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Signed Graphs

A signed graph Γ is an ordered pair (G , σ), where
G = (V (G ),E (G )) is a graph and σ : E (G )→ {+,−} is the
signature function on the edges of G .

The underlying graph G may have loops, multiple edges, half-edges
(with only one endpoint), and loose edges (with no endpoints).
However, half and loose edges do not receive signs. If C is a cycle
in Γ, the sign of the C is the product of its edges signs.
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Signature Switching

De�nition

Let Γ = (G , σ) be a signed graph and U ⊆ V (G ). The signed
graph ΓU obtained by negating the edges in the cut [U;Uc ] is a
(sign) switching of Γ. We also say that the signatures of ΓU and Γ
are equivalent.

The signature switching preserves the set of the positive cycles.

We say that two signed graphs are switching isomorphic if their
underlying graphs are isomorphic and the signatures are switching
equivalent. The set of signed graphs switching isomorphic to Γ is
the switching isomorphism class of Γ, written [Γ].
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Example of switching equivalent graphs
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Note that the switching preserves the sign of the cycles!
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Matrices of signed graphs

Let M = M(G ) be a graph matrix de�ned in a prescribed way. The
M-polynomial of G is de�ned as det(λI −M), where I is the
identity matrix. The M-spectrum of G is a multiset consisting of
the eigenvalues of M(G ). The largest eigenvalue of M(G ) is called
the M-spectral radius of G .

The graph matrices considered for an unsigned graph G are: the
adjacency matrix A(G ), the Laplacian matrix
L(G ) = D(G )− A(G ), the signless Laplacian matrix
Q(G ) = D(G ) + A(G ), where D(G ) = diag(d1, d2, . . . , dn), and
their normalized variants.

The adjacency matrix and the Laplacian matrix can be de�ned also
for signed graphs.
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Adjacency matrix of Signed Graphs

The adjacency matrix is de�ned as A(Γ) = (aij), where

aij =

{
σ(vivj), if vi ∼ vj ;
0, if vi 6∼ vj .
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 A(Γ) =


0 −1 1 0 0
−1 0 1 0 1
1 1 0 1 0
0 0 1 0 −1
0 1 0 −1 0
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Laplacian of Signed Graphs

The Laplacian matrix of Γ = (G , σ) is de�ned as
L(Γ) = D(G )− A(Γ) = (lij)

lij =

{
deg(vi ), if i = j ;
−σ(vivj), if i 6= j .
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 L(Γ) =


2 1 −1 0 0
1 3 −1 0 −1
−1 −1 3 −1 0
0 0 −1 2 1
0 −1 0 1 2
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Switching and signature similarity

Switching has a matrix counterpart. In fact, Let Γ and Γ′ = ΓU be
two switching equivalent graphs.
Consider the matrix SU = diag(s1, s2, . . . , sn) such that

si =

{
+1, i ∈ U
−1, i ∈ Γ \ U

SU is called a signature matrix (or state matrix).

It is easy to check that

A(ΓU) = SU A(Γ) SU and L(ΓU) = SU L(Γ) SU .

Hence, signed graphs from the same switching class share similar
graph matrices, or switching isomorphic graphs are cospectral.
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Coe�cient Theorem for the adjacency polynomial

In the 1970's many researcher gave a combinatorial expression for
the coe�cients of the adjacency polynomial of a multi-di-graph.
Here is the variant for signed graphs.

The elementary �gures are the graphs K2 and Cn; a basic �gure is
the disjoint union of elementary �gures. Let Bi be the set of basic
�gures on i vertices, p(B) # components of B , |c(B)| # of cycles
in B , and σ(B) =

∏
C∈c(B) σ(C ).

Theorem

Let Γ be a signed graph and let φ(Γ, x) =
∑n

i=0 aix
n−1 be its

adjacency characteristic polynomial. Then

ai =
∑
B∈Bi

(−1)p(B)2|c(B)|σ(B),
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Coe�cient Theorem for the Laplacian polynomial

A signed TU-graph is a graph whose components are trees or
unbalanced unicyclic graphs (the unique cycle has a negative sign).
If H = T1 ∪ · · · ∪ Tr ∪ U1 ∪ · · · ∪ Us , then γ(H) = 4s

∏r
i=1 |Ti |.

Theorem

Let Γ be a signed graph and ψ(L(Γ), x) =
∑n

i=0 bix
n−i be its

Laplacian polynomial. Then we have:

bi = (−1)i
∑
H∈Hi

γ(H),

where Hi is the set number of signed TU-graphs on i edges.

Note: the signatures of bridges have no in�uence on the
characteristic polynomial.
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Proof

Observe that

BB> = L(Γ),

B>B = 2I + AL(Γ),

where AL(Γ) = A(L(Γ)) is the adjacency matrix of L(Γ), the signed
Line Graph of Γ.

From the MacLaurin development we have that

ψ(Γ, x) = xn−mφ(AL(Γ), x − 2)

= xn−m
m∑

k=0

φ(k)(AL(Γ),−2)
xk

k!

= xn−m
m∑

k=m−n
xk

1

k!
φ(k)(AL(Γ),−2),

Paweª Petecki Spectral characterization of Signed Graphs



Preliminaries
Spectral determination of signed graphs

The End

Basic notions on Signed Graphs
Matrices of Signed Graphs

Proof

Observe that

BB> = L(Γ),

B>B = 2I + AL(Γ),

where AL(Γ) = A(L(Γ)) is the adjacency matrix of L(Γ), the signed
Line Graph of Γ.

From the MacLaurin development we have that

ψ(Γ, x) = xn−mφ(AL(Γ), x − 2)

= xn−m
m∑

k=0

φ(k)(AL(Γ),−2)
xk

k!

= xn−m
m∑

k=m−n
xk

1

k!
φ(k)(AL(Γ),−2),

Paweª Petecki Spectral characterization of Signed Graphs



Preliminaries
Spectral determination of signed graphs

The End

Basic notions on Signed Graphs
Matrices of Signed Graphs

Proof (continuation)

ψ(Γ, x) = xm−n
m∑

k=m−n
xk
∑
|S |=k

φ(AL(Γ)−S ,−2).

Signed line graphs have −2 as an eigenvalue unless all components
are line graphs of trees or unbalanced unicyclic graphs.∑

|S |=k

φ(AL(Γ)−S ,−2) = (−1)m−k
∑

H∈Hm−k

w(H).

ψ(Γ, x) = xm−n
m∑

k=m−n
xk(−1)m−k

∑
H∈Hm−k

w(H),

and by putting i = m − k we have

ψ(Γ, x) =
n∑

i=0

xn−i (−1)i
∑
H∈Hi

w(H).
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Spectral determination problems

One of the oldest problems in Spectral Graph Theory is to establish
whether a given graph G admits cospectral non-isomorphic graphs,
w.r.t. some prescribed graph matrix M. In fact, we say that a
graph G is M-DS i� any cospectral graph is isomorphic as well.

An analogous de�nition can be considered in the setting of signed
graphs:

De�nition

A signed graph Γ is said to be determined by the spectrum of the
matrix M(G ) (in short, M-DS) i� any cospectral signed graphs is
switching isomorphic as well.

In the sequel the L-cospectral relation will be denoted by ∼.
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Laplacian Spectral Moments

Let Tk =
∑k

i=1 µ
k
i (k = 0, 1, 2, . . .) be the k-th spectral moment

for the Laplacian spectrum of a signed graph Γ.

Theorem

Let Γ = (G , σ) be a signed graph with n vertices, m edges, t+

balanced triangles, t− unbalanced triangles, and vertex degrees
d1, d2, . . . , dn. We have

T1 =
n∑

i=1

di , T2 = 2m+
n∑

i=1

d2
i , T3 = 6(t−−t+)+3

n∑
i=1

d2
i +

n∑
i=1

d3
i .

Proof (Formula for T3). We have

T3 = tr (D − A)3 = trD3 + 3trA2D − 3trAD2 − trA3.

From trAD2 = 0, trA2D =
∑n

i=1 d
2
i , and tr (A3) = 6(t+ − t−),

we get the assertion.
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A general result

From the �rst three Laplacian spectral moments we deduce:

Theorem

Let Γ = (G , σ) ∼ Σ = (H, σ′). Then,

(i) Γ and Σ have the same number of vertices and edges;

(ii) Γ and Σ have the same number of balanced components;

(iii) Γ and Σ have the same Laplacian spectral moments;

(iv) Γ and Σ have the same sum of squares of degrees;

(v) 6(t−Γ − t+
Γ ) +

∑n
i=1 dG (vi )

3 = 6(t−Σ − t+
Σ ) +

∑n
i=1 dH(vi )

3.
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Interlacing Theorem

The following result is the interlacing theorem in the edge variant.
It can be deduced from the ordinary vertex variant interlacing
theorem for the adjacency matrix.

Theorem

Let Γ = (G , σ) be a signed graph and Γ− e be the signed graph
obtained from Γ by deleting the edge e. Then

µ1(Γ) ≥ µ1(Γ− e) ≥ µ2(Γ) ≥ µ2(Γ− e) ≥ . . . ≥ µn(Γ) ≥ µn(Γ− e)
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Some work done and some possible investigations

Some spectral determination/characterization problems already
investigated:

Laplacian Spectral determination of friendship graphs
(Francesco Belardo, J.F. Wang);

Laplacian Spectral determination of lollipop graphs (with
Francesco Belardo);

There are many interesting classes that still have not been
investigated:
Signed graphs with small largest eigenvalue, signed bicyclic graphs,
paths and cycles...
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Signed lollipop graphs

The theory of signed Trees degenerates to the that of unsigned
trees since all trees on the same underlying graph are switching
equivalent. So the �rst non-trivial case is to consider unicyclic
graphs. So, we now consider the signed lollipop graphs.

By Lg ,n we denote the lollipop graph whose girth is g and the order
is n. Since the lollipop is a unicyclic graph, then it admits only two
di�erent non-equivalent signatures: the all positive edges σ = +,
and the one which makes the cycle unbalanced that will be denoted
by σ̄.

t
t
t

t
t

t t t t�
��

@
@@p p p p p p

pppppp
p p p p p p

The signed lollipop graph (L6,9, σ̄).
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Algebraic properties of the signed lollipop graph

For a signed graph Γ, µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0 are the
L-eigenvalues.

Lemma

Let (Lg ,n, σ) be a lollipop graph. Then we have

5 > µ1(Lg ,n, σ) > 4 > µ2(Lg ,n, σ).

Proof Since µ1(Γ) < ∆1 + ∆2, and the largest vertex degrees of
(Lg ,n, σ) are 3 and 2, we obtain µ1(Lg ,n, σ) < 5.

Since the path Pn is an edge-deleted subgraph, by IT

µ1(Lg ,n, σ) ≥ 4 > µ1(Pn, σ) ≥ µ2(Lg ,n, σ).

Finally, it is possible to prove that 4 cannot be an eigenvalue since
ψ((Lg ,n, σ), 4) 6= 0.

Paweª Petecki Spectral characterization of Signed Graphs



Preliminaries
Spectral determination of signed graphs

The End

Cospectrality and Switching Isomorphism
Spectral characterization of signed lollipop graphs

The structure of the cospectral mates

Lemma

Let Γ ∼ (Lg ,n, σ), then Γ has the degree sequence of (Lg ,n, σ).

From µ1(Lg ,n, σ) < 5, it is ∆(Γ) < 4, otherwise K1,4 ⊆ Γ and, by
IT, we get µ1(Γ) ≥ 5.

Let ni be the number of vertices whose degree is i , where
0 ≤ i ≤ 3. From the spectral moments we deduce:

n0 + n1 + n2 + n3 = n
n1 + 2n2 + 3n3 = 2n
n1 + 4n2 + 9n3 = 4n + 2.

The unique solution is n0 = 0, n1 = 1, n2 = n − 2 and n3 = 1. So
Γ consists of a lollipop graph with possibly one or more cycles.
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L-spectra of paths and cycles

Lemma

Let Pn and Cn be the path and the cycle on n vertices, respectively.
Let SpecL(Γ) denote the multiset of eigenvalues of L(Γ).

SpecL (C2n,+) = {2 + 2 cos
2k

2n
π, k = 0, 1, . . . , 2n − 1};

SpecL (C2n+1,+) = {2 + 2 cos
2k + 1

2n + 1
π, k = 0, 1, . . . , 2n};

SpecL (C2n, σ̄) = {2 + 2 cos
2k + 1

2n
π, k = 0, 1, . . . , 2n − 1};

SpecL (C2n+1, σ̄) = {2 + 2 cos
2k

2n + 1
π, k = 0, 1, . . . , 2n};

SpecL (Pn) = {2 + 2 cos
k

n
π, k = 1, 2, . . . , n}.
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L-spectra of cycles

From the previos lemma we get that

(C2n,+) ∼ (Cn,+) ∪ (Cn, σ̄);

SpecL (C2n+1,+) ⊇ SpecL (Cd ,+) for any d divisor of 2n + 1;

SpecL (C2n+1, σ̄) ⊇ SpecL (Cd , σ̄) for any d divisor of 2n + 1;

SpecL (C2n+1, σ̄) ⊇ SpecL (Cd , σ̄) provided that 2n
d is odd;

SpecL (C2n,+) ⊇ SpecL (Cd ,+) provided that 2n
d is even.

The lemma below follows from the above observations.

Lemma

Let (C2n,+) be a even balanced cycle and let 2n = 2t+1r , where t
and r are positive integer and r is odd. For 0 ≤ s ≤ t,

If r ≥ 3, then (C2t+1r ,+) ∼ (C2s r ,+)
⋃t

i=s(C2i r , σ̄);

If r = 1 then (C2t+1 ,+) ∼ (C2s ,+)
⋃t

i=s(C2i , σ̄).
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The cycles have eigenvalues of multiplicity two. Has the lollipop
multiple eigenvalues?

Theorem

The signed lollipop graph (Lg ,n, σ) = Λ has simple L-eigenvalues if
GCD(g , n) = 1.
If GCD(g , n) = d ≥ 2, then we have:

if g is odd, then the eigenvalues of Λ of multiplicity two are
those of (Cd , σ);

if g is even, d
g odd (resp., even), and σ = +, then the

eigenvalues of Λ of multiplicity two are those of (Cd ,+) (resp.,
(C2d ,+));

if g is even and σ = σ̄, then for g
d odd the eigenvalues of Λ of

multiplicity two are those of (Cd , σ̄), while for g
d even, Λ has

just simple eigenvalues.
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Proof (sketch)

Let µ be, if any, an eigenvalue of multiplicity two, then µ is an
L-eigenvalue of (Cg , σ) ∪ Pn−g (by IT). If we consider the
subdivision

√
µ = λ is an eigenvalue of S(Lg ,n, σ) = (L2g ,2n, σ

′).

By decomposing the characteristic polynomial at the pendant path
edge incident the vertex of degree 3 we have:

φ(L2g ,2n, σ
′) = φ(C2g , σ

′)φ(P2n−2g )− φ(P2g−1)φ(P2n−2g−1).

Since λ is a root of φ(C2g , σ
′) or a root of φ(P2n−2g−1), then λ is

of multiplicity two if and only if λ is a root of both φ(C2g , σ
′) and

φ(P2n−2g−1), that is, µ is an eigenvalue of both (Cg , σ) and Pn−g .

The claim follows by analyzing when (Cg , σ) and Pn−g share some
eigenvalue.
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Final results

After come tricky lemmas (which I will not propose you), we �nally
are able to prove that the cospectral mate is connected...

Lemma

If Γ ∼ (Lg ,n, σ) then Γ is a signed lollipop graph.

So it remains to check whether two non switching isomorphic
lollipop graphs can be cospectral. But the answer is negative:

Theorem

No two non switching isomorphic lollipop graphs can be
L-cospectral.
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Proof (Sketch)

By Shwenks's formulas it is possible to decompose the polynomial
of the lollipop in terms of paths. Let ς = (−1)gσ(Λ).

ψ(Λ, x) =
1

x
(ψ(Pn−g+1) + ψ(Pn−g ))

[x − 3

x
ψ(Pg )− 2

x
ψ(Pg−1)

+2ς
]
− 1

x2
ψ(Pg )(ψ(Pn−g ) + ψ(Pn−g−1)).

The formula ψ(Pn) = (x − 2)ψ(Pn−1)− ψ(Pn−2) can be seen as a
homogeneous second order recurrence equation

pn = (x − 2)pn−1 − pn−2,

with p0 = 0 and p1 = x as boundary conditions.
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Proof (continuation)

It is a matter of computation to check that the solution is

pn =
(y2n − 1)(y + 1)

yn(y − 1)
,

where y satis�es the characteristic equation y2 − (x − 2)y + 1 = 0.
Let

Φ(Γ) = yn (y − 1)2 ψ(Γ, y)− (y2n+2 − 2y2n+1 − 2y + 1),

then, by applying the above described transformation, we get

Φ(Lg ,n, σ) = 2ςy2n−g+2−2ςy2n−g+1+y2n−2g+2+y2g−2ςyg+1+2ςyg

From the above polynomial, two signed lollipop are L-cospectral i�
both g and σ(Λ) are the same, i.e., they are switching isomorphic.
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Thank you!
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