Spectral characterization of Signed Graphs

Paweł Petecki
University of Primorska, Koper

May 2015

Signed Graphs

A signed graph Γ is an ordered pair (G, σ), where $G=(V(G), E(G))$ is a graph and $\sigma: E(G) \rightarrow\{+,-\}$ is the signature function on the edges of G.

Signed Graphs

A signed graph Γ is an ordered pair (G, σ), where $G=(V(G), E(G))$ is a graph and $\sigma: E(G) \rightarrow\{+,-\}$ is the signature function on the edges of G.

The underlying graph G may have loops, multiple edges, half-edges (with only one endpoint), and loose edges (with no endpoints). However, half and loose edges do not receive signs. If C is a cycle in Γ, the sign of the C is the product of its edges signs.

Signed Graphs

A signed graph Γ is an ordered pair (G, σ), where $G=(V(G), E(G))$ is a graph and $\sigma: E(G) \rightarrow\{+,-\}$ is the signature function on the edges of G.

The underlying graph G may have loops, multiple edges, half-edges (with only one endpoint), and loose edges (with no endpoints). However, half and loose edges do not receive signs. If C is a cycle in Γ, the sign of the C is the product of its edges signs.

Positive edges are bold lines, negative edges are dotted lines.

Signature Switching

Definition

Let $\Gamma=(G, \sigma)$ be a signed graph and $U \subseteq V(G)$. The signed graph Γ^{U} obtained by negating the edges in the cut $\left[U ; U^{C}\right]$ is a (sign) switching of Γ. We also say that the signatures of Γ^{U} and Γ are equivalent.

The signature switching preserves the set of the positive cycles.
We say that two signed graphs are switching isomorphic if their underlying graphs are isomorphic and the signatures are switching equivalent. The set of signed graphs switching isomorphic to Γ is the switching isomorphism class of Γ, written [Γ].

Example of switching equivalent graphs

Example of switching equivalent graphs

Let $U=\left\{v_{1}, v_{4}, v_{5}\right\}$.

Example of switching equivalent graphs

Let $U=\left\{v_{1}, v_{4}, v_{5}\right\}$.

Note that the switching preserves the sign of the cycles!

Matrices of signed graphs

Let $M=M(G)$ be a graph matrix defined in a prescribed way. The M-polynomial of G is $\operatorname{defined}$ as $\operatorname{det}(\lambda I-M)$, where I is the identity matrix. The M-spectrum of G is a multiset consisting of the eigenvalues of $M(G)$. The largest eigenvalue of $M(G)$ is called the M-spectral radius of G.
The graph matrices considered for an unsigned graph G are: the adjacency matrix $A(G)$, the Laplacian matrix
$L(G)=D(G)-A(G)$, the signless Laplacian matrix
$Q(G)=D(G)+A(G)$, where $D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, and their normalized variants.
The adjacency matrix and the Laplacian matrix can be defined also for signed graphs.

Adjacency matrix of Signed Graphs

The adjacency matrix is defined as $A(\Gamma)=\left(a_{i j}\right)$, where

$$
a_{i j}= \begin{cases}\sigma\left(v_{i} v_{j}\right), & \text { if } v_{i} \sim v_{j} ; \\ 0, & \text { if } v_{i} \nsim v_{j} .\end{cases}
$$

Laplacian of Signed Graphs

The Laplacian matrix of $\Gamma=(G, \sigma)$ is defined as

$$
L(\Gamma)=D(G)-A(\Gamma)=\left(I_{i j}\right)
$$

$$
I_{i j}= \begin{cases}\operatorname{deg}\left(v_{i}\right), & \text { if } i=j ; \\ -\sigma\left(v_{i} v_{j}\right), & \text { if } i \neq j .\end{cases}
$$

Switching and signature similarity

Switching has a matrix counterpart. In fact, Let Γ and $\Gamma^{\prime}=\Gamma^{U}$ be two switching equivalent graphs.
Consider the matrix $S_{U}=\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ such that

$$
s_{i}= \begin{cases}+1, & i \in U \\ -1, & i \in \Gamma \backslash U\end{cases}
$$

S_{U} is called a signature matrix (or state matrix).

Switching and signature similarity

Switching has a matrix counterpart. In fact, Let Γ and $\Gamma^{\prime}=\Gamma^{U}$ be two switching equivalent graphs.
Consider the matrix $S_{U}=\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ such that

$$
s_{i}= \begin{cases}+1, & i \in U \\ -1, & i \in \Gamma \backslash U\end{cases}
$$

S_{u} is called a signature matrix (or state matrix).
It is easy to check that

$$
A\left(\Gamma^{U}\right)=S_{U} A(\Gamma) S_{U} \quad \text { and } \quad L\left(\Gamma^{U}\right)=S_{U} L(\Gamma) S_{U} .
$$

Hence, signed graphs from the same switching class share similar graph matrices, or switching isomorphic graphs are cospectral.

Coefficient Theorem for the adjacency polynomial

In the 1970's many researcher gave a combinatorial expression for the coefficients of the adjacency polynomial of a multi-di-graph. Here is the variant for signed graphs.
The elementary figures are the graphs K_{2} and C_{n}; a basic figure is the disjoint union of elementary figures. Let \mathcal{B}_{i} be the set of basic figures on i vertices, $p(B)$ \# components of $B,|c(B)| \#$ of cycles in B, and $\sigma(B)=\prod_{C \in c(B)} \sigma(C)$.

Theorem

Let Γ be a signed graph and let $\phi(\Gamma, x)=\sum_{i=0}^{n} a_{i} x^{n-1}$ be its adjacency characteristic polynomial. Then

$$
a_{i}=\sum_{B \in \mathcal{B}_{i}}(-1)^{p(B)} 2^{|c(B)|} \sigma(B)
$$

Coefficient Theorem for the Laplacian polynomial

A signed TU-graph is a graph whose components are trees or unbalanced unicyclic graphs (the unique cycle has a negative sign). If $H=T_{1} \cup \cdots \cup T_{r} \cup U_{1} \cup \cdots \cup U_{s}$, then $\gamma(H)=4^{s} \prod_{i=1}^{r}\left|T_{i}\right|$.

Theorem
Let Γ be a signed graph and $\psi(L(\Gamma), x)=\sum_{i=0}^{n} b_{i} x^{n-i}$ be its Laplacian polynomial. Then we have:

$$
b_{i}=(-1)^{i} \sum_{H \in \mathcal{H}_{i}} \gamma(H),
$$

where \mathcal{H}_{i} is the set number of signed TU-graphs on i edges.
Note: the signatures of bridges have no influence on the characteristic polynomial.

Proof

Observe that

$$
\begin{aligned}
B B^{\top} & =L(\Gamma) \\
B^{\top} B & =2 I+A_{\mathcal{L}(\Gamma)}
\end{aligned}
$$

where $A_{\mathcal{L}(\Gamma)}=A(\mathcal{L}(\Gamma))$ is the adjacency matrix of $\mathcal{L}(\Gamma)$, the signed Line Graph of Γ.

Proof

Observe that

$$
\begin{aligned}
B B^{\top} & =L(\Gamma) \\
B^{\top} B & =2 I+A_{\mathcal{L}(\Gamma)}
\end{aligned}
$$

where $A_{\mathcal{L}(\Gamma)}=A(\mathcal{L}(\Gamma))$ is the adjacency matrix of $\mathcal{L}(\Gamma)$, the signed Line Graph of Γ.

From the MacLaurin development we have that

$$
\begin{aligned}
\psi(\Gamma, x) & =x^{n-m} \phi\left(A_{\mathcal{L}(\Gamma)}, x-2\right) \\
& =x^{n-m} \sum_{k=0}^{m} \phi^{(k)}\left(A_{\mathcal{L}(\Gamma)},-2\right) \frac{x^{k}}{k!} \\
& =x^{n-m} \sum_{k=m-n}^{m} x^{k} \frac{1}{k!} \phi^{(k)}\left(A_{\mathcal{L}(\Gamma)},-2\right)
\end{aligned}
$$

Proof (continuation)

$$
\psi(\Gamma, x)=x^{m-n} \sum_{k=m-n}^{m} x^{k} \sum_{|S|=k} \phi\left(A_{\mathcal{L}(\Gamma)-S},-2\right) .
$$

Signed line graphs have -2 as an eigenvalue unless all components are line graphs of trees or unbalanced unicyclic graphs.

$$
\begin{aligned}
& \sum_{|S|=k} \phi\left(A_{\mathcal{L}(\Gamma)-S},-2\right)=(-1)^{m-k} \sum_{H \in \mathcal{H}_{m-k}} w(H) \\
& \psi(\Gamma, x)=x^{m-n} \sum_{k=m-n}^{m} x^{k}(-1)^{m-k} \sum_{H \in \mathcal{H}_{m-k}} w(H),
\end{aligned}
$$

and by putting $i=m-k$ we have

$$
\psi(\Gamma, x)=\sum_{i=0}^{n} x^{n-i}(-1)^{i} \sum_{H \in \mathcal{H}_{i_{i}}} w(H)
$$

Spectral determination problems

One of the oldest problems in Spectral Graph Theory is to establish whether a given graph G admits cospectral non-isomorphic graphs, w.r.t. some prescribed graph matrix M. In fact, we say that a graph G is M-DS iff any cospectral graph is isomorphic as well.

Spectral determination problems

One of the oldest problems in Spectral Graph Theory is to establish whether a given graph G admits cospectral non-isomorphic graphs, w.r.t. some prescribed graph matrix M. In fact, we say that a graph G is M-DS iff any cospectral graph is isomorphic as well.

An analogous definition can be considered in the setting of signed graphs:

Definition

A signed graph Γ is said to be determined by the spectrum of the matrix $M(G)$ (in short, M-DS) iff any cospectral signed graphs is switching isomorphic as well.

In the sequel the L-cospectral relation will be denoted by \sim.

Laplacian Spectral Moments

Let $T_{k}=\sum_{i=1}^{k} \mu_{i}^{k}(k=0,1,2, \ldots)$ be the k-th spectral moment for the Laplacian spectrum of a signed graph Γ.
Theorem
Let $\Gamma=(G, \sigma)$ be a signed graph with n vertices, m edges, t^{+} balanced triangles, t^{-}unbalanced triangles, and vertex degrees $d_{1}, d_{2}, \ldots, d_{n}$. We have

$$
T_{1}=\sum_{i=1}^{n} d_{i}, \quad T_{2}=2 m+\sum_{i=1}^{n} d_{i}^{2}, \quad T_{3}=6\left(t^{-}-t^{+}\right)+3 \sum_{i=1}^{n} d_{i}^{2}+\sum_{i=1}^{n} d_{i}^{3} .
$$

Laplacian Spectral Moments

Let $T_{k}=\sum_{i=1}^{k} \mu_{i}^{k}(k=0,1,2, \ldots)$ be the k-th spectral moment for the Laplacian spectrum of a signed graph Γ.
Theorem
Let $\Gamma=(G, \sigma)$ be a signed graph with n vertices, m edges, t^{+} balanced triangles, t^{-}unbalanced triangles, and vertex degrees $d_{1}, d_{2}, \ldots, d_{n}$. We have

$$
T_{1}=\sum_{i=1}^{n} d_{i}, \quad T_{2}=2 m+\sum_{i=1}^{n} d_{i}^{2}, \quad T_{3}=6\left(t^{-}-t^{+}\right)+3 \sum_{i=1}^{n} d_{i}^{2}+\sum_{i=1}^{n} d_{i}^{3} .
$$

Proof (Formula for T_{3}). We have

$$
T_{3}=\operatorname{tr}(D-A)^{3}=\operatorname{tr} D^{3}+3 \operatorname{tr} A^{2} D-3 \operatorname{tr} A D^{2}-\operatorname{tr} A^{3} .
$$

From tr $A D^{2}=0, \operatorname{tr} A^{2} D=\sum_{i=1}^{n} d_{i}^{2}$, and $\operatorname{tr}\left(A^{3}\right)=6\left(t^{+}-t^{-}\right)$, we get the assertion.

A general result

From the first three Laplacian spectral moments we deduce:
Theorem
Let $\Gamma=(G, \sigma) \sim \Sigma=\left(H, \sigma^{\prime}\right)$. Then,
(i) Γ and Σ have the same number of vertices and edges;
(ii) Γ and Σ have the same number of balanced components;
(iii) 「 and Σ have the same Laplacian spectral moments;
(iv) Γ and Σ have the same sum of squares of degrees;
(v) $6\left(t_{\Gamma}^{-}-t_{\Gamma}^{+}\right)+\sum_{i=1}^{n} d_{G}\left(v_{i}\right)^{3}=6\left(t_{\Sigma}^{-}-t_{\Sigma}^{+}\right)+\sum_{i=1}^{n} d_{H}\left(v_{i}\right)^{3}$.

Interlacing Theorem

The following result is the interlacing theorem in the edge variant. It can be deduced from the ordinary vertex variant interlacing theorem for the adjacency matrix.

Theorem
Let $\Gamma=(G, \sigma)$ be a signed graph and Γ - e be the signed graph obtained from Γ by deleting the edge e. Then

$$
\mu_{1}(\Gamma) \geq \mu_{1}(\Gamma-e) \geq \mu_{2}(\Gamma) \geq \mu_{2}(\Gamma-e) \geq \ldots \geq \mu_{n}(\Gamma) \geq \mu_{n}(\Gamma-e)
$$

Some work done and some possible investigations

Some spectral determination/characterization problems already investigated:

- Laplacian Spectral determination of friendship graphs (Francesco Belardo, J.F. Wang);
- Laplacian Spectral determination of lollipop graphs (with Francesco Belardo);

There are many interesting classes that still have not been investigated:
Signed graphs with small largest eigenvalue, signed bicyclic graphs, paths and cycles...

Signed lollipop graphs

The theory of signed Trees degenerates to the that of unsigned trees since all trees on the same underlying graph are switching equivalent. So the first non-trivial case is to consider unicyclic graphs. So, we now consider the signed lollipop graphs.

Signed lollipop graphs

The theory of signed Trees degenerates to the that of unsigned trees since all trees on the same underlying graph are switching equivalent. So the first non-trivial case is to consider unicyclic graphs. So, we now consider the signed lollipop graphs.

By $L_{g, n}$ we denote the lollipop graph whose girth is g and the order is n. Since the lollipop is a unicyclic graph, then it admits only two different non-equivalent signatures: the all positive edges $\sigma=+$, and the one which makes the cycle unbalanced that will be denoted by $\bar{\sigma}$.

The signed lollipop graph $\left(L_{6,9}, \bar{\sigma}\right)$.

Algebraic properties of the signed lollipop graph
For a signed graph $\Gamma, \mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n} \geq 0$ are the L-eigenvalues.

Lemma

Let $\left(L_{g, n}, \sigma\right)$ be a lollipop graph. Then we have

$$
5>\mu_{1}\left(L_{g, n}, \sigma\right)>4>\mu_{2}\left(L_{g, n}, \sigma\right) .
$$

Proof Since $\mu_{1}(\Gamma)<\Delta_{1}+\Delta_{2}$, and the largest vertex degrees of $\left(L_{g, n}, \sigma\right)$ are 3 and 2 , we obtain $\mu_{1}\left(L_{g, n}, \sigma\right)<5$.
Since the path P_{n} is an edge-deleted subgraph, by IT

$$
\mu_{1}\left(L_{g, n}, \sigma\right) \geq 4>\mu_{1}\left(P_{n}, \sigma\right) \geq \mu_{2}\left(L_{g, n}, \sigma\right) .
$$

Finally, it is possible to prove that 4 cannot be an eigenvalue since $\psi\left(\left(L_{g, n}, \sigma\right), 4\right) \neq 0$.

The structure of the cospectral mates

Lemma

Let $\Gamma \sim\left(L_{g, n}, \sigma\right)$, then Γ has the degree sequence of $\left(L_{g, n}, \sigma\right)$.
From $\mu_{1}\left(L_{g, n}, \sigma\right)<5$, it is $\Delta(\Gamma)<4$, otherwise $K_{1,4} \subseteq \Gamma$ and, by IT, we get $\mu_{1}(\Gamma) \geq 5$.
Let n_{i} be the number of vertices whose degree is i, where $0 \leq i \leq 3$. From the spectral moments we deduce:

$$
\left\{\begin{aligned}
n_{0}+n_{1}+n_{2}+n_{3} & =n \\
n_{1}+2 n_{2}+3 n_{3} & =2 n \\
n_{1}+4 n_{2}+9 n_{3} & =4 n+2
\end{aligned}\right.
$$

The unique solution is $n_{0}=0, n_{1}=1, n_{2}=n-2$ and $n_{3}=1$. So Γ consists of a lollipop graph with possibly one or more cycles.

L-spectra of paths and cycles

Lemma

Let P_{n} and C_{n} be the path and the cycle on n vertices, respectively. Let $\operatorname{Spec}_{L}(\Gamma)$ denote the multiset of eigenvalues of $L(\Gamma)$.

$$
\begin{array}{ll}
\operatorname{Spec}_{L}\left(C_{2 n},+\right) & =\left\{2+2 \cos \frac{2 k}{2 n} \pi, k=0,1, \ldots, 2 n-1\right\} ; \\
\operatorname{Spec}_{L}\left(C_{2 n+1},+\right) & =\left\{2+2 \cos \frac{2 k+1}{2 n+1} \pi, k=0,1, \ldots, 2 n\right\} ; \\
\operatorname{Spec}_{L}\left(C_{2 n}, \bar{\sigma}\right) & =\left\{2+2 \cos \frac{2 k+1}{2 n} \pi, k=0,1, \ldots, 2 n-1\right\} ; \\
\operatorname{Spec}_{L}\left(C_{2 n+1}, \bar{\sigma}\right) & =\left\{2+2 \cos \frac{2 k}{2 n+1} \pi, k=0,1, \ldots, 2 n\right\} ; \\
\operatorname{Spec}_{L}\left(P_{n}\right) & =\left\{2+2 \cos \frac{k}{n} \pi, k=1,2, \ldots, n\right\} .
\end{array}
$$

L-spectra of cycles

From the previos lemma we get that

- $\left(C_{2 n},+\right) \sim\left(C_{n},+\right) \cup\left(C_{n}, \bar{\sigma}\right)$;
- $\operatorname{Spec}_{L}\left(C_{2 n+1},+\right) \supseteq \operatorname{Spec}_{L}\left(C_{d},+\right)$ for any d divisor of $2 n+1$;
- $\operatorname{Spec}_{L}\left(C_{2 n+1}, \bar{\sigma}\right) \supseteq \operatorname{Spec}_{L}\left(C_{d}, \bar{\sigma}\right)$ for any d divisor of $2 n+1$;
- $\operatorname{Spec}_{L}\left(C_{2 n+1}, \bar{\sigma}\right) \supseteq \operatorname{Spec}_{L}\left(C_{d}, \bar{\sigma}\right)$ provided that $\frac{2 n}{d}$ is odd;
- $\operatorname{Spec}_{L}\left(C_{2 n},+\right) \supseteq \operatorname{Spec}_{L}\left(C_{d},+\right)$ provided that $\frac{2 n}{d}$ is even.

The lemma below follows from the above observations.

Lemma

Let $\left(C_{2 n},+\right)$ be a even balanced cycle and let $2 n=2^{t+1} r$, where t and r are positive integer and r is odd. For $0 \leq s \leq t$,

- If $r \geq 3$, then $\left(C_{2^{t+1} r},+\right) \sim\left(C_{2^{s} r},+\right) \bigcup_{i=s}^{t}\left(C_{2^{i} r}, \bar{\sigma}\right)$;
- If $r=1$ then $\left(C_{2^{t+1}},+\right) \sim\left(C_{2^{s}},+\right) \bigcup_{i=s}^{t}\left(C_{2^{i}}, \bar{\sigma}\right)$.

The cycles have eigenvalues of multiplicity two. Has the lollipop multiple eigenvalues?

Theorem

The signed lollipop graph $\left(L_{g, n}, \sigma\right)=\Lambda$ has simple L-eigenvalues if $\operatorname{GCD}(g, n)=1$. If $\operatorname{GCD}(g, n)=d \geq 2$, then we have:

- if g is odd, then the eigenvalues of Λ of multiplicity two are those of $\left(C_{d}, \sigma\right)$;
- if g is even, $\frac{d}{g}$ odd (resp., even), and $\sigma=+$, then the eigenvalues of Λ of multiplicity two are those of $\left(C_{d},+\right.$) (resp., $\left.\left(C_{2 d},+\right)\right)$;
- if g is even and $\sigma=\bar{\sigma}$, then for $\frac{g}{d}$ odd the eigenvalues of Λ of multiplicity two are those of $\left(C_{d}, \bar{\sigma}\right)$, while for $\frac{g}{d}$ even, Λ has just simple eigenvalues.

Proof (sketch)

Let μ be, if any, an eigenvalue of multiplicity two, then μ is an L-eigenvalue of $\left(C_{g}, \sigma\right) \cup P_{n-g}$ (by IT). If we consider the subdivision $\sqrt{\mu}=\lambda$ is an eigenvalue of $\mathcal{S}\left(L_{g, n}, \sigma\right)=\left(L_{2 g, 2 n}, \sigma^{\prime}\right)$.
By decomposing the characteristic polynomial at the pendant path edge incident the vertex of degree 3 we have:

$$
\phi\left(L_{2 g, 2 n}, \sigma^{\prime}\right)=\phi\left(C_{2 g}, \sigma^{\prime}\right) \phi\left(P_{2 n-2 g}\right)-\phi\left(P_{2 g-1}\right) \phi\left(P_{2 n-2 g-1}\right)
$$

Since λ is a root of $\phi\left(C_{2 g}, \sigma^{\prime}\right)$ or a root of $\phi\left(P_{2 n-2 g-1}\right)$, then λ is of multiplicity two if and only if λ is a root of both $\phi\left(C_{2 g}, \sigma^{\prime}\right)$ and $\phi\left(P_{2 n-2 g-1}\right)$, that is, μ is an eigenvalue of both $\left(C_{g}, \sigma\right)$ and P_{n-g}. The claim follows by analyzing when $\left(C_{g}, \sigma\right)$ and P_{n-g} share some eigenvalue.

Final results

After come tricky lemmas (which I will not propose you), we finally are able to prove that the cospectral mate is connected...

Lemma
If $\Gamma \sim\left(L_{g, n}, \sigma\right)$ then Γ is a signed Iollipop graph.

So it remains to check whether two non switching isomorphic lollipop graphs can be cospectral. But the answer is negative:

Theorem
No two non switching isomorphic lollipop graphs can be L-cospectral.

Proof (Sketch)

By Shwenks's formulas it is possible to decompose the polynomial of the lollipop in terms of paths. Let $\varsigma=(-1)^{g} \sigma(\Lambda)$.

$$
\begin{aligned}
\psi(\Lambda, x)= & \frac{1}{x}\left(\psi\left(P_{n-g+1}\right)+\psi\left(P_{n-g}\right)\right)\left[\frac{x-3}{x} \psi\left(P_{g}\right)-\frac{2}{x} \psi\left(P_{g-1}\right)\right. \\
& +2 \varsigma]-\frac{1}{x^{2}} \psi\left(P_{g}\right)\left(\psi\left(P_{n-g}\right)+\psi\left(P_{n-g-1}\right)\right)
\end{aligned}
$$

The formula $\psi\left(P_{n}\right)=(x-2) \psi\left(P_{n-1}\right)-\psi\left(P_{n-2}\right)$ can be seen as a homogeneous second order recurrence equation

$$
p_{n}=(x-2) p_{n-1}-p_{n-2},
$$

with $p_{0}=0$ and $p_{1}=x$ as boundary conditions.

Proof (continuation)

It is a matter of computation to check that the solution is

$$
p_{n}=\frac{\left(y^{2 n}-1\right)(y+1)}{y^{n}(y-1)},
$$

where y satisfies the characteristic equation $y^{2}-(x-2) y+1=0$. Let

$$
\Phi(\Gamma)=y^{n}(y-1)^{2} \psi(\Gamma, y)-\left(y^{2 n+2}-2 y^{2 n+1}-2 y+1\right)
$$

then, by applying the above described transformation, we get

$$
\Phi\left(L_{g, n}, \sigma\right)=2 \varsigma y^{2 n-g+2}-2 \varsigma y^{2 n-g+1}+y^{2 n-2 g+2}+y^{2 g}-2 \varsigma y^{g+1}+2 \varsigma y^{g}
$$

From the above polynomial, two signed lollipop are L-cospectral iff both g and $\sigma(\Lambda)$ are the same, i.e., they are switching isomorphic.

Thank you!

