2-DISTANCE-BALANCED GRAPHS

Boštjan Frelih University of Primorska, Slovenia

Joint work with Štefko Miklavič

May 27, 2015

Motivation: Distance-balanced graphs

A graph Γ is said to be distance-balanced if for any edge uv of Γ , the number of vertices closer to u than to v is equal to the number of vertices closer to v than to u.

A distance partition of a graph with diameter 4 with respect to edge uv.

Motivation: Distance-balanced graphs

- These graphs were first studied (at least implicitly) by K.
 Handa who considered distance-balanced partial cubes.
- The term itself is due to J. Jerebic, S. Klavžar and D. F. Rall who studied distance-balanced graphs in the framework of various kinds of graph products.

Motivation: Distance-balanced graphs

- These graphs were first studied (at least implicitly) by K.
 Handa who considered distance-balanced partial cubes.
- The term itself is due to J. Jerebic, S. Klavžar and D. F. Rall who studied distance-balanced graphs in the framework of various kinds of graph products.

References

- K. Handa, Bipartite graphs with balanced (*a*, *b*)-partitions, *Ars Combin.* **51** (1999), 113-119.
- K. Kutnar, A. Malnič, D. Marušič, Š. Miklavič, Distance-balanced graphs: symmetry conditions, *Discrete Math.* 306 (2006), 1881-1894.
- J. Jerebic, S. Klavžar, D. F. Rall, Distance-balanced graphs, *Ann. comb.* (Print. ed.) **12** (2008), 71-79.

References

- K. Kutnar, A. Malnič, D. Marušič, Š. Miklavič, The strongly distance-balanced property of the generalized Petersen graphs. Ars mathematica contemporanea. (Print. ed.) 2 (2009), 41-47.
- A. Ilić, S. Klavžar, M. Milanović, On distance-balanced graphs, *Eur. j. comb.* **31** (2010), 733-737.
- Š. Miklavič, P. Šparl, On the connectivity of bipartite distance-balanced graphs, *Europ. j. Combin.* **33** (2012), 237-247.

Distance-balanced graphs - example

Non-regular bipartite distance-balanced graph H.

Generalization: n-distance-balanced graphs

A graph Γ is said to be *n*-distance-balanced if there exist at least two vertices at distance *n* in Γ and if for any two vertices *u* and *v* of Γ at distance *n*, the number of vertices closer to *u* than to *v* is equal to the number of vertices closer to *v* than to *u*.

We are intrested in 2-distance-balanced graphs.

Generalization: n-distance-balanced graphs

A graph Γ is said to be *n*-distance-balanced if there exist at least two vertices at distance *n* in Γ and if for any two vertices *u* and *v* of Γ at distance *n*, the number of vertices closer to *u* than to *v* is equal to the number of vertices closer to *v* than to *u*.

We are intrested in 2-distance-balanced graphs.

A distance partition of a graph with diameter 4 with respect to vertices u and v at distance 2.

2-distance-balanced graphs: example

Distance-balanced and 2-distance-balanced non-regular graph.

Question:

Are there any 2-distance-balanced graphs that are not distance-balanced?

Theorem (Handa, 1999):

Every distance-balanced graph is 2-connected.

A graph Γ is *k*-vertex-connected (or *k*-connected) if it has more than *k* vertices and the result of deleting any set of fewer than *k* vertices is a connected graph.

Question:

Are there any connected 2-distance-balanced graphs that are not 2-connected?

Question:

Are there any 2-distance-balanced graphs that are not distance-balanced?

Theorem (Handa, 1999):

Every distance-balanced graph is 2-connected.

A graph Γ is *k*-vertex-connected (or *k*-connected) if it has more than *k* vertices and the result of deleting any set of fewer than *k* vertices is a connected graph.

Question:

Are there any connected 2-distance-balanced graphs that are not 2-connected?

Question:

Are there any 2-distance-balanced graphs that are not distance-balanced?

Theorem (Handa, 1999):

Every distance-balanced graph is 2-connected.

A graph Γ is *k*-vertex-connected (or *k*-connected) if it has more than *k* vertices and the result of deleting any set of fewer than *k* vertices is a connected graph.

Question:

Are there any connected 2-distance-balanced graphs that are not 2-connected?

Family of graphs $\Gamma(G, c)$ - construction

Let G be an arbitrary graph (not necessary connected) and c an additional vertex.

Then $\Gamma(G, c)$ is a graph constructed in such a way that

$$V(\Gamma(G,c)) = V(G) \cup \{c\},\$$

and

$$E(\Gamma(G,c)) = E(G) \cup \{cv \mid v \in V(G)\}.$$

- $\Gamma(G, c)$ is connected.
- G is not connected $\iff \Gamma(G, c)$ is not 2-connected.
- Diameter of $\Gamma = \Gamma(G, c)$ is at most 2.

Family of graphs $\Gamma(G, c)$ - construction

Let G be an arbitrary graph (not necessary connected) and c an additional vertex.

Then $\Gamma(G, c)$ is a graph constructed in such a way that

$$V(\Gamma(G,c))=V(G)\cup\{c\},$$

and

$$E(\Gamma(G,c)) = E(G) \cup \{cv \mid v \in V(G)\}.$$

- $\Gamma(G, c)$ is connected.
- G is not connected $\iff \Gamma(G, c)$ is not 2-connected.
- Diameter of $\Gamma = \Gamma(G, c)$ is at most 2.

Question:

Are there any connected 2-distance-balanced graphs that are not 2-connected?

Theorem (B.F., Š. Miklavič)

Graph Γ is a connected 2-distance-balanced graph that is not 2-connected iff $\Gamma \cong \Gamma(G, c)$ for some not connected regular graph *G*.

Question:

Are there any connected 2-distance-balanced graphs that are not 2-connected?

Theorem (B.F., Š. Miklavič)

Graph Γ is a connected 2-distance-balanced graph that is not 2-connected iff $\Gamma \cong \Gamma(G, c)$ for some not connected regular graph G.

Lemma (B.F., Š. Miklavič)

If G is regular but not a complete graph, then $\Gamma(G, c)$ is 2-distance-balanced.

Proof:

Lemma (B.F., Š. Miklavič)

If G is regular but not a complete graph, then $\Gamma(G, c)$ is 2-distance-balanced.

Proof:

Lemma (B.F., Š. Miklavič)

If G is regular but not a complete graph, then $\Gamma(G, c)$ is 2-distance-balanced.

Proof:

Lemma (B.F., Š. Miklavič)

If G is regular but not a complete graph, then $\Gamma(G, c)$ is 2-distance-balanced.

Proof:

1. Pick arbitrary $v_1, v_2 \in V(G_i)$ s.t. $d(v_1, v_2) = 2$.

$$W_{v_1v_2}^{\Gamma} = \{v_1\} \cup (N_{G_i}(v_1) \setminus (N_{G_i}(v_1) \cap N_{G_i}(v_2)))$$
$$|W_{v_1v_2}^{\Gamma}| = 1 + |N_{G_i}(v_1)| - |N_{G_i}(v_1) \cap N_{G_i}(v_2)|$$
$$|W_{v_2v_1}^{\Gamma}| = 1 + |N_{G_i}(v_2)| - |N_{G_i}(v_2) \cap N_{G_i}(v_1)|$$

 $\Rightarrow |W_{\nu_1\nu_2}^{\Gamma}| = |W_{\nu_2\nu_1}^{\Gamma}|$

1. Pick arbitrary $v_1, v_2 \in V(G_i)$ s.t. $d(v_1, v_2) = 2$. $W_{v_1v_2}^{\Gamma} = \{v_1\} \cup (N_{G_i}(v_1) \setminus (N_{G_i}(v_1) \cap N_{G_i}(v_2)))$ $|W_{v_1v_2}^{\Gamma}| = 1 + |N_{G_i}(v_1)| - |N_{G_i}(v_1) \cap N_{G_i}(v_2)|$ $|W_{v_2v_1}^{\Gamma}| = 1 + |N_{G_i}(v_2)| - |N_{G_i}(v_2) \cap N_{G_i}(v_1)|$ $\Rightarrow |W_{v_1v_2}^{\Gamma}| = |W_{v_2v_1}^{\Gamma}|$

1. Pick arbitrary
$$v_1, v_2 \in V(G_i)$$
 s.t. $d(v_1, v_2) = 2$.
 $W_{v_1v_2}^{\Gamma} = \{v_1\} \cup (N_{G_i}(v_1) \setminus (N_{G_i}(v_1) \cap N_{G_i}(v_2)))$
 $|W_{v_1v_2}^{\Gamma}| = 1 + |N_{G_i}(v_1)| - |N_{G_i}(v_1) \cap N_{G_i}(v_2)|$
 $|W_{v_2v_1}^{\Gamma}| = 1 + |N_{G_i}(v_2)| - |N_{G_i}(v_2) \cap N_{G_i}(v_1)|$
 $\Rightarrow |W_{v_1v_2}^{\Gamma}| = |W_{v_2v_1}^{\Gamma}|$

1. Pick arbitrary
$$v_1, v_2 \in V(G_i)$$
 s.t. $d(v_1, v_2) = 2$.
 $W_{v_1v_2}^{\Gamma} = \{v_1\} \cup (N_{G_i}(v_1) \setminus (N_{G_i}(v_1) \cap N_{G_i}(v_2)))$
 $|W_{v_1v_2}^{\Gamma}| = 1 + |N_{G_i}(v_1)| - |N_{G_i}(v_1) \cap N_{G_i}(v_2)|$
 $|W_{v_2v_1}^{\Gamma}| = 1 + |N_{G_i}(v_2)| - |N_{G_i}(v_2) \cap N_{G_i}(v_1)|$
 $\Rightarrow |W_{v_1v_2}^{\Gamma}| = |W_{v_2v_1}^{\Gamma}|$

1. Pick arbitrary
$$v_1, v_2 \in V(G_i)$$
 s.t. $d(v_1, v_2) = 2$.
 $W_{v_1v_2}^{\Gamma} = \{v_1\} \cup (N_{G_i}(v_1) \setminus (N_{G_i}(v_1) \cap N_{G_i}(v_2)))$
 $|W_{v_1v_2}^{\Gamma}| = 1 + |N_{G_i}(v_1)| - |N_{G_i}(v_1) \cap N_{G_i}(v_2)|$
 $|W_{v_2v_1}^{\Gamma}| = 1 + |N_{G_i}(v_2)| - |N_{G_i}(v_2) \cap N_{G_i}(v_1)|$
 $\Rightarrow |W_{v_1v_2}^{\Gamma}| = |W_{v_2v_1}^{\Gamma}|$

2. Pick arbitrary $v \in V(G_i)$, $u \in V(G_j)$.

$$W_{vu}^{\Gamma} = \{v\} \cup N_{G_i}(v)$$
$$W_{uv}^{\Gamma} = \{u\} \cup N_{G_j}(u)$$
$$\Rightarrow |W_{vu}^{\Gamma}| = 1 + k = |W_{uv}^{\Gamma}|$$

2. Pick arbitrary $v \in V(G_i)$, $u \in V(G_j)$. $W_{vu}^{\Gamma} = \{v\} \cup N_{G_i}(v)$ $W_{uv}^{\Gamma} = \{u\} \cup N_{G_j}(u)$ $\Rightarrow |W_{vu}^{\Gamma}| = 1 + k = |W_{uv}^{\Gamma}|$

2. Pick arbitrary
$$v \in V(G_i)$$
, $u \in V(G_j)$.
 $W_{vu}^{\Gamma} = \{v\} \cup N_{G_i}(v)$
 $W_{uv}^{\Gamma} = \{u\} \cup N_{G_j}(u)$
 $\Rightarrow |W_{vu}^{\Gamma}| = 1 + k = |W_{uv}^{\Gamma}|$

2. Pick arbitrary
$$v \in V(G_i)$$
, $u \in V(G_j)$.
 $W_{vu}^{\Gamma} = \{v\} \cup N_{G_i}(v)$
 $W_{uv}^{\Gamma} = \{u\} \cup N_{G_j}(u)$
 $\Rightarrow |W_{vu}^{\Gamma}| = 1 + k = |W_{uv}^{\Gamma}|$

2. Pick arbitrary
$$v \in V(G_i)$$
, $u \in V(G_j)$.
 $W_{vu}^{\Gamma} = \{v\} \cup N_{G_i}(v)$
 $W_{uv}^{\Gamma} = \{u\} \cup N_{G_j}(u)$
 $\Rightarrow |W_{vu}^{\Gamma}| = 1 + k = |W_{uv}^{\Gamma}|$

Lemma (B.F., Š. Miklavič)

If Γ is a connected 2-distance-balanced graph that is not 2-connected then $\Gamma \cong \Gamma(G, c)$ for some not connected regular graph G.

Proof:

Let Γ connected 2-distance-balanced graph that is not 2-connected and c a cut vertex in Γ .

Lemma (B.F., Š. Miklavič)

If Γ is a connected 2-distance-balanced graph that is not 2-connected then $\Gamma \cong \Gamma(G, c)$ for some not connected regular graph G.

Proof:

Let Γ connected 2-distance-balanced graph that is not 2-connected and c a cut vertex in $\Gamma.$

Lemma (B.F., Š. Miklavič)

If Γ is a connected 2-distance-balanced graph that is not 2-connected then $\Gamma \cong \Gamma(G, c)$ for some not connected regular graph G.

Proof:

Let Γ connected 2-distance-balanced graph that is not 2-connected and c a cut vertex in $\Gamma.$

Lemma (B.F., Š. Miklavič)

If Γ is a connected 2-distance-balanced graph that is not 2-connected then $\Gamma \cong \Gamma(G, c)$ for some not connected regular graph G.

Proof:

Let Γ connected 2-distance-balanced graph that is not 2-connected and c a cut vertex in $\Gamma.$
<u>Claim 1:</u> c is adjacent to every vertex in G_l for at least one l, $1 \le l \le n$.

Suppose this statement is not true. Then for arbitrary G_i and G_j $\exists v_2 \in V(G_i)$ s.t. $d(c, v_2) = 2$ $\Rightarrow \exists v_1 \in V(G_i)$ s.t. $d(c, v_1) = d(v_1, v_2) = 1$, and $\exists u_2 \in V(G_j)$ s.t. d(c, u) = 2 $\Rightarrow \exists u_1 \in V(G_i)$ s.t. $d(c, u_1) = d(u_1, u_2) = 1$

<u>Claim 1</u>: *c* is adjacent to every vertex in G_l for at least one *l*, $1 \le l \le n$.

Suppose this statement is not true. Then for arbitrary G_i and G_j : $\exists v_2 \in V(G_i) \text{ s.t. } d(c, v_2) = 2$ $\Rightarrow \exists v_1 \in V(G_i) \text{ s.t. } d(c, v_1) = d(v_1, v_2) = 1$, and $\exists u_2 \in V(G_j) \text{ s.t. } d(c, u) = 2$ $\Rightarrow \exists u_1 \in V(G_i) \text{ s.t. } d(c, u_1) = d(u_1, u_2) = 1$

 $W_{cv_{2}}^{\Gamma} \supseteq \{c\} \cup V(G_{j}) \Rightarrow 1 + |V(G_{j})| \le |W_{cv_{2}}^{\Gamma}|$ $W_{v_{2}c}^{\Gamma} \subseteq V(G_{i}) \setminus \{v_{1}\} \Rightarrow |W_{v_{2}c}^{\Gamma}| \le |V(G_{i})| - 1$ $\Rightarrow |V(G_{j})| \le |V(G_{i})| - 2$

$$\begin{split} W_{cu_2}^{\Gamma} &\supseteq \{c\} \cup V(G_i) \Rightarrow 1 + |V(G_i)| \le |W_{cu_2}^{\Gamma}| \\ W_{u_2c}^{\Gamma} &\subseteq V(G_j) \setminus \{u_1\} \Rightarrow |W_{u_2c}^{\Gamma}| \le |V(G_j)| - 1 \\ \Rightarrow |V(G_i)| + 2 \le |V(G_j)| \end{split}$$

So: $|V(G_i)| + 2 \le |V(G_j)| \le |V(G_i)| - 2$, contradiction.

$$\begin{split} & \mathcal{W}_{cv_2}^{\Gamma} \supseteq \{c\} \cup \mathcal{V}(G_j) \Rightarrow 1 + |\mathcal{V}(G_j)| \le |\mathcal{W}_{cv_2}^{\Gamma}| \\ & \mathcal{W}_{v_2c}^{\Gamma} \subseteq \mathcal{V}(G_i) \setminus \{v_1\} \Rightarrow |\mathcal{W}_{v_2c}^{\Gamma}| \le |\mathcal{V}(G_i)| - 1 \\ & \Rightarrow |\mathcal{V}(G_j)| \le |\mathcal{V}(G_i)| - 2 \end{split}$$

$$\begin{split} W_{cu_2}^{\Gamma} &\supseteq \{c\} \cup V(G_i) \Rightarrow 1 + |V(G_i)| \le |W_{cu_2}^{\Gamma}| \\ W_{u_2c}^{\Gamma} &\subseteq V(G_j) \setminus \{u_1\} \Rightarrow |W_{u_2c}^{\Gamma}| \le |V(G_j)| - 1 \\ \Rightarrow |V(G_i)| + 2 \le |V(G_j)| \end{split}$$

So: $|V(G_i)| + 2 \le |V(G_j)| \le |V(G_i)| - 2$, contradiction.

$$\begin{split} W_{cv_2}^{\Gamma} &\supseteq \{c\} \cup V(G_j) \Rightarrow 1 + |V(G_j)| \le |W_{cv_2}^{\Gamma}| \\ W_{v_2c}^{\Gamma} &\subseteq V(G_i) \setminus \{v_1\} \Rightarrow |W_{v_2c}^{\Gamma}| \le |V(G_i)| - 1 \\ \Rightarrow |V(G_j)| \le |V(G_i)| - 2 \end{split}$$

$$\begin{split} W_{cu_2}^{\Gamma} &\supseteq \{c\} \cup V(G_i) \Rightarrow 1 + |V(G_i)| \le |W_{cu_2}^{\Gamma}| \\ W_{u_2c}^{\Gamma} &\subseteq V(G_j) \setminus \{u_1\} \Rightarrow |W_{u_2c}^{\Gamma}| \le |V(G_j)| - 1 \\ \Rightarrow |V(G_i)| + 2 \le |V(G_j)| \end{split}$$

So: $|V(G_i)| + 2 \le |V(G_j)| \le |V(G_i)| - 2$, contradiction.

$$\begin{split} W_{cv_2}^{\Gamma} &\supseteq \{c\} \cup V(G_j) \Rightarrow 1 + |V(G_j)| \le |W_{cv_2}^{\Gamma}| \\ W_{v_2c}^{\Gamma} &\subseteq V(G_i) \setminus \{v_1\} \Rightarrow |W_{v_2c}^{\Gamma}| \le |V(G_i)| - 1 \\ \Rightarrow |V(G_j)| \le |V(G_i)| - 2 \end{split}$$

$$W_{cu_2}^{\Gamma} \supseteq \{c\} \cup V(G_i) \Rightarrow 1 + |V(G_i)| \le |W_{cu_2}^{\Gamma}|$$
$$W_{u_2c}^{\Gamma} \subseteq V(G_j) \setminus \{u_1\} \Rightarrow |W_{u_2c}^{\Gamma}| \le |V(G_j)| - 1$$
$$\Rightarrow |V(G_i)| + 2 \le |V(G_j)|$$

So: $|V(G_i)| + 2 \le |V(G_j)| \le |V(G_i)| - 2$, contradiction.

$$\begin{split} W_{cv_2}^{\Gamma} &\supseteq \{c\} \cup V(G_j) \Rightarrow 1 + |V(G_j)| \le |W_{cv_2}^{\Gamma}| \\ W_{v_2c}^{\Gamma} &\subseteq V(G_i) \setminus \{v_1\} \Rightarrow |W_{v_2c}^{\Gamma}| \le |V(G_i)| - 1 \\ \Rightarrow |V(G_j)| \le |V(G_i)| - 2 \end{split}$$

$$\begin{split} & \mathcal{W}_{cu_2}^{\Gamma} \supseteq \{c\} \cup V(G_i) \Rightarrow 1 + |V(G_i)| \le |\mathcal{W}_{cu_2}^{\Gamma}| \\ & \mathcal{W}_{u_2c}^{\Gamma} \subseteq V(G_j) \setminus \{u_1\} \Rightarrow |\mathcal{W}_{u_2c}^{\Gamma}| \le |V(G_j)| - 1 \\ & \Rightarrow |V(G_i)| + 2 \le |V(G_j)| \end{split}$$

So: $|V(G_i)| + 2 \leq |V(G_j)| \leq |V(G_i)| - 2$, contradiction.

$$\begin{split} W_{cv_2}^{\Gamma} &\supseteq \{c\} \cup V(G_j) \Rightarrow 1 + |V(G_j)| \le |W_{cv_2}^{\Gamma}| \\ W_{v_2c}^{\Gamma} &\subseteq V(G_i) \setminus \{v_1\} \Rightarrow |W_{v_2c}^{\Gamma}| \le |V(G_i)| - 1 \\ \Rightarrow |V(G_j)| \le |V(G_i)| - 2 \end{split}$$

$$\begin{split} W_{cu_2}^{\Gamma} &\supseteq \{c\} \cup V(G_i) \Rightarrow 1 + |V(G_i)| \le |W_{cu_2}^{\Gamma}| \\ W_{u_2c}^{\Gamma} &\subseteq V(G_j) \setminus \{u_1\} \Rightarrow |W_{u_2c}^{\Gamma}| \le |V(G_j)| - 1 \\ \Rightarrow |V(G_i)| + 2 \le |V(G_j)| \end{split}$$

So: $|V(G_i)| + 2 \le |V(G_j)| \le |V(G_i)| - 2$, contradiction.

$$\begin{split} W_{cv_2}^{\Gamma} &\supseteq \{c\} \cup V(G_j) \Rightarrow 1 + |V(G_j)| \le |W_{cv_2}^{\Gamma}| \\ W_{v_2c}^{\Gamma} &\subseteq V(G_i) \setminus \{v_1\} \Rightarrow |W_{v_2c}^{\Gamma}| \le |V(G_i)| - 1 \\ \Rightarrow |V(G_j)| \le |V(G_i)| - 2 \end{split}$$

$$\begin{split} & \mathcal{W}_{cu_2}^{\Gamma} \supseteq \{c\} \cup \mathcal{V}(G_i) \Rightarrow 1 + |\mathcal{V}(G_i)| \le |\mathcal{W}_{cu_2}^{\Gamma}| \\ & \mathcal{W}_{u_2c}^{\Gamma} \subseteq \mathcal{V}(G_j) \setminus \{u_1\} \Rightarrow |\mathcal{W}_{u_2c}^{\Gamma}| \le |\mathcal{V}(G_j)| - 1 \\ & \Rightarrow |\mathcal{V}(G_i)| + 2 \le |\mathcal{V}(G_j)| \end{split}$$

So: $|V(G_i)| + 2 \leq |V(G_j)| \leq |V(G_i)| - 2$, contradiction.

$$\begin{split} W_{cv_2}^{\Gamma} &\supseteq \{c\} \cup V(G_j) \Rightarrow 1 + |V(G_j)| \le |W_{cv_2}^{\Gamma}| \\ W_{v_2c}^{\Gamma} &\subseteq V(G_i) \setminus \{v_1\} \Rightarrow |W_{v_2c}^{\Gamma}| \le |V(G_i)| - 1 \\ \Rightarrow |V(G_j)| \le |V(G_i)| - 2 \end{split}$$

$$\begin{split} W_{cu_2}^{\Gamma} &\supseteq \{c\} \cup V(G_i) \Rightarrow 1 + |V(G_i)| \le |W_{cu_2}^{\Gamma}| \\ W_{u_2c}^{\Gamma} &\subseteq V(G_j) \setminus \{u_1\} \Rightarrow |W_{u_2c}^{\Gamma}| \le |V(G_j)| - 1 \\ \Rightarrow |V(G_i)| + 2 \le |V(G_j)| \end{split}$$

So: $|V(G_i)| + 2 \leq |V(G_j)| \leq |V(G_i)| - 2$, contradiction.

<u>Claim 2:</u> Induced subgraph G_1 is regular.

<u>Observations</u>: Pick arbitrary $u \in V(G) \setminus V(G_1)$ adjacent to c.

•
$$d(u, v) = 2$$
 for every $v \in V(G_1)$

- ► $|W_{ux}^{\Gamma}| = |W_{uy}^{\Gamma}|$ for arbitrary $x, y \in V(G_1)$
- ► $W_{vu}^{\Gamma} = \{v\} \cup (N_{\Gamma}(v) \setminus \{c\})$ for every $v \in V(G_1)$

 $\Rightarrow |W_{vu}^{\Gamma}| = 1 + |N_{\Gamma}(v)| - 1 = |N_{G_1}(v)| + 1$ for every $v \in V(G_1)$

 $\Rightarrow |N_{G_1}(x)| + 1 = |N_{\Gamma}(x)| = |W_{xu}^{\Gamma}| = |W_{ux}^{\Gamma}| = |W_{uy}^{\Gamma}| = |W_{yu}^{\Gamma}| = |N_{\Gamma}(y)| = |N_{G_1}(y)| + 1 \text{ for arbitrary } x, y \in V(G_1)$

<u>Claim 2:</u> Induced subgraph G_1 is regular.

<u>Observations</u>: Pick arbitrary $u \in V(G) \setminus V(G_1)$ adjacent to c.

 $\Rightarrow |W_{vu}^{\Gamma}| = 1 + |N_{\Gamma}(v)| - 1 = |N_{G_1}(v)| + 1 \text{ for every}$ $v \in V(G_1)$

 $\Rightarrow |N_{G_1}(x)| + 1 = |N_{\Gamma}(x)| = |W_{xu}^{\Gamma}| = |W_{ux}^{\Gamma}| = |W_{uy}^{\Gamma}| = |W_{yu}^{\Gamma}| = |N_{\Gamma}(y)| = |N_{G_1}(y)| + 1 \text{ for arbitrary } x, y \in V(G_1)$

<u>Claim 2:</u> Induced subgraph G_1 is regular.

<u>Observations</u>: Pick arbitrary $u \in V(G) \setminus V(G_1)$ adjacent to c.

•
$$d(u, v) = 2$$
 for every $v \in V(G_1)$

- ► $|W_{ux}^{\Gamma}| = |W_{uy}^{\Gamma}|$ for arbitrary $x, y \in V(G_1)$
- ► $W_{vu}^{\Gamma} = \{v\} \cup (N_{\Gamma}(v) \setminus \{c\})$ for every $v \in V(G_1)$

 $\Rightarrow |W_{vu}^{\Gamma}| = 1 + |N_{\Gamma}(v)| - 1 = |N_{G_1}(v)| + 1 \text{ for every}$ $v \in V(G_1)$

 $\Rightarrow |N_{G_1}(x)| + 1 = |N_{\Gamma}(x)| = |W_{xu}^{\Gamma}| = |W_{ux}^{\Gamma}| = |W_{uy}^{\Gamma}| = |W_{yu}^{\Gamma}| = |N_{\Gamma}(y)| = |N_{G_1}(y)| + 1 \text{ for arbitrary } x, y \in V(G_1)$

<u>Claim 2:</u> Induced subgraph G_1 is regular.

<u>Observations</u>: Pick arbitrary $u \in V(G) \setminus V(G_1)$ adjacent to c.

•
$$d(u, v) = 2$$
 for every $v \in V(G_1)$

• $|W_{ux}^{\Gamma}| = |W_{uy}^{\Gamma}|$ for arbitrary $x, y \in V(G_1)$

►
$$W_{vu}^{\Gamma} = \{v\} \cup (N_{\Gamma}(v) \setminus \{c\})$$
 for every $v \in V(G_1)$
 $\Rightarrow |W_{vu}^{\Gamma}| = 1 + |N_{\Gamma}(v)| - 1 = |N_{G_1}(v)| + 1$ for every
 $v \in V(G_1)$

 $\Rightarrow |N_{G_1}(x)| + 1 = |N_{\Gamma}(x)| = |W_{xu}^{\Gamma}| = |W_{ux}^{\Gamma}| = |W_{uy}^{\Gamma}| = |W_{yu}^{\Gamma}| = |N_{\Gamma}(y)| = |N_{G_1}(y)| + 1 \text{ for arbitrary } x, y \in V(G_1)$

<u>Claim 2:</u> Induced subgraph G_1 is regular.

<u>Observations</u>: Pick arbitrary $u \in V(G) \setminus V(G_1)$ adjacent to c.

 $\Rightarrow |N_{G_1}(x)| + 1 = |N_{\Gamma}(x)| = |W_{xu}^{\Gamma}| = |W_{ux}^{\Gamma}| = |W_{uy}^{\Gamma}| = |W_{yu}^{\Gamma}| = |N_{\Gamma}(y)| = |N_{G_1}(y)| + 1 \text{ for arbitrary } x, y \in V(G_1)$

<u>Claim 2:</u> Induced subgraph G_1 is regular.

<u>Observations</u>: Pick arbitrary $u \in V(G) \setminus V(G_1)$ adjacent to c.

 $\Rightarrow |N_{G_1}(x)| + 1 = |N_{\Gamma}(x)| = |W_{xu}^{\Gamma}| = |W_{ux}^{\Gamma}| = |W_{uy}^{\Gamma}| = |W_{yu}^{\Gamma}| = |N_{\Gamma}(y)| = |N_{G_1}(y)| + 1 \text{ for arbitrary } x, y \in V(G_1)$

<u>Claim 2:</u> Induced subgraph G_1 is regular.

<u>Observations</u>: Pick arbitrary $u \in V(G) \setminus V(G_1)$ adjacent to c.

 $\Rightarrow |N_{G_1}(x)| + 1 = |N_{\Gamma}(x)| = |W_{xu}^{\Gamma}| = |W_{ux}^{\Gamma}| = |W_{uy}^{\Gamma}| = |W_{yu}^{\Gamma}| = |N_{\Gamma}(y)| = |N_{G_1}(y)| + 1 \text{ for arbitrary } x, y \in V(G_1)$

<u>Claim 2:</u> Induced subgraph G_1 is regular.

<u>Observations</u>: Pick arbitrary $u \in V(G) \setminus V(G_1)$ adjacent to c.

 $\Rightarrow |N_{G_1}(x)| + 1 = |N_{\Gamma}(x)| = |W_{xu}^{\Gamma}| = |W_{ux}^{\Gamma}| = |W_{uy}^{\Gamma}| = |W_{yu}^{\Gamma}| = |N_{\Gamma}(y)| = |N_{G_1}(y)| + 1 \text{ for arbitrary } x, y \in V(G_1)$

<u>Claim 3:</u> c is adjacent to every vertex in V(G).

Suppose this statement is not true. Then: $\exists u_2 \in V(G_2) \text{ s.t. } d(c, u_2) = 2$ $\Rightarrow \exists u_1 \in V(G_2) \text{ s.t. } d(c, u_1) = (d(u_1, u_2) = 1)$

<u>We know:</u> $|N_{\Gamma}(v)| = k + 1$ for arbitrary v in $V(G_1)$.

 $W_{vu_{1}}^{\Gamma} = \{v\} \cup (N_{\Gamma}(v) \setminus \{c\})$ $|W_{vu_{1}}^{\Gamma}| = 1 + k + 1 - 1 = k + 1$ $W_{cu_{2}}^{\Gamma} \supseteq V(G_{1}) \cup \{c\}$ $|W_{cu_{2}}^{\Gamma}| \ge |V(G_{1})| + 1 \ge k + 2$

<u>Claim 3:</u> c is adjacent to every vertex in V(G).

Suppose this statement is not true. Then: $\exists u_2 \in V(G_2) \text{ s.t. } d(c, u_2) = 2$ $\Rightarrow \exists u_1 \in V(G_2) \text{ s.t. } d(c, u_1) = (d(u_1, u_2) = 1)$

<u>We know:</u> $|N_{\Gamma}(v)| = k + 1$ for arbitrary v in $V(G_1)$.

 $W_{vu_{1}}^{\Gamma} = \{v\} \cup (N_{\Gamma}(v) \setminus \{c\})$ $|W_{vu_{1}}^{\Gamma}| = 1 + k + 1 - 1 = k + 1$ $W_{cu_{2}}^{\Gamma} \supseteq V(G_{1}) \cup \{c\}$ $|W_{cu_{2}}^{\Gamma}| \ge |V(G_{1})| + 1 \ge k + 2$

<u>Claim 3:</u> c is adjacent to every vertex in V(G).

Suppose this statement is not true. Then: $\exists u_2 \in V(G_2) \text{ s.t. } d(c, u_2) = 2$ $\Rightarrow \exists u_1 \in V(G_2) \text{ s.t. } d(c, u_1) = (d(u_1, u_2) = 1)$

<u>We know:</u> $|N_{\Gamma}(v)| = k + 1$ for arbitrary v in $V(G_1)$.

 $W_{vu_{1}}^{\Gamma} = \{v\} \cup (N_{\Gamma}(v) \setminus \{c\})$ $|W_{vu_{1}}^{\Gamma}| = 1 + k + 1 - 1 = k + 1$ $W_{cu_{2}}^{\Gamma} \supseteq V(G_{1}) \cup \{c\}$ $|W_{cu_{2}}^{\Gamma}| \ge |V(G_{1})| + 1 \ge k + 2$

<u>Claim 3:</u> c is adjacent to every vertex in V(G).

Suppose this statement is not true. Then: $\exists u_2 \in V(G_2)$ s.t. $d(c, u_2) = 2$ $\Rightarrow \exists u_1 \in V(G_2) \text{ s.t. } d(c, u_1) = (d(u_1, u_2) = 1)$ We know: $|N_{\Gamma}(v)| = k + 1$ for arbitrary v in $V(G_1)$. $W_{vu_1}^{\Gamma} = \{v\} \cup (N_{\Gamma}(v) \setminus \{c\})$ $|W_{yu_{1}}^{\Gamma}| = 1 + k + 1 - 1 = k + 1$

<u>Claim 3:</u> c is adjacent to every vertex in V(G).

Suppose this statement is not true. Then: $\exists u_2 \in V(G_2)$ s.t. $d(c, u_2) = 2$ $\Rightarrow \exists u_1 \in V(G_2) \text{ s.t. } d(c, u_1) = (d(u_1, u_2) = 1)$ We know: $|N_{\Gamma}(v)| = k + 1$ for arbitrary v in $V(G_1)$. $W_{vu_1}^{\Gamma} = \{v\} \cup (N_{\Gamma}(v) \setminus \{c\})$ $|W_{yun}^{\Gamma}| = 1 + k + 1 - 1 = k + 1$

<u>Claim 3:</u> c is adjacent to every vertex in V(G).

Suppose this statement is not true. Then: $\exists u_2 \in V(G_2)$ s.t. $d(c, u_2) = 2$ $\Rightarrow \exists u_1 \in V(G_2) \text{ s.t. } d(c, u_1) = (d(u_1, u_2) = 1)$ We know: $|N_{\Gamma}(v)| = k + 1$ for arbitrary v in $V(G_1)$. $W_{vu_1}^{\Gamma} = \{v\} \cup (N_{\Gamma}(v) \setminus \{c\})$ $|W_{yuy}^{\Gamma}| = 1 + k + 1 - 1 = k + 1$ $W_{cup}^{\Gamma} \supseteq V(G_1) \cup \{c\}$ $|W_{CU_2}^{\Gamma}| \geq |V(G_1)| + 1 \geq k + 2$

Define:
$$U = \bigcup_{i=1}^{d} = \left(D_i^{i-1} \cup D_i^i \right)$$

$$\begin{split} W_{u_2c}^{\Gamma} &\subseteq U \subseteq W_{u_1v}^{\Gamma} \\ \Rightarrow |W_{u_2c}^{\Gamma}| \leq |W_{u_1v}^{\Gamma}| = k+1 \end{split}$$

 $\Rightarrow k+2 \leq |W_{cu_2}^{\Gamma}| = |W_{u_2c}^{\Gamma}| \leq k+1$, contradiction.

Define:
$$U = \bigcup_{i=1}^{d} = \left(D_i^{i-1} \cup D_i^i \right)$$

$$\begin{split} W_{u_2c}^{\Gamma} &\subseteq U \subseteq W_{u_1v}^{\Gamma} \\ \Rightarrow |W_{u_2c}^{\Gamma}| \leq |W_{u_1v}^{\Gamma}| = k+1 \end{split}$$

 $\Rightarrow k+2 \leq |W_{cu_2}^{\Gamma}| = |W_{u_2c}^{\Gamma}| \leq k+1$, contradiction.

Define:
$$U = \bigcup_{i=1}^{d} = \left(D_i^{i-1} \cup D_i^i \right)$$

 $W_{u_2c}^{\mathsf{\Gamma}} \subseteq U \subseteq W_{u_1v}^{\mathsf{\Gamma}}$ $\Rightarrow |W_{u_2c}^{\mathsf{\Gamma}}| \le |W_{u_1v}^{\mathsf{\Gamma}}| = k+1$

 $\Rightarrow k+2 \leq |W_{cu_2}^{\Gamma}| = |W_{u_2c}^{\Gamma}| \leq k+1$, contradiction.

Define:
$$U = \bigcup_{i=1}^{d} = \left(D_i^{i-1} \cup D_i^i \right)$$

$$\begin{split} W_{u_2c}^{\mathsf{\Gamma}} &\subseteq U \subseteq W_{u_1v}^{\mathsf{\Gamma}} \\ \Rightarrow |W_{u_2c}^{\mathsf{\Gamma}}| \leq |W_{u_1v}^{\mathsf{\Gamma}}| = k+1 \end{split}$$

 $\Rightarrow k+2 \leq |W_{cu_2}^{\Gamma}| = |W_{u_2c}^{\Gamma}| \leq k+1$, contradiction.

Define:
$$U = \bigcup_{i=1}^{d} = \left(D_i^{i-1} \cup D_i^i \right)$$

$$\begin{split} W_{u_2c}^{\mathsf{\Gamma}} &\subseteq U \subseteq W_{u_1v}^{\mathsf{\Gamma}} \\ \Rightarrow |W_{u_2c}^{\mathsf{\Gamma}}| \leq |W_{u_1v}^{\mathsf{\Gamma}}| = k+1 \end{split}$$

 $\Rightarrow k + 2 \le |W_{cu_2}^{\Gamma}| = |W_{u_2c}^{\Gamma}| \le k + 1$, contradiction.

Define:
$$U = \bigcup_{i=1}^{d} = \left(D_i^{i-1} \cup D_i^i \right)$$

$$\begin{split} W_{u_2c}^{\mathsf{\Gamma}} &\subseteq U \subseteq W_{u_1v}^{\mathsf{\Gamma}} \\ \Rightarrow |W_{u_2c}^{\mathsf{\Gamma}}| \leq |W_{u_1v}^{\mathsf{\Gamma}}| = k+1 \end{split}$$

 $\Rightarrow k + 2 \le |W_{cu_2}^{\Gamma}| = |W_{u_2c}^{\Gamma}| \le k + 1$, contradiction.

<u>Claim 4:</u> Graph G is regular with valency k.

W.l.o.g we prove that G_2 is regular with valency k.

Pick arbitrary $u \in V(G_2)$ and $v \in V(G_1)$ (we already now: d(u, v) = 2).

$$\begin{split} W_{uv}^{\Gamma} &= \{u\} \cup (N_{\Gamma}(u) \setminus \{c\}) = \{u\} \cup N_{G_2}(u) \\ W_{vu}^{\Gamma} &= \{v\} \cup (N_{\Gamma}(v) \setminus \{c\}) = \{v\} \cup N_{G_1}(v) \\ \Rightarrow |W_{uv}^{\Gamma}| &= 1 + |N_{G_2}(u)| \quad \text{in} \quad |W_{vu}^{\Gamma}| = 1 + k. \\ \text{Since} \; |W_{uv}^{\Gamma}| &= |W_{vu}^{\Gamma}| \\ \Rightarrow |N_{G_2}(u)| &= k \text{ for every } u \in V(G_2) \end{split}$$

<u>Claim 4:</u> Graph G is regular with valency k.

W.l.o.g we prove that G_2 is regular with valency k.

Pick arbitrary $u \in V(G_2)$ and $v \in V(G_1)$ (we already now: d(u, v) = 2).

$$W_{uv}^{\Gamma} = \{u\} \cup (N_{\Gamma}(u) \setminus \{c\}) = \{u\} \cup N_{G_2}(u)$$
$$W_{vu}^{\Gamma} = \{v\} \cup (N_{\Gamma}(v) \setminus \{c\}) = \{v\} \cup N_{G_1}(v)$$
$$\Rightarrow |W_{uv}^{\Gamma}| = 1 + |N_{G_2}(u)| \text{ in } |W_{vu}^{\Gamma}| = 1 + k.$$

 $\Rightarrow |N_{G_2}(u)| = k$ for every $u \in V(G_2)$

<u>Claim 4:</u> Graph G is regular with valency k.

W.l.o.g we prove that G_2 is regular with valency k.

Pick arbitrary $u \in V(G_2)$ and $v \in V(G_1)$ (we already now: d(u, v) = 2).

$$W_{uv}^{\Gamma} = \{u\} \cup (N_{\Gamma}(u) \setminus \{c\}) = \{u\} \cup N_{G_2}(u)$$
$$W_{vu}^{\Gamma} = \{v\} \cup (N_{\Gamma}(v) \setminus \{c\}) = \{v\} \cup N_{G_1}(v)$$
$$\Rightarrow |W_{uv}^{\Gamma}| = 1 + |N_{G_2}(u)| \text{ in } |W_{vu}^{\Gamma}| = 1 + k.$$
Since $|W_{uv}^{\Gamma}| = |W_{vu}^{\Gamma}|$
$$\Rightarrow |N_{G_2}(u)| = k \text{ for every } u \in V(G_2)$$

<u>Claim 4:</u> Graph G is regular with valency k.

W.l.o.g we prove that G_2 is regular with valency k.

Pick arbitrary $u \in V(G_2)$ and $v \in V(G_1)$ (we already now: d(u, v) = 2).

$$W_{uv}^{\Gamma} = \{u\} \cup (N_{\Gamma}(u) \setminus \{c\}) = \{u\} \cup N_{G_2}(u)$$

$$W_{vu}^{\Gamma} = \{v\} \cup (N_{\Gamma}(v) \setminus \{c\}) = \{v\} \cup N_{G_1}(v)$$

 $\Rightarrow |W_{uv}^{\Gamma}| = 1 + |N_{G_2}(u)| \quad \text{in} \quad |W_{vu}^{\Gamma}| = 1 + k.$

Since $|W_{uv}^{\Gamma}| = |W_{vu}^{\Gamma}|$

 $\Rightarrow |N_{G_2}(u)| = k$ for every $u \in V(G_2)$

<u>Claim 4:</u> Graph G is regular with valency k.

W.l.o.g we prove that G_2 is regular with valency k.

Pick arbitrary $u \in V(G_2)$ and $v \in V(G_1)$ (we already now: d(u, v) = 2).

$$W_{uv}^{\Gamma} = \{u\} \cup (N_{\Gamma}(u) \setminus \{c\}) = \{u\} \cup N_{G_2}(u)$$
$$W_{vu}^{\Gamma} = \{v\} \cup (N_{\Gamma}(v) \setminus \{c\}) = \{v\} \cup N_{G_1}(v)$$

 $\Rightarrow |W_{uv}^{\Gamma}| = 1 + |N_{G_2}(u)| \quad \text{in} \quad |W_{vu}^{\Gamma}| = 1 + k.$

Since $|W_{uv}^{\Gamma}| = |W_{vu}^{\Gamma}|$ $\Rightarrow |N_{C}(u)| = k$ for every $u \in V(u)$

<u>Claim 4:</u> Graph G is regular with valency k.

W.l.o.g we prove that G_2 is regular with valency k.

Pick arbitrary $u \in V(G_2)$ and $v \in V(G_1)$ (we already now: d(u, v) = 2).

$$W_{uv}^{\Gamma} = \{u\} \cup (N_{\Gamma}(u) \setminus \{c\}) = \{u\} \cup N_{G_2}(u)$$
$$W_{vu}^{\Gamma} = \{v\} \cup (N_{\Gamma}(v) \setminus \{c\}) = \{v\} \cup N_{G_1}(v)$$
$$\Rightarrow |W_{uv}^{\Gamma}| = 1 + |N_{G_2}(u)| \text{ in } |W_{vu}^{\Gamma}| = 1 + k.$$
Since $|W_{uv}^{\Gamma}| = |W_{vu}^{\Gamma}|$
$$\Rightarrow |N_{G_2}(u)| = k \text{ for every } u \in V(G_2)$$
Proof - Claim 4

<u>Claim 4:</u> Graph G is regular with valency k.

W.l.o.g we prove that G_2 is regular with valency k.

Pick arbitrary $u \in V(G_2)$ and $v \in V(G_1)$ (we already now: d(u, v) = 2).

$$\begin{split} W_{uv}^{\Gamma} &= \{u\} \cup (N_{\Gamma}(u) \setminus \{c\}) = \{u\} \cup N_{G_2}(u) \\ W_{vu}^{\Gamma} &= \{v\} \cup (N_{\Gamma}(v) \setminus \{c\}) = \{v\} \cup N_{G_1}(v) \\ \Rightarrow |W_{uv}^{\Gamma}| &= 1 + |N_{G_2}(u)| \quad \text{in} \quad |W_{vu}^{\Gamma}| = 1 + k. \\ \text{Since} \ |W_{uv}^{\Gamma}| &= |W_{vu}^{\Gamma}| \\ \Rightarrow |N_{G_2}(u)| &= k \text{ for every } u \in V(G_2) \end{split}$$

2-distance-balanced cartesian product $G\Box H$

Question:

Which cartesian products $G \Box H$ are 2-distance-balanced?

Cartesian product of graphs G and H, denoted by $G \Box H$, is a graph with vertex set $V(G) \times V(H)$, where (u_1, v_1) and (u_2, v_2) are adjacent if and only if either

- $u_1 = u_2$ and v_1 is adjacent to v_2 in H, or
- $v_1 = v_2$ and u_1 is adjacent to u_2 in G.

2-distance-balanced cartesian product $G\Box H$

Question:

Which cartesian products $G \Box H$ are 2-distance-balanced?

Cartesian product of graphs G and H, denoted by $G \Box H$, is a graph with vertex set $V(G) \times V(H)$, where (u_1, v_1) and (u_2, v_2) are adjacent if and only if either

- $u_1 = u_2$ and v_1 is adjacent to v_2 in H, or
- $v_1 = v_2$ and u_1 is adjacent to u_2 in G.

2-distance-balanced cartesian product $G\Box H$

Theorem (B.F., Š. Miklavič)

Cartesian product $G \Box H$ is 2-distance-balanced iff one of the following statements is true:

- (i) Both graphs G an H are 2-distance-balanced and 1-distance-balanced.
- (ii) G is a complete graph K_n for some $n \ge 2$ and H is a connected 2-distance-balanced and 1-distance-balanced graph.
- (iii) *H* is a complete graph K_n for some $n \ge 2$ and *G* is a connected 2-distance-balanced and 1-distance-balanced graph.
- (iv) G is a complete graph K_n and H is a complete graph K_m for some $m, n \ge 2$.

2-distance-balanced lexicographic product G[H]

Question:

Which lexicographic products G[H] are 2-distance-balanced?

Lexicographic product of graphs G and H, denoted by G[H], is a graph with vertex set $V(G) \times V(H)$, where (u_1, v_1) and (u_2, v_2) are adjacent if and only if either

- u_1 is adjacent to u_2 in G, or
- $u_1 = u_2$ and v_1 is adjacent to v_2 in H.

2-distance-balanced lexicographic product G[H]

Question:

Which lexicographic products G[H] are 2-distance-balanced?

Lexicographic product of graphs G and H, denoted by G[H], is a graph with vertex set $V(G) \times V(H)$, where (u_1, v_1) and (u_2, v_2) are adjacent if and only if either

- ▶ *u*₁ is adjacent to *u*₂ in *G*, or
- $u_1 = u_2$ and v_1 is adjacent to v_2 in H.

2-distance-balanced lexicographic product G[H]

Theorem (B.F., Š. Miklavič)

Lexicographic product G[H] is 2-distance-balanced iff one of the following statements is true:

- (i) G is a connected 2-distance-balanced graph and H is a regular graph.
- (ii) G is a complete graph and H is a regular graph, which is not complete.
- (iii) G is a complete graph and H is a connected complete bipartite graph.

Thank you!!!