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Signed Graphs

A signed graph Γ is an ordered pair (G , σ), where
G = (V (G ),E (G )) is a graph and σ : E (G )→ {+,−} is the
signature function (or sign mapping) on the edges of G .

In general, the underlying graph G may have loops, multiple edges,
half-edges, and loose edges. Here, the underlying graph is simple.
If C is a cycle in Γ, the sign of the C , denoted by σ(C ), is the
product of its edges signs.
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Example of a signed graph.

positive edges = solid lines;
negative edges = dotted lines.
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More on Signed Graphs

Signed graphs were first introduced by Harary to handle a problem
in social psychology (Cartwright and Harary, 1956). Recently,
signed graphs have been considered in the study of complex
networks, and Godsil et al. showed that negative edges are useful
for perfect state transfer in quantum computing.

In most applications of signed graphs there is a recurring property
that naturally arises:

Definition

A signed graph is said to be balanced if and only if all its cycles are
positive.
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Balance

The first characterization of balance is due to Harary:

Theorem (Harary, 1953)

A signed graph is balanced iff its vertex set can be divided into two
sets (either of which may be empty), so that each edge between
the sets is negative and each edge within a set is positive.

The above theorem shows that balancedness is a generalization of
the ordinary bipartiteness in (unsigned) graphs.
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A balanced signed graph.
The dashed line separates

the two clusters.
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Signature Switching

Definition

Let Γ = (G , σ) be a signed graph and U ⊆ V (G ). The signed
graph ΓU obtained by negating the edges in the cut [U;Uc ] is a
(sign) switching of Γ. We also say that the signatures of ΓU and Γ
are equivalent.

The signature switching preserves the set of the positive cycles.

In general, we say that two signed graphs are switching isomorphic
if their underlying graphs are isomorphic and the signatures are
switching equivalent. The set of signed graphs switching
isomorphic to Γ is the switching isomorphism class of Γ, written [Γ].
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Example of switching equivalent graphs
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Note that the switching preserves the sign of the cycles!

Spectral characterization problems for signed graphs Francesco Belardo



Frontpage Preliminaries Relations between spectra Relations among the eigenspaces The End

Example of switching equivalent graphs

u
u u

u uqqqqqqqqqqqqqqqqqq
�
�
�

v1

v2 v5

v3 v4

Γu
u

u

Let U = {v1, v4, v5}.

u
u u

u uqqqqqqqqqq q q q q q q q q
qqqqqqqq

q q q q q q q q q
@
@
@

v1

v2 v5

v3 v4

ΓU

Note that the switching preserves the sign of the cycles!

Spectral characterization problems for signed graphs Francesco Belardo



Frontpage Preliminaries Relations between spectra Relations among the eigenspaces The End

Example of switching equivalent graphs

u
u u

u uqqqqqqqqqqqqqqqqqq
�
�
�

v1

v2 v5

v3 v4

Γu
u

u

Let U = {v1, v4, v5}.

u
u u

u uqqqqqqqqqq q q q q q q q q
qqqqqqqq

q q q q q q q q q
@
@
@

v1

v2 v5

v3 v4

ΓU

Note that the switching preserves the sign of the cycles!

Spectral characterization problems for signed graphs Francesco Belardo



Frontpage Preliminaries Relations between spectra Relations among the eigenspaces The End

Matrices of (unsigned) graphs

Let M = M(G ) be a graph matrix defined in a prescribed way. The
M-polynomial of G is defined as det(λI −M), where I is the
identity matrix. The M-spectrum of G is a multiset consisting of
the eigenvalues of M(G ). The largest eigenvalue of M(G ) is called
the M-spectral radius of G .

Some well-known graph matrices of a (unsigned) graph G are:

the adjacency matrix A(G );

the Laplacian matrix L(G ) = D(G )− A(G );

the signless Laplacian matrix Q(G ) = D(G ) + A(G );

their normalized variants.

(D(G ) = diag(d1, d2, . . . , dn) diagonal matrix of vertex degrees)

The adjacency matrix and the Laplacian matrix (and normalized
variants) can be similarly defined for signed graphs.
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Adjacency matrix of Signed Graphs

The adjacency matrix is defined as A(Γ) = (aij), where

aij =

{
σ(vivj), if vi ∼ vj ;
0, if vi 6∼ vj .
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 A(Γ) =


0 −1 1 0 0
−1 0 1 0 1
1 1 0 1 0
0 0 1 0 −1
0 1 0 −1 0


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Laplacian of Signed Graphs

The Laplacian matrix of Γ = (G , σ) is defined as
L(Γ) = D(G )− A(Γ) = (lij)

lij =

{
deg(vi ), if i = j ;
−σ(vivj), if i 6= j .
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 L(Γ) =


2 1 −1 0 0
1 3 −1 0 −1
−1 −1 3 −1 0
0 0 −1 2 1
0 −1 0 1 2


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Switching and signature similarity

What happens if we pick two signed graphs from the same
switching class?

Switching has a matrix counterpart. In fact, Let Γ and Γ′ = ΓU be
two switching equivalent graphs.
Consider the matrix SU = diag(s1, s2, . . . , sn) such that

si =

{
+1, i ∈ U
−1, i ∈ Γ \ U

SU is called a signature matrix (or state matrix).

It is easy to check that

A(ΓU) = SU A(Γ) SU and L(ΓU) = SU L(Γ) SU .

Hence, signed graphs from the same switching class share similar
graph matrices, or switching isomorphic graphs are cospectral.
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Balance and signature switching

The following theorem is pretty evident:

Theorem

A signed graph is balanced if and only if it is switching equivalent
to the the all positive signature.

Proof. If the graph is balanced then it admits a bipartition in a
2-clusters, so we can switch all the negative edges to positive
edges. On the other hand, if the signed graph is switching
equivalent to the all positive signature then all cycles are balanced
and then the whole graph is balanced as well.

A signed graph that is switching equivalent to the all negative
signature is said to be antibalanced.
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(signless) Laplacian spectral theory of unsigned graphs

If the signed graph Γ = (G , σ) has only:

↙
positive edges

σ(e) = +1 for all e ∈ E (G )

A(Γ) = A(G )

L(Γ,+) = L(G )

we have the usual Laplacian
matrix of G .

↘
negative edges

σ(e) = −1 for all e ∈ E (G )

A(Γ) = −A(G )

L(Γ,−) = Q(G )

we have the signless Laplacian
matrix of G .

The Laplacian Theory of signed Graphs can be seen as a
generalization of those of unsigned graphs.
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Bi-directed graphs and signed graphs

An oriented signed graph is an ordered pair Γη = (Γ, η), where

η : V (G )× E (G )→ {−1,+1, 0}

satisfies the following three conditions:

(i) η(u, vw) = 0 whenever u 6= v ,w ;

(ii) η(v , vw) = +1 (or −1) if an arrow at v is going into (resp.
out of) v ;

(iii) η(v , vw)η(w , vw) = −σ(vw).

s s
s s

s s
s s

- �
− −

� -
+ +

- -
− +

� �
+ −

unoriented edges: oriented edges:

Bidirected edges
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Bi-directed graphs and signed graphs

So we have that positive edges are oriented edges, while negative
corresponds to unoriented. Thus each bi-directed graph is a signed
graph. The converse is also true, but then one arrow (at any end)
can be taken arbitrarily, while not the other arrow (in view of (iii)).

t

t

t

t t

t

t

t

t t

qqqq
qqqq
qqq q q q q q q q q q q q

--
6

6

- -

6

?

-�

−→Γ Γη

Spectral characterization problems for signed graphs Francesco Belardo



Frontpage Preliminaries Relations between spectra Relations among the eigenspaces The End

Mixed graphs and signed graphs

A mixed graph is a graph in which the edges can be either oriented
or unoriented. Clearly, a mixed graph can be interpreted as a
bi-directed graph. Consequently, mixed graphs can be treated as
signed graphs, where the unoriented edges are negative edges and
oriented edges are positive edges.
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In the literature some results have been proved more than once due
to the above fact!
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Incidence matrix

The incidence matrix of Γη is the matrix Bη = (bij), whose rows
correspond to vertices and columns to edges of G , such that

bij = η(vi , ej),

with vi ∈ V (G ) and ej ∈ E (G ). So each row of the incidence
matrix corresponding to vertex vi contains deg(vi ) non-zero
entries, each equal to +1 or −1. On the other hand, each column
of the incidence matrix corresponding to edge ej contains two
non-zero entries, each equal to +1 or −1.

BηB
T
η = D(G )− A(Γ) = L(Γ),

where D(G ) is the diagonal matrix of vertex degrees of G . So L(Γ)
is positive-semidefinite.
Note any choice for η leads to the same matrix L(Γ)!
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Signed line graphs

On the other hand,

BT
η Bη = 2I + A(L(Γη)),

where L(Γη) is a signed graph whose underlying graph is L(G ).

The signed line graph of Γ = (G , σ) is the signed graph
(L(G ), σLη ), where L(G ) is the (usual) line graph and

σLη (eiej) =

{
bηkib

η
kj if ei is incident ej at vk ;

0 otherwise.

Assigning a different orientation η′ will lead to a different L(Γη′),
however we have that L(Γη) and L(Γη′) are switching equivalent!
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Signed line graphs

So the signed line graph L(Γ) is uniquely defined up to switching
isomorphisms. On the other hand,

BηB
T
η = L(Γ), and BT

η Bη = L(Γ)

share the same non-zero eigenvalues, and we have the following
theorem:

Theorem

Let Γ be a signed graph of order n and size m, and let φ(Γ) and
ψ(Γ) be its adjacency and Laplacian characteristic polynomials,
respectively. Then it holds

φ(L(Γ), x) = (x + 2)m−nψ(Γ, x + 2).
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Signed subdivision graphs

The signed subdivision graph, associated to Bη, is the signed graph
S(Γη) = (S(G ), σSη ), where S(G ) is the usual subdivision of
unsigned graphs and

σSη (viej) = bηij

In matrix form (Ot is the t × t zero matrix):

A(S(Γη)) =

(
On Bη

B>η Om

)
.

Theorem

Let Γ be a signed graph of order n and size m, and φ(Γ) and ψ(Γ)
its adjacency and Laplacian polynomials, respectively. Then

φ(S(Γ), x) = xm−nψ(Γ, x2).
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Proof

Recall that

∣∣∣∣ A B
C D

∣∣∣∣ = |D||A− BD−1C |. Hence,

φ(S(Γ), x) =

∣∣∣∣ xIn −B
−B> xIm

∣∣∣∣ = xm|(xIn)− B(xIm)−1B>| =

= xm|(xIn)− 1

x
BB>|

= xm|1
x

(x2In − BB>)|

= xm−n|x2In − L(Γ)|

= xm−n ψ(Γ, x2).
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An example
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A signed graph and the corresponding signed subdivision and line graph.
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Relations among the spectra

The previous facts can be synthesized by the following theorem:

Theorem

Let Γ be a signed graph of order n and size m, and φ(Γ) and ψ(Γ)
its adjacency and Laplacian polynomials, respectively. Then

(i) φ(L(Γ), x) = (x + 2)m−nψ(Γ, x + 2),

(ii) φ(S(Γ), x) = xm−nψ(Γ, x2),

where L(Γ) and S(Γ) are the signed line graph and the signed
subdivision graph of Γ, respectively.

What we can say about the eigenvectors of corresponding
eigenvalues?

Note: In the reminder Γ is connected.

Spectral characterization problems for signed graphs Francesco Belardo



Frontpage Preliminaries Relations between spectra Relations among the eigenspaces The End

Relations among the spectra

The previous facts can be synthesized by the following theorem:

Theorem

Let Γ be a signed graph of order n and size m, and φ(Γ) and ψ(Γ)
its adjacency and Laplacian polynomials, respectively. Then

(i) φ(L(Γ), x) = (x + 2)m−nψ(Γ, x + 2),

(ii) φ(S(Γ), x) = xm−nψ(Γ, x2),

where L(Γ) and S(Γ) are the signed line graph and the signed
subdivision graph of Γ, respectively.

What we can say about the eigenvectors of corresponding
eigenvalues?

Note: In the reminder Γ is connected.

Spectral characterization problems for signed graphs Francesco Belardo



Frontpage Preliminaries Relations between spectra Relations among the eigenspaces The End

Notation

We first focus our attention at the eigenvectors of the signed graph
Γ and the corresponding signed line graph L(Γη).

We denote the L-eigenvalues of Γ by

µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0,

and the A-eigenvalues of L(Γ) by

λ1 ≥ λ2 ≥ · · · ≥ λm ≥ −2.

Then
µi = λi + 2

for i = 1, 2, . . . ,min{m, n}; for i > min{m, n} we have either
µi = 0 (if any) or λi = −2 (if any).
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We now consider the first formula:

φ(L(Γ), x) = (x + 2)m−nψ(Γ, x + 2).

Let EM(ν; Γ) be the eigenspace of Γ related to the eigenvalue ν of
the matrix M = M(Γ).

Assume first that µ = λ+ 2 6= 0, so it is λ 6= −2.

We have the two following claims:

Claim 1: If x ∈ EL(µ; Γ) \ {0}, then y = B>x ∈ EA(λ;L(Γ)) \ {0};

Claim 2: If y ∈ EA(λ;L(Γ)) \ {0}, then x = By ∈ EL(µ; Γ) \ {0}.

From the above claims, if µ 6= 0, or equivalently if λ 6= −2, we
have that the above two vector spaces are isomorphic.
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Proof of Claim 1

Recall that

BB> = D(G )− A(Γ) = L(Γ), B>B = 2I + A(L(Γ)). (1)

Let x be a µ-eigenvector of Γ, that is Lx = BB>x = µx and let
y = B>x. Hence we obtain µx = By.

Clearly, x ∈ IRn and y ∈ IRm, and both are non-zero vectors.

Next we have that

B>By = B>BB>x = B>Lx = µB>x = µy.

Therefore, by the second equality in (1), we have

ALy = (µ− 2)y = λy.

Hence, y = B>x 6= 0 is a (µ− 2)-eigenvector of L(G ).
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The eigenspace EL(0; Γ)

The following fact is well-known:

Lemma

Let Γ be a signed graph. Then, Γ is balanced iff µn(Γ) = 0.

From the characterization given by Harary, Γ = (G , σ) is balanced
if and only if the vertex set is partioned in two color classes such
that negative edges appear only between the two classes and
positive edges appear only within the classes.

The L-eigenvector x related to µ = 0 has entries −1 for vertices
from one color class, while +1 otherwise. But then the
corresponding vector y = B>x is equal to 0, and so y is not an
eigenvector for L(Γ).

Namely, EL(0; Γ) and EA(−2;L(Γ)) are not related.
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The eigenspace EA(−2;L(Γ))

The A-eigenspace of L(Γ) for λ = −2 can be obtained by using the
Star complement technique from the theory of Hermitian matrices.
From the following result, we get the star complements for −2:

Lemma

If Γ is a connected signed graph on m edges then

(−1)mφ(L(Γ),−2) =


m + 1 if Γ is a tree,
4 if Γ is an unbal. unicyclic graph,
0 otherwise.

Corollary

Let Γ be a connected signed graph. Then −2 is the least
eigenvalue of L(Γ) if and only if Γ contains as a signed subgraph at
least one balanced cycle, or at least two unbalanced cycles.

Spectral characterization problems for signed graphs Francesco Belardo



Frontpage Preliminaries Relations between spectra Relations among the eigenspaces The End

The eigenspace EA(−2;L(Γ))

The A-eigenspace of L(Γ) for λ = −2 can be obtained by using the
Star complement technique from the theory of Hermitian matrices.
From the following result, we get the star complements for −2:

Lemma

If Γ is a connected signed graph on m edges then

(−1)mφ(L(Γ),−2) =


m + 1 if Γ is a tree,
4 if Γ is an unbal. unicyclic graph,
0 otherwise.

Corollary

Let Γ be a connected signed graph. Then −2 is the least
eigenvalue of L(Γ) if and only if Γ contains as a signed subgraph at
least one balanced cycle, or at least two unbalanced cycles.

Spectral characterization problems for signed graphs Francesco Belardo



Frontpage Preliminaries Relations between spectra Relations among the eigenspaces The End

Eigenvectors for λ = −2

Similarly to the case of unsigned graphs, EA(−2;L(Γ)) is directly
obtained from two kinds of spanning subgraphs of Γ: the balanced
cycles and/or the double-unbalanced dumbbells.

Theorem (Balanced cycle)

Let Θ be a balanced cycle and ΘL its line (signed) graph. Then
the vector a = (a0, a1, . . . , aq−1)>, where

ai = (−1)i
[ i∏
s=1

ν(s)
]
a0 (i = 0, 1, . . . , q − 1),

where ν(s) = σL(es−1es), is an eigenvector of ΘL for −2.
Moreover, it can be extended to a (−2)-eigenvector of ΓL by
inserting zeros at remaining entries.
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The eigenvector for λ = −2:

ai = (−1)i [
i∏

s=1

ν(s)]a0 (i = 0, 1, . . . , q − 1),

where ν(j) = σL(ej−1ej).
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In the case of double unbalanced dumbbell (two unbalanced cycles
joined by a path), we have a similar result.
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Main Result

Theorem

Let Bη be the incidence matrix of a connected sigraph Γη. Then

(i) Let µ 6= 0. {u1,u2, . . . ,us} is an eigenbasis of EL(µ; Γ) if and
only if {B>u1,B

>u2, . . . ,B
>us} is an eigenbasis of

EA(µ− 2;L(Γ));

(ii) Let λ 6= −2. {v1, v2, . . . , vt} is an eigenbasis of EA(λ;L(Γ)) if
and only if {Bv1,Bv2, . . . ,Bvt} is a eigenbasis of EL(λ+ 2; Γ);

(iii) If µ = 0, then Γ is balanced and EL(0; Γ) is spanned by the
vector (x1, x2, . . . , xn)>, where xi = −1 in one color class and
xi = +1 otherwise;

(iv) If λ = −2, then the corresponding EA(−2;L(Γ)) is spanned by
the vectors constructed on the edges of balanced cycles and
double-unbalanced dumbbells.
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Now we consider the formula

φ(S(Γ), x) = xm−nψ(Γ, x2).

Let
µ1 ≥ µ2 ≥ · · · ≥ µn, and λ1 ≥ λ2 ≥ · · · ≥ λm,

be the L-eigenvalues of Γ, and the A-eigenvalues of L(Γ),
respectively.

Observe that the A-eigenvalues of S(Γ) are ±√µi (i = 1, 2, . . . , s),
for some s ≤ n; all other eigenvalues are equal to 0. Note also that
all non-zero L-eigenvalues of Γ and the corresponding
A-eigenvalues S(Γ) have the same multiplicities. Also, if both µi
and λi exist for some i , then µi = λi + 2.

Spectral characterization problems for signed graphs Francesco Belardo



Frontpage Preliminaries Relations between spectra Relations among the eigenspaces The End

Relations among the matrices

Recall that the signed subdivision graph of Γ is the signed graph
S(Γ) whose adjacency matrix is

A(S(Γ)) =

(
On B

B> Om

)
.

Evidently,

A2(S(Γ)) =

(
BB> On

Om B>B

)
=

(
L(Γ) On

Om A(L(Γ)) + 2Im

)
= L(Γ)+̇(A(L(Γ)) + 2Im).
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The eigenvectors of S(Γ)

Let λ̂ be an A-eigenvalue of S(Γ) and z the corresponding
eigenvector.

Without loss of generality, we can assume that the first n
components of z correspond to the vertices, while the remaining m
components to the edges of Γ. So we can write z = x+̇y. Clearly,
x ∈ IRn and y ∈ IRm.

Since A(S(Γ))z = λ̂z, then A2(S(Γ)z = λ̂2z. Since
A2(S(Γ)) = L(Γ)+̇(A(L(Γ)) + 2Im), we obtain

L(Γ)x = λ̂2x and (A(L(Γ)) + 2Im)y = λ̂2y.

Since µ = λ̂2 and λ = µ− 2 (= λ̂2 − 2), we have

L(Γ)x = µx and A(L(Γ))y = λy. (2)
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From EA(λ̂;S(Γ)) to EL(λ̂2; Γ) and EA(λ̂2 − 2;L(Γ))

Hence an eigenvector of S(Γ) corresponding to λ̂ is the join of the
eigenvectors of Γ and L(Γ) corresponding to µ = λ̂2 and
λ = λ̂2 − 2, respectively.

Let
{u1 = v1+̇w1,u2 = v2+̇w2, . . . ,uk = vk+̇wk}

be the corresponding eigenbasis of EA(λ̂;S(Γ)). Then

If λ̂ > 0

{v1, v2, . . . , vk} is an eigenbasis for EL(λ̂2; Γ);

{w1,w2, . . . ,wk} is an eigenbasis for EA(λ̂2 − 2;L(Γ)).

If λ̂ = 0

{v1, v2, . . . , vk} spans EL(0; Γ);

{w1,w2, . . . ,wk} spans EA(−2;L(Γ)).
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From EL(µ; Γ) and EA(µ− 2;L(Γ)) to EA(±√µ;S(Γ))

Similarly, let
{v1, v2, . . . , vk}

be an eigenbasis of EL(µ; Γ). Then

λ̂ = ±√µ 6= 0.

{u1 = v1+̇(±B>v1), u2 = v2+̇(±B>v2), . . . ,uk = vk+̇(±B>vk)}

is an eigenbasis of EA(±√µ;S(Γ));

λ̂ = ±√µ = 0. If Γ is unbalanced, let < v1 >= EL(0; Γ);
otherwise, let v1 = 0. Let {w1,w2, . . . ,wk} be an
A-eigenbasis of L(Γ) for λ = −2. Then the following set

{v1+̇0, 0+̇w1, 0+̇w2, . . . , 0+̇wk} \ {0}

spans EA(0;S(Γ)).
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Thank you!!
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