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May 27, 2015



Motivation: Distance-balanced graphs

A graph Γ is said to be distance-balanced if for any edge uv of Γ,
the number of vertices closer to u than to v is equal to the number
of vertices closer to v than to u.

A distance partition of a graph with diameter 4 with respect to
edge uv .



Motivation: Distance-balanced graphs

I These graphs were first studied (at least implicitly) by K.
Handa who considered distance-balanced partial cubes.

I The term itself is due to J. Jerebic, S. Klavžar and D. F. Rall
who studied distance-balanced graphs in the framework of
various kinds of graph products.
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Distance-balanced graphs - example

Non-regular bipartite distance-balanced graph H.



Generalization: n-distance-balanced graphs

A graph Γ is said to be n-distance-balanced if there exist at least
two vertices at distance n in Γ and if for any two vertices u and v
of Γ at distance n, the number of vertices closer to u than to v is
equal to the number of vertices closer to v than to u.

We are intrested in 2-distance-balanced graphs.
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2-distance-balanced graphs

A distance partition of a graph with diameter 4 with respect to
vertices u and v at distance 2.



2-distance-balanced graphs: example

Distance-balanced and 2-distance-balanced non-regular graph.



2-distance-balanced graphs

Question:
Are there any 2-distance-balanced graphs that are not
distance-balanced?

Theorem (Handa, 1999):

Every distance-balanced graph is 2-connected.

A graph Γ is k-vertex-connected (or k-connected) if it has more
than k vertices and the result of deleting any set of fewer than k
vertices is a connected graph.

Question:
Are there any connected 2-distance-balanced graphs that are not
2-connected?
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Family of graphs Γ(G , c) - construction

Let G be an arbitrary graph (not necessary connected) and c an
additional vertex.

Then Γ(G , c) is a graph constructed in such a way that

V (Γ(G , c)) = V (G ) ∪ {c},

and

E (Γ(G , c)) = E (G ) ∪ {cv | v ∈ V (G )}.

I Γ(G , c) is connected.

I G is not connected ⇐⇒ Γ(G , c) is not 2-connected.

I Diameter of Γ = Γ(G , c) is at most 2.
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2-distance-balanced graphs

Question:
Are there any connected 2-distance-balanced graphs that are not
2-connected?

Theorem (B.F., Š. Miklavič)

Graph Γ is a connected 2-distance-balanced graph that is not
2-connected iff Γ ∼= Γ(G , c) for some not connected regular graph
G .
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2-distance-balanced graphs

Lemma (B.F., Š. Miklavič)

If G is regular but not a complete graph, then Γ(G , c) is
2-distance-balanced.

Proof:

Let G be a regular graph with valency k and construct Γ = Γ(G , c).

Let G1,G2, . . .Gn be connected components of G for some n ≥ 1.

Two essentially different types of vertices at distance two in Γ:

1. both from V (Gi ),

2. one from V (Gi ), the other from V (Gj) for i 6= j .
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Proof

1. Pick arbitrary v1, v2 ∈ V (Gi ) s.t. d(v1, v2) = 2.
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Proof - Claim 1

Claim 1: c is adjacent to every vertex in Gl for at least one l ,
1 ≤ l ≤ n.

Suppose this statement is not true. Then for arbitrary Gi and Gj :

∃v2 ∈ V (Gi ) s.t. d(c, v2) = 2

⇒ ∃v1 ∈ V (Gi ) s.t. d(c , v1) = d(v1, v2) = 1, and

∃u2 ∈ V (Gj) s.t. d(c, u) = 2

⇒ ∃u1 ∈ V (Gi ) s.t. d(c , u1) = d(u1, u2) = 1
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From now on: Induced subgraph G1 is regular with valency k .
(Every vertex in V (G1) has valency k + 1 in Γ.)



Proof - Claim 2

Claim 2: Induced subgraph G1 is regular.

Observations: Pick arbitrary u ∈ V (G ) \ V (G1) adjacent to c .

I d(u, v) = 2 for every v ∈ V (G1)

I |W Γ
ux | = |W Γ

uy | for arbitrary x , y ∈ V (G1)

I W Γ
vu = {v} ∪ (NΓ(v) \ {c}) for every v ∈ V (G1)

⇒ |W Γ
vu| = 1 + |NΓ(v)| − 1 = |NG1(v)|+ 1 for every

v ∈ V (G1)

⇒ |NG1(x)|+ 1 = |NΓ(x)| = |W Γ
xu| = |W Γ

ux | = |W Γ
uy | = |W Γ

yu| =
|NΓ(y)| = |NG1(y)|+ 1 for arbitrary x , y ∈ V (G1)

From now on: Induced subgraph G1 is regular with valency k .
(Every vertex in V (G1) has valency k + 1 in Γ.)



Proof - Claim 2

Claim 2: Induced subgraph G1 is regular.

Observations: Pick arbitrary u ∈ V (G ) \ V (G1) adjacent to c .

I d(u, v) = 2 for every v ∈ V (G1)

I |W Γ
ux | = |W Γ

uy | for arbitrary x , y ∈ V (G1)

I W Γ
vu = {v} ∪ (NΓ(v) \ {c}) for every v ∈ V (G1)

⇒ |W Γ
vu| = 1 + |NΓ(v)| − 1 = |NG1(v)|+ 1 for every

v ∈ V (G1)

⇒ |NG1(x)|+ 1 = |NΓ(x)| = |W Γ
xu| = |W Γ

ux | = |W Γ
uy | = |W Γ

yu| =
|NΓ(y)| = |NG1(y)|+ 1 for arbitrary x , y ∈ V (G1)

From now on: Induced subgraph G1 is regular with valency k .
(Every vertex in V (G1) has valency k + 1 in Γ.)



Proof - Claim 2

Claim 2: Induced subgraph G1 is regular.

Observations: Pick arbitrary u ∈ V (G ) \ V (G1) adjacent to c .

I d(u, v) = 2 for every v ∈ V (G1)

I |W Γ
ux | = |W Γ

uy | for arbitrary x , y ∈ V (G1)

I W Γ
vu = {v} ∪ (NΓ(v) \ {c}) for every v ∈ V (G1)

⇒ |W Γ
vu| = 1 + |NΓ(v)| − 1 = |NG1(v)|+ 1 for every

v ∈ V (G1)

⇒ |NG1(x)|+ 1 = |NΓ(x)| = |W Γ
xu| = |W Γ

ux | = |W Γ
uy | = |W Γ

yu| =
|NΓ(y)| = |NG1(y)|+ 1 for arbitrary x , y ∈ V (G1)

From now on: Induced subgraph G1 is regular with valency k .
(Every vertex in V (G1) has valency k + 1 in Γ.)



Proof - Claim 2

Claim 2: Induced subgraph G1 is regular.

Observations: Pick arbitrary u ∈ V (G ) \ V (G1) adjacent to c .

I d(u, v) = 2 for every v ∈ V (G1)

I |W Γ
ux | = |W Γ

uy | for arbitrary x , y ∈ V (G1)

I W Γ
vu = {v} ∪ (NΓ(v) \ {c}) for every v ∈ V (G1)

⇒ |W Γ
vu| = 1 + |NΓ(v)| − 1 = |NG1(v)|+ 1 for every

v ∈ V (G1)

⇒ |NG1(x)|+ 1 = |NΓ(x)| = |W Γ
xu| = |W Γ

ux | = |W Γ
uy | = |W Γ

yu| =
|NΓ(y)| = |NG1(y)|+ 1 for arbitrary x , y ∈ V (G1)

From now on: Induced subgraph G1 is regular with valency k .
(Every vertex in V (G1) has valency k + 1 in Γ.)



Proof - Claim 2

Claim 2: Induced subgraph G1 is regular.

Observations: Pick arbitrary u ∈ V (G ) \ V (G1) adjacent to c .

I d(u, v) = 2 for every v ∈ V (G1)

I |W Γ
ux | = |W Γ

uy | for arbitrary x , y ∈ V (G1)

I W Γ
vu = {v} ∪ (NΓ(v) \ {c}) for every v ∈ V (G1)

⇒ |W Γ
vu| = 1 + |NΓ(v)| − 1 = |NG1(v)|+ 1 for every

v ∈ V (G1)

⇒ |NG1(x)|+ 1 = |NΓ(x)| = |W Γ
xu| = |W Γ

ux | = |W Γ
uy | = |W Γ

yu| =
|NΓ(y)| = |NG1(y)|+ 1 for arbitrary x , y ∈ V (G1)

From now on: Induced subgraph G1 is regular with valency k .
(Every vertex in V (G1) has valency k + 1 in Γ.)



Proof - Claim 2

Claim 2: Induced subgraph G1 is regular.

Observations: Pick arbitrary u ∈ V (G ) \ V (G1) adjacent to c .

I d(u, v) = 2 for every v ∈ V (G1)

I |W Γ
ux | = |W Γ

uy | for arbitrary x , y ∈ V (G1)

I W Γ
vu = {v} ∪ (NΓ(v) \ {c}) for every v ∈ V (G1)

⇒ |W Γ
vu| = 1 + |NΓ(v)| − 1 = |NG1(v)|+ 1 for every

v ∈ V (G1)

⇒ |NG1(x)|+ 1 = |NΓ(x)| = |W Γ
xu| = |W Γ

ux | = |W Γ
uy | = |W Γ

yu| =
|NΓ(y)| = |NG1(y)|+ 1 for arbitrary x , y ∈ V (G1)

From now on: Induced subgraph G1 is regular with valency k .
(Every vertex in V (G1) has valency k + 1 in Γ.)



Proof - Claim 2

Claim 2: Induced subgraph G1 is regular.

Observations: Pick arbitrary u ∈ V (G ) \ V (G1) adjacent to c .

I d(u, v) = 2 for every v ∈ V (G1)

I |W Γ
ux | = |W Γ

uy | for arbitrary x , y ∈ V (G1)

I W Γ
vu = {v} ∪ (NΓ(v) \ {c}) for every v ∈ V (G1)

⇒ |W Γ
vu| = 1 + |NΓ(v)| − 1 = |NG1(v)|+ 1 for every

v ∈ V (G1)

⇒ |NG1(x)|+ 1 = |NΓ(x)| = |W Γ
xu| = |W Γ

ux | = |W Γ
uy | = |W Γ

yu| =
|NΓ(y)| = |NG1(y)|+ 1 for arbitrary x , y ∈ V (G1)

From now on: Induced subgraph G1 is regular with valency k .
(Every vertex in V (G1) has valency k + 1 in Γ.)



Proof - Claim 3

Claim 3: c is adjacent to every vertex in V (G ).

Suppose this statement is not true. Then:

∃u2 ∈ V (G2) s.t. d(c , u2) = 2

⇒ ∃u1 ∈ V (G2) s.t. d(c , u1) = (d(u1, u2) = 1

We know: |NΓ(v)| = k + 1 for arbitrary v in V (G1).

W Γ
vu1

= {v} ∪ (NΓ(v) \ {c})

|W Γ
vu1
| = 1 + k + 1− 1 = k + 1

W Γ
cu2
⊇ V (G1) ∪ {c}

|W Γ
cu2
| ≥ |V (G1)|+ 1 ≥ k + 2
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Proof - Claim 3

Define: U =
⋃d

i=1 =
(
D i−1
i ∪ D i

i

)
W Γ

u2c ⊆ U ⊆W Γ
u1v

⇒ |W Γ
u2c | ≤ |W

Γ
u1v | = k + 1

⇒ k + 2 ≤ |W Γ
cu2
| = |W Γ

u2c | ≤ k + 1, contradiction.

From now on: c is adjacent to every vertex in V (G ).
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Proof - Claim 4

Claim 4: Graph G is regular with valency k.

W.l.o.g we prove that G2 is regular with valency k.

Pick arbitrary u ∈ V (G2) and v ∈ V (G1) (we already now:
d(u, v) = 2).

W Γ
uv = {u} ∪ (NΓ(u) \ {c}) = {u} ∪ NG2(u)

W Γ
vu = {v} ∪ (NΓ(v) \ {c}) = {v} ∪ NG1(v)

⇒ |W Γ
uv | = 1 + |NG2(u)| in |W Γ

vu| = 1 + k .

Since |W Γ
uv | = |W Γ

vu|

⇒ |NG2(u)| = k for every u ∈ V (G2)
�



Proof - Claim 4

Claim 4: Graph G is regular with valency k.

W.l.o.g we prove that G2 is regular with valency k.

Pick arbitrary u ∈ V (G2) and v ∈ V (G1) (we already now:
d(u, v) = 2).

W Γ
uv = {u} ∪ (NΓ(u) \ {c}) = {u} ∪ NG2(u)

W Γ
vu = {v} ∪ (NΓ(v) \ {c}) = {v} ∪ NG1(v)

⇒ |W Γ
uv | = 1 + |NG2(u)| in |W Γ

vu| = 1 + k .

Since |W Γ
uv | = |W Γ

vu|

⇒ |NG2(u)| = k for every u ∈ V (G2)
�



Proof - Claim 4

Claim 4: Graph G is regular with valency k.

W.l.o.g we prove that G2 is regular with valency k.

Pick arbitrary u ∈ V (G2) and v ∈ V (G1) (we already now:
d(u, v) = 2).

W Γ
uv = {u} ∪ (NΓ(u) \ {c}) = {u} ∪ NG2(u)

W Γ
vu = {v} ∪ (NΓ(v) \ {c}) = {v} ∪ NG1(v)

⇒ |W Γ
uv | = 1 + |NG2(u)| in |W Γ

vu| = 1 + k .

Since |W Γ
uv | = |W Γ

vu|

⇒ |NG2(u)| = k for every u ∈ V (G2)
�



Proof - Claim 4

Claim 4: Graph G is regular with valency k.

W.l.o.g we prove that G2 is regular with valency k.

Pick arbitrary u ∈ V (G2) and v ∈ V (G1) (we already now:
d(u, v) = 2).

W Γ
uv = {u} ∪ (NΓ(u) \ {c}) = {u} ∪ NG2(u)

W Γ
vu = {v} ∪ (NΓ(v) \ {c}) = {v} ∪ NG1(v)

⇒ |W Γ
uv | = 1 + |NG2(u)| in |W Γ

vu| = 1 + k .

Since |W Γ
uv | = |W Γ

vu|

⇒ |NG2(u)| = k for every u ∈ V (G2)
�



Proof - Claim 4

Claim 4: Graph G is regular with valency k.

W.l.o.g we prove that G2 is regular with valency k.

Pick arbitrary u ∈ V (G2) and v ∈ V (G1) (we already now:
d(u, v) = 2).

W Γ
uv = {u} ∪ (NΓ(u) \ {c}) = {u} ∪ NG2(u)

W Γ
vu = {v} ∪ (NΓ(v) \ {c}) = {v} ∪ NG1(v)

⇒ |W Γ
uv | = 1 + |NG2(u)| in |W Γ

vu| = 1 + k .

Since |W Γ
uv | = |W Γ

vu|

⇒ |NG2(u)| = k for every u ∈ V (G2)
�



Proof - Claim 4

Claim 4: Graph G is regular with valency k.

W.l.o.g we prove that G2 is regular with valency k.

Pick arbitrary u ∈ V (G2) and v ∈ V (G1) (we already now:
d(u, v) = 2).

W Γ
uv = {u} ∪ (NΓ(u) \ {c}) = {u} ∪ NG2(u)

W Γ
vu = {v} ∪ (NΓ(v) \ {c}) = {v} ∪ NG1(v)

⇒ |W Γ
uv | = 1 + |NG2(u)| in |W Γ

vu| = 1 + k .

Since |W Γ
uv | = |W Γ

vu|

⇒ |NG2(u)| = k for every u ∈ V (G2)
�



Proof - Claim 4

Claim 4: Graph G is regular with valency k.

W.l.o.g we prove that G2 is regular with valency k.

Pick arbitrary u ∈ V (G2) and v ∈ V (G1) (we already now:
d(u, v) = 2).

W Γ
uv = {u} ∪ (NΓ(u) \ {c}) = {u} ∪ NG2(u)

W Γ
vu = {v} ∪ (NΓ(v) \ {c}) = {v} ∪ NG1(v)

⇒ |W Γ
uv | = 1 + |NG2(u)| in |W Γ

vu| = 1 + k .

Since |W Γ
uv | = |W Γ

vu|

⇒ |NG2(u)| = k for every u ∈ V (G2)
�



2-distance-balanced cartesian product G�H

Question:
Which cartesian products G�H are 2-distance-balanced?

Cartesian product of graphs G and H, denoted by G�H, is a
graph with vertex set V (G )× V (H), where (u1, v1) and (u2, v2)
are adjacent if and only if either

I u1 = u2 and v1 is adjacent to v2 in H, or

I v1 = v2 and u1 is adjacent to u2 in G .
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2-distance-balanced cartesian product G�H

Theorem (B.F., Š. Miklavič)

Cartesian product G�H is 2-distance-balanced iff one of the
following statements is true:

(i) Both graphs G an H are 2-distance-balanced and
1-distance-balanced.

(ii) G is a complete graph Kn for some n ≥ 2 and H is a
connected 2-distance-balanced and 1-distance-balanced graph.

(iii) H is a complete graph Kn for some n ≥ 2 and G is a
connected 2-distance-balanced and 1-distance-balanced graph.

(iv) G is a complete graph Kn and H is a complete graph Km for
some m, n ≥ 2.



2-distance-balanced lexicographic product G [H]

Question:
Which lexicographic products G [H] are 2-distance-balanced?

Lexicographic product of graphs G and H, denoted by G [H], is a
graph with vertex set V (G )× V (H), where (u1, v1) and (u2, v2)
are adjacent if and only if either

I u1 is adjacent to u2 in G , or

I u1 = u2 and v1 is adjacent to v2 in H.



2-distance-balanced lexicographic product G [H]

Question:
Which lexicographic products G [H] are 2-distance-balanced?

Lexicographic product of graphs G and H, denoted by G [H], is a
graph with vertex set V (G )× V (H), where (u1, v1) and (u2, v2)
are adjacent if and only if either
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2-distance-balanced lexicographic product G [H]

Theorem (B.F., Š. Miklavič)

Lexicographic product G [H] is 2-distance-balanced iff one of the
following statements is true:

(i) G is a connected 2-distance-balanced graph and H is a regular
graph.

(ii) G is a complete graph and H is a regular graph, which is not
complete.

(iii) G is a complete graph and H is a connected complete
bipartite graph.



Thank you!!!
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