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Štefko Miklavič, Safet Penjić
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Distance-regular graphs

A connected graph Γ is called distance-regular (DRG) if there
are numbers ai , bi , ci (0 ≤ i ≤ D) s.t. if ∂(x , y) = h then

|Γ1(y) ∩ Γh−1(x)| = ch
|Γ1(y) ∩ Γh(x)| = ah
|Γ1(y) ∩ Γh+1(x)| = bh

Numbers ai , bi and ci (0 ≤ i ≤ D) are called intersection
numbers, and {b0, b1, ..., bD−1; c1, c2, ..., cD} is intersection
array.
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Distance-regular graphs - examples

Line graph of Petersen’s graph.
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Distance-regular graphs - examples

Line graph of Petersen’s graph (diameter is three and
intersection array is {4, 2, 1; 1, 1, 4})
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Hamming graphs

The Hamming graph H(n, q) is the graph whose vertices are
words (sequences or n-tuples) of length n from an alphabet of
size q ≥ 2. Two vertices are considered adjacent if the words
(or n-tuples) differ in exactly one term. We observe that
|V (H(n, q))| = qn.

The Hamming graph H(n, q) is distance-regular (with
ai = i(q − 2) (0 ≤ i ≤ n), bi = (n− i)(q − 1) (0 ≤ i ≤ n− 1)
and ci = i (1 ≤ i ≤ n)).
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Hamming graphs H(3, 2)

Hamming graph H(3, 2).
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Hamming graphs H(2, 3)

Hamming graph H(2, 3).
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n-dimensional hypercubes (shortly n-cubes)

Hamming graph H(n, q) in which words of length n are from
an alphabet of size q = 2 are called n-dimensional hypercubes
or shortly n-cubes.
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4-dimensional hypercube (4-cubes)

4-dimensional hypercube
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More examples

That comes from classical objects:

Hamming graphs,
Johnson graphs,
Grassmann graphs,
bilinear forms graphs,
sesquilinear forms graphs,
dual polar graphs (the vertices are the maximal totally
isotropic subspaces on a vector space over a finite field with a
fixed (non-degenerate) bilinear form)

Some non-classical examples:

Doob graphs,
twisted Grassman graphs,

Distance-regular graphs give a way to study these classical
objects from a combinatorial view point.
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Distance-i matrix

Let MatV (R) denote the algebra of matrices over R with rows
and columns indexed by V .

For 0 ≤ i ≤ D, let AAAi denote the matrix in MatV (R) with
(y , z)-entry

(AAAi )yz =

{
1 if ∂(y , z) = i ,
0 if ∂(y , z) 6= i

(y , z ∈ X ).

We call AAAi the ith distance-i matrix of Γ.
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Primitive idempotents

We refer to EEE 0, ..., EEED as the primitive idempotents of Γ.

Primitive idempotents of Γ represents the orthogonal
projectors onto Ei = ker(AAA− θi I ) (along im(AAA− θi I ))

14 / 34



Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with D ≥ 6 and c2 ≤ 2

Equitable partitions when c2 ≤ 2
Case D = 4

(a.1) Distance-regular graphs, examples, hypercubes
(a.2) Q-polynomial property of DRG
(a.3) Result of Coughman, motivation

Primitive idempotents

We refer to EEE 0, ..., EEED as the primitive idempotents of Γ.

Primitive idempotents of Γ represents the orthogonal
projectors onto Ei = ker(AAA− θi I ) (along im(AAA− θi I ))

14 / 34



Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with D ≥ 6 and c2 ≤ 2

Equitable partitions when c2 ≤ 2
Case D = 4

(a.1) Distance-regular graphs, examples, hypercubes
(a.2) Q-polynomial property of DRG
(a.3) Result of Coughman, motivation

Distance algebra

If Γ is regular (and Γ is not distance-regular) we have:

Adjacency algebra (ordinary ”·”
product), A = span{AAA0,AAA1, ...,AAAd} = span{EEE 0,EEE 1, ...,EEEd}
Distance algebra (entry-wise ”◦”
multiplication), D = span{AAA0,AAA1, ...,AAAD}
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Case wehen Γ is is distance-regular

The following statements are equivalent:
(i) Γ is distance-regular,
(ii) D is an algebra with the ordinary product,
(iii) A is an algebra with the Hadamard product,
(iv) A = D.
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Q-polynomial property

Let Γ denote any distance regular graph with diameter D ≥ 3,
and let AAA denote the adjacency algebra for Γ. Let EEE denote a
primitive idempotent of Γ.

Since A has a basis AAA0, AAA1, ..., AAAD of 0− 1 matrices, A is
closed under entry-wise matrix multiplication.

Γ is said to be Q-polynomial with respect to EEE = EEE 1 whenever
there exist an ordering EEE 0, EEE 1, ..., EEED of the primitive
idempotents such that for each i (0 ≤ i ≤ D), the primitive
idempotent EEE i is a polynomial of degree exactly i in EEE 1, in the
R-algebra (A, ◦), where ◦ denote entry-wise multiplication.

We say Γ is Q-polynomial whenever Γ is Q-polynomial with
respect to at least one primitive idempotent.
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Result of Coughman, motivation

Theorem (Caughman, 2004)

Let Γ denote a bipartite distance-regular graph with diameter D ≥
12. If Γ is Q-polynomial then Γ is either the ordinary 2D-cycle,
or the D-dimensional hypercube, or the antipodal quotient of the
2D-dimensional hypercube, or the intersection numbers of Γ satisfy
ci = (qi −1)/(q−1), bi = (qD −qi )/(q−1) (0 ≤ i ≤ D) for some
integer q at least 2.

Note that if c2 ≤ 2, then the last of the above possibilities
cannot occur.

It is the aim of this presentation to further investigate graphs
with D ≤ 11 and c2 ≤ 2.
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Result of Coughman, motivation (cont.)

Our main result is the following theorem.

Theorem 1.

Let Γ denote a bipartite Q-polynomial distance-regular graph with
diameter D ≥ 4, valency k ≥ 3, and intersection number c2 ≤ 2.
Then one of the following holds:

(i) Γ is the D-dimensional hypercube;

(ii) Γ is the antipodal quotient of the 2D-dimensional hypercube;

(iii) Γ is a graph with D = 5 not listed above.
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Case D ≥ 6 - Theorem 7.
Case D ≥ 6 - Proof of Theorem 7.

Theorem 7.

Let Γ denote a Q-polynomial bipartite distance-regular graph
with diameter D ≥ 6, valency k ≥ 3, and intersection
numbers bi , ci .

In this section we show that if c2 ≤ 2, then Γ is either the
D-dimensional hypercube, or the antipodal quotient of the
2D-dimensional hypercube.

20 / 34



Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with D ≥ 6 and c2 ≤ 2

Equitable partitions when c2 ≤ 2
Case D = 4

Case D ≥ 6 - Theorem 7.
Case D ≥ 6 - Proof of Theorem 7.

Theorem 7.

Let Γ denote a Q-polynomial bipartite distance-regular graph
with diameter D ≥ 6, valency k ≥ 3, and intersection
numbers bi , ci .

In this section we show that if c2 ≤ 2, then Γ is either the
D-dimensional hypercube, or the antipodal quotient of the
2D-dimensional hypercube.

20 / 34



Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with D ≥ 6 and c2 ≤ 2

Equitable partitions when c2 ≤ 2
Case D = 4

Case D ≥ 6 - Theorem 7.
Case D ≥ 6 - Proof of Theorem 7.

Idea for proof of Theorem 7.

Assume that Γ is not the D-dimensional hypercube or the
antipodal quotient of the 2D-dimensional hypercube.

Then there exist scalars s∗, q ∈ R such that

ci =
h(qi − 1)(1− s∗qD+i+1)

1− s∗q2i+1
, bi =

h(qD − qi )(1− s∗qi+1)

1− s∗q2i+1
(1 ≤ i ≤ D−1).

h =
1− s∗q3

(q − 1)(1− s∗qD+2)
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Idea for proof of Theorem 7. (cont.)

By [3, Lemma 4.1 and Lemma 5.1], scalars s∗ and q satisfy

q > 1, and − q−D−1 ≤ s∗ < q−2D−1. (1)

Assume first c2 = 1. Abbreviate
α = 1 + q − q2 − qD−1 + qD + qD+1 and observe α > 2. By
Lemma 6(iii) we find

s∗ =
α±

√
α2 − 4qD+1

2qD+3
.

Note that α2 − 4qD+1 ≥ 0, and so we have

s∗ ≥ α−
√
α2 − 4qD+1

2qD+3
.

22 / 34



Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with D ≥ 6 and c2 ≤ 2

Equitable partitions when c2 ≤ 2
Case D = 4

Case D ≥ 6 - Theorem 7.
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Idea for proof of Theorem 7. (cont.)
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Idea for proof of Theorem 7. (cont.)

...

After some computation we show that

s∗ ≥ α−
√
α2 − 4qD+1

2qD+3
> q−2D−1,

contradicting (1).

Something similar we have also for c2 = 2.
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Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with D ≥ 6 and c2 ≤ 2

Equitable partitions when c2 ≤ 2
Case D = 4

The partition - part I
The partition - part II

Definition of D i
j

Assume that Γ = (X ,R) is bipartite with diameter D ≥ 4,
valency k ≥ 3 and intersection number c2 = 2.

In this section we describe certain partition of the vertex set
X .

Definition 8.

Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4,
valency k ≥ 3 and intersection number c2 = 2. Fix vertices x , y ∈ X
such that ∂(x , y) = 2. For all integers i , j we define D i

j = D i
j (x , y)

by
D i
j = {w ∈ X | ∂(x ,w) = i and ∂(y ,w) = j}.

We observe D i
j = ∅ unless 0 ≤ i , j ≤ D. Moreover |D i

j | = p2
ij for

0 ≤ i , j ≤ D.
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Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with D ≥ 6 and c2 ≤ 2

Equitable partitions when c2 ≤ 2
Case D = 4

The partition - part I
The partition - part II

Definition of D i
j - examples

4-cube with sets D i
j (b0 = 4, b1 = 3, b2 = 2, b3 = 1; c1 = 1,

c2 = 2, c3 = 3, c4 = 4).
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Bipartite Q-polynomial DRG with D ≥ 6 and c2 ≤ 2

Equitable partitions when c2 ≤ 2
Case D = 4

The partition - part I
The partition - part II

Case c2 = 2

What if c2 = 2?

Definition 13.

... For 1 ≤ i ≤ D we define Ai = Ai (x , y), Ci = Ci (x , y), Bi (z) =
Bi (z)(x , y), Bi (v) = Bi (v)(x , y) by

Ai = {w ∈ Di
i | ∂(w , z) = i + 1 and ∂(w , v) = i + 1},

Ci = {w ∈ Di
i | ∂(w , z) = i − 1 and ∂(w , v) = i − 1},

Bi (z) = {w ∈ Di
i | ∂(w , z) = i − 1 and ∂(w , v) = i + 1},

Bi (v) = {w ∈ Di
i | ∂(w , z) = i + 1 and ∂(w , v) = i − 1}.

We observe Di
i is a disjoint union of Ai ,Bi (z),Bi (v), Ci .
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Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with D ≥ 6 and c2 ≤ 2

Equitable partitions when c2 ≤ 2
Case D = 4

The partition - part I
The partition - part II

Case c2 = 2 (cont.)

Partition of graph Γ, which involves 4(D − 1) + 2` cells
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Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with D ≥ 6 and c2 ≤ 2

Equitable partitions when c2 ≤ 2
Case D = 4

The partition - part I
The partition - part II

Equitable partition

We claim that the partition of VΓ into nonempty sets
D i−1
i+1 ,D

i+1
i−1 (1 ≤ i ≤ D − 1), Ai (2 ≤ i ≤ D − 1),

Bi (z),Bi (v) (1 ≤ i ≤ D − 1) and Ci (3 ≤ i ≤ D) is equitable.
Main tool is ”balanced set theorem”.

Theorem (Terwilliger, 1995) (abridged version of theorem)

Let Γ denote a distance-regular graph with diameter D ≥ 3. Let E
denote a nontrivial primitive idempotent of Γ and let {θ∗i }Di=0 denote
the corresponding dual eigenvalue sequence.... Then for all integers
h, i , j (1 ≤ h ≤ D), (0 ≤ i , j ≤ D) and for all x , y ∈ X such that
∂(x , y) = h,∑

z∈X
∂(x,z)=i
∂(y,z)=j

Eẑ −
∑
z∈X

∂(x,z)=j
∂(y,z)=i

Eẑ = phij
θ∗i − θ∗j
θ∗0 − θ∗h

(Ex̂ − Eŷ).
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Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with D ≥ 6 and c2 ≤ 2

Equitable partitions when c2 ≤ 2
Case D = 4

Theorem 35

Case D = 4

In this section we consider Q-polynomial bipartite
distance-regular graph Γ with intersection number c2 ≤ 2,
valency k ≥ 3 and diameter D = 4.

We show that Γ is either the 4-dimensional hypercube, or the
antipodal quotient of the 8-dimensional hypercube.
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Equitable partitions when c2 ≤ 2
Case D = 4

Theorem 35

c2 = 1

For the case c2 = 1 we have the following result.

Theorem (Miklavič, 2007)

There does not exist a Q-polynomial bipartite distance-regular graph
with diameter D = 4, valency k ≥ 3 and intersection number c2 = 1.
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Case D = 4

Theorem 35

c2 = 2 - Equitable partition
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Bipartite Q-polynomial DRG with D ≥ 6 and c2 ≤ 2

Equitable partitions when c2 ≤ 2
Case D = 4

Theorem 35

c2 = 2 - ingredients

Let Γ denote a Q-polynomial bipartite distance-regular graph
with diameter D = 4, valency k ≥ 4 and intersection number
c2 = 2. Assume Γ is not the 4-dimensional hypercube or the
antipodal quotient of the 8-dimensional hypercube.

|A2| = (k − 2)(c3 − 3)/2;

c3 ≥ 4 if and only if A2 6= ∅;
pick w ∈ A2 let λ denote number or neighbours of w in A3;

λ =
(k − 2)b3(b3 − 1)

(k − 2)(k − 3)− 2b3
;

(k − 2)(k − 3)− 2b3 divides (k − 2)b3(b3 − 1)
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Bipartite Q-polynomial DRG with D ≥ 6 and c2 ≤ 2

Equitable partitions when c2 ≤ 2
Case D = 4

Theorem 35

c2 = 2 - ingredients (cont.)

Each vertex in B3(v) has exactly
(c3 − 3)(b3 − λ)

b3
neighbours

in A2.

(k − 2)(k − 3)− 2b3 divides (k − 4)b3(b3 − 1)

(k − 2)(k − 3)− 2b3 divides 2b3(b3 − 1);

(k − 2)(k − 3) = 2b2
3;

λ = (k − 2)/2;

q = −(
√

5 + 3)/2;

s∗ = 72
√

5− 161.
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Theorem 35

c2 = 2

Theorem 35.

Let Γ denote a Q-polynomial bipartite distance-regular graph with
diameter D = 4, valency k ≥ 3 and intersection number c2 =
2. Then Γ is either the 4-dimensional hypercube, or the antipodal
quotient of the 8-dimensional hypercube.

Assume first that c3 ≥ 4. Then by Lemma 34 we have
q = −(

√
5 + 3)/2 and s∗ = 72

√
5− 161. Lemma 6(iii) now

implies k = −6, a contradiction. Therefore c3 = 3. But now
[4, Theorem 4.6] implies that Γ is either the 4-dimensional
hypercube, or the antipodal quotient of the 8-dimensional
hypercube.
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