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Distance-regular graphs

I Let Γ be a graph of diameter d with vertex set V Γ, and
Γi (u) be the set of vertices of Γ at distance i from u ∈ V Γ.

I For u, v ∈ V Γ with ∂(u, v) = h,
let the intersection numbers be

ph
ij := |Γi (u) ∩ Γj(v)| .

I The graph Γ is distance-regular if the values of ph
ij(u, v)

only depend on the choice of distances h, i , j
and not on the particular vertices u, v .
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Intersection array

I Distance-regular graphs are regular with valency k := p0
11

and have subconstituents Γi (u) of size ki := p0
ii

and valency ai := pi
1,i (0 ≤ i ≤ d).

I All ph
ij can be determined from the intersection array

{k , b1, . . . , bd−1; 1, c2, . . . , cd} ,
where bi := pi

1,i+1, ci := pi
1,i−1 and ai +bi +ci = k (0≤ i≤d).

I Eigenvalues and their multiplicities
can be computed directly from the intersection array.

u
k

a1

k2

a2

k3

a3

· · · kd

ad

k

1

b1
c2

b2
c3

b3
cd



Introduction
Classical DRGs

Tight DRGs
Tight & classical

Classical parameters
Known families
Open cases

Distance-regular graphs with classical parameters

I A. Neumaier [BCN89] observed that the intersection arrays
of many known distance-regular graphs
can be expressed in terms of just four parameters.

I A distance-regular graph of diameter d has classical
parameters (d , b, α, β) if its intersection array satisfies

bi = ([d ]− [i ])(β − α[i ]) (0 ≤ i ≤ d − 1) and

ci = [i ](1 + α[i − 1]) (1 ≤ i ≤ d),

where [n] := [n]b :=
∑n−1

i=0 bi is the b-analogue of n.

I The parameter b is an integer distinct from 0 and −1.
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name d b α + 1 β + 1
Johnson graphs J(e, d), e ≥ 2d d 1 2 e − d + 1
Grassmann graphs Jq(e, d), e ≥ 2d d q q + 1 [e − d + 1]

Twisted Grassmann graphs Ĵq(2d + 1, d) d q q + 1 [d + 2]
Hamming graphs H(d, e) d 1 1 e

Doob graphs Ĥ i (d, 4), 1 ≤ i ≤ d/2 d 1 1 4

Halved cubes 1
2
H(n, 2) d 1 3 m + 1

Dual polar graphs Bd (q) d q 1 q + 1
Dual polar graphs Cd (q) d q 1 q + 1
Dual polar graphs Dd (q) d q 1 2

Hemmeter graphs D̂d (q) d q 1 2

Halved dual polar graphs Dn,n(q) d q2 [3]q [m + 1]q
Ustimenko graphs D̂n,n(q) d q2 [3]q [m + 1]q
Dual polar graphs 2Dd+1(q) d q 1 q2 + 1

Dual polar graphs 2A2d (q) d q2 1 q3 + 1

Dual polar graphs 2A2d−1(q) d q2 1 q + 1

or d −q 1+q2

1−q
1−(−q)d+1

1−q
Bilinear forms graphs Hq(d, e), e ≥ d d q q qe

Alternating forms graphs Altn(q) d q2 q2 qm

Quadratic forms graphs Qn−1(q) d q2 q2 qm

Hermitean forms graphs Herd (q) d −q −q −(−q)d

Triality graphs 3D4,2(q) 3 −q 1
1−q

[3]q

Affine E6(q) graphs 3 q4 q4 q9

Exceptional Lie graphs E7,7(q) 3 q4 [5]q [10]q
Gosset graph E7(1) 3 1 5 10
Witt graph M23 3 −2 −1 6
Witt graph M24 3 −2 −3 11
Coset graph of the extended ternary Golay code 3 −2 −2 9

q is a prime power; m = n = 2d + 1 or m + 1 = n = 2d
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Open cases

I For many known graphs with classical parameters,
uniqueness is not known.

I There are also many open cases.

I All known open cases with diameter at least 4
have either α = b − 1 or α = b [BCN89, Bro11].

I We have proven nonexistence for the cases
I (d , b, α, β) = (3, 2, 1, 5) with 216 vertices [JV12],
I (d , b, α, β) = (3, 3, 2, 10) with 1331 vertices, and
I (d , b, α, β) = (3, 8, 7, 66) with 300763 vertices.
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Tight distance-regular graphs

A. Jurǐsić, J. H. Koolen and P. Terwilliger [JKT00] established
the fundamental bound for distance-regular graphs:(

θ1 +
k

a1 + 1

)(
θd +

k

a1 + 1

)
≥ − ka1b1

(a1 + 1)2
.

A non-bipartite graph with equality in this bound is called tight.
Such graphs can be parametrized with d + 1 parameters.

The only known primitive tight graph is the Patterson graph
with 22880 vertices, which is uniquely determined by its
intersection array {280, 243, 144, 10; 1, 8, 90, 280} [BJK08].
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Local graphs of tight graphs

Theorem [JKT00, BCN89]:
For any vertex u of a tight distance-regular graph Γ,
the local graph Γ(u) is strongly regular with nontrivial eigenvalues

τ = −1− b1

1 + θd
and σ = −1− b1

1 + θ1

and multiplicities

mτ =
a1(a1 − σ)(σ + 1)

(a1 + στ)(σ − τ)
and mσ =

a1(a1 − τ)(τ + 1)

(a1 + στ)(τ − σ)
.
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1-homogeneity

A partition {Ci}ti=1 of V Γ is equitable if there exist parameters nij

such that every vertex in Ci has precisely nij neighbours in Cj .

A graph is distance-regular iff the distance partition
for every vertex is equitable with the same parameters.

A graph Γ is 1-homogeneous [Nom94] if any partition
of the graph corresponding to the distances from
two adjacent vertices is equitable with the same parameters.
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The CAB property

A graph Γ has the CAB property [JK00] if for any two vertices
u, v ∈ V Γ, the partition of the local graph Γ(u)
corresponding to the distances from v is equitable
with parameters only depending on the distance ∂(u, v).
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Characterization

Theorem [JKT00, JK00]: Let Γ be a distance-regular graph
with a1 6= 0 and ad = 0. The following are equivalent:

I Γ is 1-homogeneous,

I Γ has the CAB property,

I Γ is tight.
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Tight distance-regular graphs with classical parameters

Proposition: A distance regular graph with
classical parameters (d , b, α, β) and d ≥ 3 is tight iff

β = 1 + α[d − 1] and b, α > 0.

All known examples have b = 1:

I halved cubes 1
2 H(2d , 2), (d , b, α, β) = (d , 1, 1, d),

I Johnson graphs J(2d , d), (d , b, α, β) = (d , 1, 2, 2d − 1), and

I the Gosset graph E7(1), (d , b, α, β) = (3, 1, 4, 9).

These graphs are uniquely determined by their parameters.
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Parameters of partitions

The parameters of the CAB and 1-homogeneous partitions
of a tight distance-regular graphs with classical parameters
can be computed explicitly:
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ρi = αbi−2(b+1)[i−1], σi = [i−1](1+α[i−1]), τi = bi+1[d−i−1](1+αbi [d−i−1]).



Introduction
Classical DRGs

Tight DRGs
Tight & classical

Condition
Parameters of partitions
Feasible family
Local graphs

A feasible family

We find a two-parametrical family of classical parameters
for tight distance-regular graphs:

(d , b, α, β) = (d , b, b − 1, bd−1). (1)

I α = b − 1 implies that corresponding graphs are formally self-dual.

I For b = 1 we get d-cubes, which are bipartite and thus not tight.

I For d = 3, the parameters are not feasible as they imply p3
33 < 0.

I For b ≥ 2 and d ≥ 4 we have a feasible parameter set
for a primitive distance-regular graph.

Theorem: A graph with classical parameters (1)
and b ≥ 2, d ≥ 4 does not exist.

Idea of proof: local graphs are strongly regular,
but their eigenvalues have nonintegral multiplicities.
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Local graphs

Let Γ be a tight distance-regular graph of diameter d ≥ 4 with
classical parameters (d , b, α, β), where b ≥ 2 and α ∈ {b, b + 1}.

I The local graphs of Γ have parameters of
Latin square and Steiner system graphs, respectively.

I We have checked that the multiplicity
of the smallest eigenvalue is never integral when
α = b and d ≤ 17, or α = b + 1 and d ≤ 5.

Conjecture: The local graph of a tight distance-regular graph
with classical parameters (d , b, α, β), where d ≥ 3 and b ≥ 2,
is not a Latin square or Steiner system graph.
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