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Motivation: Distance-balanced graphs

A graph [ is said to be distance-balanced if for any edge uv of T,
the number of vertices closer to u than to v is equal to the number
of vertices closer to v than to u.

u D) Di D
Dj D3 Dj Dj

v D? D3 DA

2y D) J

A distance partition of a graph with diameter 4 with respect to
edge uv.
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» These graphs were first studied (at least implicitly) by K.
Handa who considered distance-balanced partial cubes.



Motivation: Distance-balanced graphs

» These graphs were first studied (at least implicitly) by K.
Handa who considered distance-balanced partial cubes.

» The term itself is due to J. Jerebic, S. Klavzar and D. F. Rall
who studied distance-balanced graphs in the framework of
various kinds of graph products.
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Distance-balanced graphs - example

11104
11000
11001
- . 01111 S
1 1 01108 01101
: 1 o0l toon
1ol 1010 | 01001
TTT RETITTTI 00110 | onion | 00101
10011 10010 00010 000G 00001
10001

Non-regular bipartite distance-balanced graph H.



Generalization: n-distance-balanced graphs

A graph I is said to be n-distance-balanced if there exist at least
two vertices at distance n in I and if for any two vertices v and v
of I' at distance n, the number of vertices closer to u than to v is
equal to the number of vertices closer to v than to w.



Generalization: n-distance-balanced graphs

A graph I is said to be n-distance-balanced if there exist at least
two vertices at distance n in I and if for any two vertices v and v
of I' at distance n, the number of vertices closer to u than to v is
equal to the number of vertices closer to v than to w.

We are intrested in 2-distance-balanced graphs.



2-distance-balanced graphs

A distance partition of a graph with diameter 4 with respect to
vertices u and v at distance 2.



2-distance-balanced graphs: example

Distance-balanced and 2-distance-balanced non-regular graph.
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than k vertices and the result of deleting any set of fewer than k
vertices is a connected graph.
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Theorem (Handa, 1999):
Every distance-balanced graph is 2-connected.

A graph [ is k-vertex-connected (or k-connected) if it has more
than k vertices and the result of deleting any set of fewer than k
vertices is a connected graph.
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Are there any connected 2-distance-balanced graphs that are not
2-connected?



Family of graphs (G, ¢) - construction

Let G be an arbitrary graph (not necessary connected) and c an
additional vertex.

Then I'(G, ¢) is a graph constructed in such a way that
V(I(G,c)) = V(G) U{c},
and

E(T(G,c)) = E(G) U {ev|v e V(G)}.



Family of graphs (G, ¢) - construction

Let G be an arbitrary graph (not necessary connected) and c an
additional vertex.

Then I'(G, ¢) is a graph constructed in such a way that
V(I(G,c)) = V(G) U{c},
and
E(T(G,c))=E(G)U{cv|v e V(G)}.

» (G, c) is connected.
» G is not connected <= (G, c) is not 2-connected.
» Diameter of [ =T(G, ¢) is at most 2.
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2-distance-balanced graphs

Question:
Are there any connected 2-distance-balanced graphs that are not
2-connected?

Theorem (B.F., S. Miklavi¥)

Graph T is a connected 2-distance-balanced graph that is not
2-connected iff I = (G, ¢) for some not connected regular graph

G.
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2-distance-balanced graphs

Lemma (B.F., S. Miklavi¢)

If G is regular but not a complete graph, then I'(G, ¢) is
2-distance-balanced.

Proof:

Let G be a regular graph with valency k and construct I = T'(G, ¢).
Let Gy, Gp,... G, be connected components of G for some n > 1.

Two essentially different types of vertices at distance two in I
1. both from V(G;),
2. one from V(G;), the other from V/(G;) for i # j.
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1. Pick arbitrary v1,vs € V(G;) s.t. d(vi, o) = 2.
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Proof

1. Pick arbitrary v1,vs € V(G;) s.t. d(vi, o) = 2.
Wiy, = {v1} U (Ng,(v1) \ (Ng,(v1) N Ng,(v2)))
[ Wi, | = 1+ [Ng,(v1)] = [Ng;(v1) N Ng,(v2)]
(Wi, = 1+ [Ng (v2)| — [Ng,(v2) N N, (v1)]

| V]_V2’ | vzv1’



Proof

2. Pick arbitrary v € V(Gj), u € V(Gj).



Proof

2. Pick arbitrary v € V(Gj), u € V(Gj).
Wy, = {v} U Ng,(v)



Proof

2. Pick arbitrary v € V(Gj), u € V(Gj).
Wy, = {v} U Ng,(v)
W, = {u} U Ne(u)
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Proof

2. Pick arbitrary v € V(Gj), u € V(Gj).
Wy, = {v}U Ng,(v)
W, = {u} U Ng,(u)
= [Wo| =14k =W,

So ' =T(G, c) is 2-distance-balanced.
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2-distance-balanced graphs

Lemma (B.F., S. Miklavi¢)

If I is a connected 2-distance-balanced graph that is not
2-connected then I =2 (G, ¢) for some not connected regular
graph G.

Proof:

Let I' connected 2-distance-balanced graph that is not 2-connected
and c a cut vertex in .

If we delete vertex ¢, we get some subgraph G with connected
components Gi, Gy, ... G, for some n > 2.



Proof - Claim 1

Claim 1: c is adjacent to every vertex in G for at least one /,
1</ <n.



Proof - Claim 1

Claim 1: c is adjacent to every vertex in G for at least one /,
1</ <n.

Suppose this statement is not true. Then for arbitrary G; and G;:
vy € V(G) s.t. d(c,vn) =2

= 3v; € V(Gj) s.t. d(c,v1) = d(v1,w) =1, and

Ju € V(Gj) s.t. d(c,u) =2

= Ju; € V(G;) s.t. d(c,u1) =d(u, ) =1



Proof - Claim 1

W, 2 {c} U V(G) = 1+|V(G))| < [WL,|

cvo
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W, 2 {c} U V(G) = 1+|V(G))| < [WL,|
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Proof - Claim 1

WL, 2 {c}UV(G) = 1+|V(G)| < |WL,|
Wy, € V(G)\ {vi} = W, | <|V(G) -1

%X

= |V(G))| < |V(G))| -2



Proof - Claim 1

W, 2 {c} U V(G) = 1+|V(G))| < [WL,|
Wy,e € V(G)\ {vi} = W, .| < V(G -1

voc

= |[V(G)| <[V(G)) -2

WL, 2 {c}UV(G) = 1+|V(G)| < |WL,|

cup



Proof - Claim 1

wyl, D{C}UV( i) = 1+ |V(G)| < |WL,|
Wy, € V(G)\ {vi} = W, | <|V(G) -1

= V(G| < [V(Gi)| -2
wr D{C}UV(G~):>1+|V( D < W

cup

Wioe € V(G \ {un} = W,

uc

cuz |

| < V(G -1

LI2C



Proof - Claim 1

Wi, 2 {cUV(G) = 1+ |V(G)| < [WL,|
Wy,e € V(G)\ {vi} = W, .| < V(G -1
= [V(G) < |V(G))| -2

Wr

cup

2 {c}UV(G) = 1+ |V(G)| < [WL,]
Wine € V(G) \ {tn} = (W, < [V(G) -1
= V(G| +2 < [V(G))]



Proof - Claim 1

Wi, 2 {cUV(G) = 1+ |V(G)| < [WL,|
Wy,e € V(G)\ {vi} = W, .| < V(G -1
= [V(G) < |V(G))| -2

Wr

cup

2 {c}UV(G) = 1+ |V(G)| < [WL,]
Wine € V(G) \ {tn} = (W, < [V(G) -1
= V(G| +2 < [V(G))]

So: |V(Gj)| +2 < |V(Gj)| < |V(Gj)| — 2, contradiction.



Proof - Claim 1

Wr 2 {ctu V(G ):>1+|V( )‘<| CV2’
WL, C V(G)\{w} = WL | <|V(G) -1

= |V(G)| < [V(Gj)| -2
WCrUQD{C}UV(G.)j1+|V( )|<| cu2|
Wie € V(G) \{u} = [W,, | < [V(G)| -1

= V(G| +2 < [V(G))]
So: |V(Gj)| +2 < |V(Gj)| < |V(Gj)| — 2, contradiction.

From now on (w.l.o.g.): c is adjacent to every vertex in V(G).
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Claim 2: Induced subgraph Gj is regular.

Observations: Pick arbitrary u € V(G) \ V(G;) adjacent to c.
» d(u,v) =2 for every v € V(G1)
> |W,| =W, | for arbitrary x,y € V(G1)
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Proof - Claim 2

Claim 2: Induced subgraph Gj is regular.

Observations: Pick arbitrary u € V(G) \ V(G;) adjacent to c.
» d(u,v) =2 for every v € V(G1)
> |W,| =W, | for arbitrary x,y € V(G1)
» W, ={v}U(Nr(v)\ {c}) for every v € V(G;)

= |W!,| =1+ |Nr(v)| — 1 = |Ng,(v)| + 1 for every
v E V(Gl)

= |Ng,(X)| +1 = [Nr(x)| = [Wg,| = [WL| = W, | =|W,,| =
INr(y)| = |Ng,(y)| + 1 for arbitrary x,y € V(Gi)

From now on: Induced subgraph G is regular with valency k.
(Every vertex in V/(Gy) has valency k+1inT.)
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dup € V(G2) s.t. d(c,u) =2
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Proof - Claim 3

Claim 3: c is adjacent to every vertex in V(G).

Suppose this statement is not true. Then:
dup € V(G2) s.t. d(c,u) =2
= duy € V(Gg) s.t. d(C, u1) = (d(ul, U2) =1

We know: |Nr(v)| = k + 1 for arbitrary v in V(Gy).

Wy, = {v} U (Nr(v) \ {c})
IWol=1+k+1-1=k+1



Proof - Claim 3

Claim 3: c is adjacent to every vertex in V(G).

Suppose this statement is not true. Then:
dup € V(G2) s.t. d(c,u) =2
= duy € V(Gg) s.t. d(C, u1) = (d(ul, U2) =1

We know: |Nr(v)| = k + 1 for arbitrary v in V(Gy).

Wiy = {v} U (Nr(v) \ {c})
Fl=1+k+1-1=k+1

[Wou,
VK522 V(G)U{c}
| > |V(G)|+1>k+2

‘ CU2



Proof - Claim 3




Proof - Claim 3

Define: U =, = <le—1 U

Di
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Proof - Claim 3

Define: U =9, = (D;'—l UD
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Proof - Claim 3

Define: U =9, = (D;'—l UD

wl cucwt

uc — uv

W < WL, = k41




Proof - Claim 3

Define: U =Uf, = (D] U D)

wl cucwt

uc — uv

W < WL, = k41

= k+2 < |W],|=|WL.| < k+1, contradiction.




Proof - Claim 3

Define: U =Uf, = (D] U D)

1

wl cucwt

uc — uv

Wl < WE = k1
= k+2 < |W],|=|WL.| < k+1, contradiction.

From now on: ¢ is adjacent to every vertex in V(G).
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Claim 4: Graph G is regular with valency k.
W.l.o.g we prove that G, is regular with valency k.

Pick arbitrary u € V(Gz) and v € V(Gp) (we already now:
d(u,v) =2).

Wi, = {u} U (Nr(u) \ {c}) = {u} U Ng,(u)
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Proof - Claim 4

Claim 4: Graph G is regular with valency k.
W.l.o.g we prove that G, is regular with valency k.

Pick arbitrary u € V(Gz) and v € V(Gp) (we already now:
d(u,v) =2).

Wi, = {u} U (Nr(u) \ {c}) = {u} U Ng,(u)
Wy, = {v} U (Nr(v)\ {c}) = {v} U Ng,(v)

= |W.,| =1+ |Ng,(u)] in |W,|=1+k.



Proof - Claim 4

Claim 4: Graph G is regular with valency k.
W.l.o.g we prove that G, is regular with valency k.

Pick arbitrary u € V(Gz) and v € V(Gp) (we already now:
d(u,v) =2).

WI, = {u} U (Nr(0) \ {c}) = {u} U Ne,(u)
WI, = {v} U(Nr(v) \ {e}) = {v} U N, (v)
= [W0,| = 1+ |Ng,(u)] in [Wi,|=1+k.

Since |W,, | = [Wy,|
= |Ng,(u)| = k for every u € V(Gy)
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2-distance-balanced cartesian product GLIH

Question:
Which cartesian products GLJH are 2-distance-balanced?

Cartesian product of graphs G and H, denoted by GLIH, is a
graph with vertex set V(G) x V(H), where (u1, v1) and (uz, v2)
are adjacent if and only if either

» u1 = up and vp is adjacent to v in H, or

» vi = vp and uq is adjacent to wp in G.



2-distance-balanced cartesian product GLIH

Theorem (B.F., S. Miklavi)

Cartesian product GUH is 2-distance-balanced iff one of the

following statements is true:

(i) Both graphs G an H are 2-distance-balanced and
1-distance-balanced.

(i) G is a complete graph K, for some n > 2 and H is a
connected 2-distance-balanced and 1-distance-balanced graph.

(iii) H is a complete graph K, for some n>2 and G is a
connected 2-distance-balanced and 1-distance-balanced graph.

(iv) G is a complete graph K, and H is a complete graph K, for
some m,n > 2.
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Which lexicographic products G[H] are 2-distance-balanced?



2-distance-balanced lexicographic product G[H]

Question:
Which lexicographic products G[H] are 2-distance-balanced?

Lexicographic product of graphs G and H, denoted by G[H], is a
graph with vertex set V(G) x V(H), where (u1, v1) and (uz, v2)
are adjacent if and only if either

» uq is adjacent to wp in G, or

» u1 = up and vp is adjacent to v in H.



2-distance-balanced lexicographic product G[H]

Theorem (B.F., S. Miklavi)

Lexicographic product G[H] is 2-distance-balanced iff one of the
following statements is true:
(i) G is a connected 2-distance-balanced graph and H is a regular
graph.
(i) G is a complete graph and H is a regular graph, which is not
complete.

(iii) G is a complete graph and H is a connected complete
bipartite graph.



Thank youl!!l
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