ implies that corresponding graphs are formally self-dual.
- For b = 1 we get *d*-cubes, which are bipartite and thus not tight.
- For d = 3, the parameters are not feasible as they imply $p_{33}^3 < 0$.
- For b ≥ 2 and d ≥ 4 we have a feasible parameter set for a primitive distance-regular graph.

Theorem: A graph with classical parameters (1) and $b \ge 2$, $d \ge 4$ does not exist.

Idea of proof: local graphs are strongly regular, but their eigenvalues have nonintegral multiplicities.

Condition Parameters of partitions Feasible family Local graphs

Local graphs

Let Γ be a tight distance-regular graph of diameter $d \ge 4$ with classical parameters (d, b, α, β) , where $b \ge 2$ and $\alpha \in \{b, b+1\}$.

- The local graphs of Γ have parameters of Latin square and Steiner system graphs, respectively.
- We have checked that the multiplicity of the smallest eigenvalue is never integral when α = b and d ≤ 17, or α = b + 1 and d ≤ 5.

Conjecture: The local graph of a tight distance-regular graph with classical parameters (d, b, α, β) , where $d \ge 3$ and $b \ge 2$, is not a Latin square or Steiner system graph.

Andries E. Brouwer, Arjeh M. Cohen, and Arnold Neumaier. Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1989.

Andries E. Brouwer, Aleksandar Jurišić, and Jack Koolen. Characterization of the Patterson graph. *J. Algebra*, 320(5):1878–1886, 2008.

Andries E. Brouwer.

Parameters of distance-regular graphs, 2011. http://www.win.tue.nl/~aeb/drg/drgtables.html.

Aleksandar Jurišić and Jack Koolen.

A local approach to 1-homogeneous graphs. Des. Codes Cryptogr., 21(1–3):127–147, 2000. Special issue dedicated to Dr. Jaap Seidel on the occasion of his 80th birthday (Oisterwijk, 1999).

Aleksandar Jurišić, Jack Koolen, and Paul Terwilliger. Tight distance-regular graphs. J. Algebraic Combin., 12(2):163–197, 2000.

Aleksandar Jurišić and Janoš Vidali.
 Extremal 1-codes in distance-regular graphs of diameter 3.
 Des. Codes Cryptogr., 65(1-2):29-47, 2012.

🛯 Kazumasa Nomura.

Homogeneous graphs and regular near polygons. J. Combin. Theory Ser. B, 60(1):63–71, 1994.