On bipartite Q-polynomial distance-regular graphs with $c_{2} \leq 2$

Štefko Miklavič, Safet Penjić

Andrej Marušič Institute
University of Primorska
2015 International conference on Graph Theory
Koper, May 26-28, 2015

Outline

1. Basic definition and results from Algebraic graph theory
(a.1) Distance-regular graphs, examples, hypercubes
(a.2) Q-polynomial property of DRG
(a.3) Result of Coughman, motivation
(2) Bipartite Q-polynomial DRG with $D \geq 6$ and $c_{2} \leq 2$

Case $D \geq 6$ - Theorem 7 .
Case $D \geq 6$ - Proof of Theorem 7 .
(3) Equitable partitions when $c_{2} \leq 2$

The partition - part I
The partition - part II
4. Case $D=4$

Theorem 35

Some notation before definition of DRG

Distance-regular graphs

- A connected graph Γ is called distance-regular (DRG) if there are numbers $a_{i}, b_{i}, c_{i}(0 \leq i \leq D)$ s.t. if $\partial(x, y)=h$ then

Distance-regular graphs

- A connected graph Γ is called distance-regular (DRG) if there are numbers $a_{i}, b_{i}, c_{i}(0 \leq i \leq D)$ s.t. if $\partial(x, y)=h$ then
- $\left|\Gamma_{1}(y) \cap \Gamma_{h-1}(x)\right|=c_{h}$ - $\left|\Gamma_{1}(y) \cap \Gamma_{h+1}(x)\right|=b_{h}$
- Numbers a_{i}, b_{i} and $c_{i}(0 \leq i \leq D)$ are called intersection numbers, and $\left\{b_{0}, b_{1}, \ldots, b_{D-1} ; c_{1}, c_{2}, \ldots, c_{D}\right\}$ is intersection array.

Distance-regular graphs

- A connected graph Γ is called distance-regular (DRG) if there are numbers $a_{i}, b_{i}, c_{i}(0 \leq i \leq D)$ s.t. if $\partial(x, y)=h$ then
- $\left|\Gamma_{1}(y) \cap \Gamma_{h-1}(x)\right|=c_{h}$
- $\left|\Gamma_{1}(y) \cap \Gamma_{h}(x)\right|=a_{h}$
- Numbers a_{i}, b_{i} and $c_{i}(0 \leq i \leq D)$ are called intersection numbers, and $\left\{b_{0}, b_{1}, \ldots, b_{D-1} ; c_{1}, c_{2}, \ldots, c_{D}\right\}$ is intersection array.

Distance-regular graphs

- A connected graph Γ is called distance-regular (DRG) if there are numbers $a_{i}, b_{i}, c_{i}(0 \leq i \leq D)$ s.t. if $\partial(x, y)=h$ then
- $\left|\Gamma_{1}(y) \cap \Gamma_{h-1}(x)\right|=c_{h}$
- $\left|\Gamma_{1}(y) \cap \Gamma_{h}(x)\right|=a_{h}$
- $\left|\Gamma_{1}(y) \cap \Gamma_{h+1}(x)\right|=b_{h}$
- Numbers a_{i}, b_{i} and $c_{i}(0 \leq i \leq D)$ are called intersection numbers, and $\left\{b_{0}, b_{1}, \ldots, b_{D-1} ; c_{1}, c_{2}, \ldots, c_{D}\right\}$ is intersection array.

Distance-regular graphs

- A connected graph Γ is called distance-regular (DRG) if there are numbers $a_{i}, b_{i}, c_{i}(0 \leq i \leq D)$ s.t. if $\partial(x, y)=h$ then
- $\left|\Gamma_{1}(y) \cap \Gamma_{h-1}(x)\right|=c_{h}$
- $\left|\Gamma_{1}(y) \cap \Gamma_{h}(x)\right|=a_{h}$
- $\left|\Gamma_{1}(y) \cap \Gamma_{h+1}(x)\right|=b_{h}$
- Numbers a_{i}, b_{i} and $c_{i}(0 \leq i \leq D)$ are called intersection numbers, and $\left\{b_{0}, b_{1}, \ldots, b_{D-1} ; c_{1}, c_{2}, \ldots, c_{D}\right\}$ is intersection array.

Basic definition and results from Algebraic graph theory
(a.1) Distance-regular graphs, examples, hypercubes (a.2) Q-polynomial property of DRE

Distance-regular graphs - examples

- Line graph of Petersen's graph.

Distance-regular graphs - examples

- Line graph of Petersen's graph (diameter is three and intersection array is $\{4,2,1 ; 1,1,4\}$)

Hamming graphs

- The Hamming graph $H(n, q)$ is the graph whose vertices are words (sequences or n-tuples) of length n from an alphabet of size $q \geq 2$. Two vertices are considered adjacent if the words (or n-tuples) differ in exactly one term. We observe that $|V(H(n, q))|=q^{n}$.

Hamming graphs

- The Hamming graph $H(n, q)$ is the graph whose vertices are words (sequences or n-tuples) of length n from an alphabet of size $q \geq 2$. Two vertices are considered adjacent if the words (or n-tuples) differ in exactly one term. We observe that $|V(H(n, q))|=q^{n}$.
- The Hamming graph $H(n, q)$ is distance-regular (with $a_{i}=i(q-2)(0 \leq i \leq n), b_{i}=(n-i)(q-1)(0 \leq i \leq n-1)$ and $\left.c_{i}=i(1 \leq i \leq n)\right)$.

Hamming graphs $H(3,2)$

- Hamming graph $H(3,2)$.

Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with $D \geq 6$ and $c_{2} \leq 2$ Equitable partitions when $c_{2} \leq 2$

Case $D=4$

Hamming graphs $H(2,3)$

- Hamming graph $H(2,3)$.

n-dimensional hypercubes (shortly n-cubes)

- Hamming graph $H(n, q)$ in which words of length n are from an alphabet of size $q=2$ are called n-dimensional hypercubes or shortly n-cubes.

4-dimensional hypercube (4-cubes)

- 4-dimensional hypercube

More examples

- That comes from classical objects:
- Hamming graphs,
- Johnson graphs,
- Grassmann graphs,
- bilinear forms graphs,
- sesquilinear forms graphs,
- dual polar graphs (the vertices are the maximal totally isotropic subspaces on a vector space over a finite field with a fixed (non-degenerate) bilinear form)
- Some non-classical examples:
- Doob graphs,
- twisted Grassman graphs

Distance-regular graphs give a way to study these classical objects from a combinatorial view point.

More examples

- That comes from classical objects:
- Hamming graphs,
- Johnson graphs,
- Grassmann graphs,
- bilinear forms graphs,
- sesquilinear forms graphs,
- dual polar graphs (the vertices are the maximal totally isotropic subspaces on a vector space over a finite field with a fixed (non-degenerate) bilinear form)
- Some non-classical examples:
- Doob graphs,
- twisted Grassman graphs,

Distance-regular graphs give a way to study these classical objects from a combinatorial view point.

More examples

- That comes from classical objects:
- Hamming graphs,
- Johnson graphs,
- Grassmann graphs,
- bilinear forms graphs,
- sesquilinear forms graphs,
- dual polar graphs (the vertices are the maximal totally isotropic subspaces on a vector space over a finite field with a fixed (non-degenerate) bilinear form)
- Some non-classical examples:
- Doob graphs,
- twisted Grassman graphs,
- Distance-regular graphs give a way to study these classical objects from a combinatorial view point.

Distance-i matrix

- Let $\operatorname{Mat}_{v}(\mathbb{R})$ denote the algebra of matrices over \mathbb{R} with rows and columns indexed by V.
- For $0 \leq i \leq D$, let A_{i} denote the matrix in Matv($\left.\mathbb{R}\right)$ with (y, z)-entry

- We call \boldsymbol{A}_{i} the i th distance-i matrix of Γ

Distance-i matrix

- Let $\operatorname{Mat}_{v}(\mathbb{R})$ denote the algebra of matrices over \mathbb{R} with rows and columns indexed by V.
- For $0 \leq i \leq D$, let \boldsymbol{A}_{i} denote the matrix in $\operatorname{Mat} v(\mathbb{R})$ with (y, z)-entry

$$
\left(\boldsymbol{A}_{i}\right)_{y z}=\left\{\begin{array}{ll}
1 & \text { if } \partial(y, z)=i, \\
0 & \text { if } \partial(y, z) \neq i
\end{array} \quad(y, z \in X)\right.
$$

- We call \boldsymbol{A}_{i} the i th distance-i matrix of Γ.

Primitive idempotents

- We refer to E_{0}, \ldots, E_{D} as the primitive idempotents of Γ.
- Primitive idempotents of 「 represents the orthogonal projectors onto $\mathcal{E}_{i}=\operatorname{ker}\left(\boldsymbol{A}-\theta_{i} l\right)\left(\operatorname{along} \operatorname{im}\left(\boldsymbol{A}-\theta_{i} I\right)\right)$

Primitive idempotents

- We refer to E_{0}, \ldots, E_{D} as the primitive idempotents of Γ.
- Primitive idempotents of Γ represents the orthogonal projectors onto $\mathcal{E}_{i}=\operatorname{ker}\left(\boldsymbol{A}-\theta_{i} I\right)$ (along $\left.\operatorname{im}\left(\boldsymbol{A}-\theta_{i} I\right)\right)$

Distance algebra

- If Γ is regular (and Γ is not distance-regular) we have:

- Adjacency algebra (ordinary "." product), $\mathcal{A}=\operatorname{span}\left\{\boldsymbol{A}^{0}, \boldsymbol{A}^{1}, \ldots, \boldsymbol{A}^{\boldsymbol{d}}\right\}=\operatorname{span}\left\{\boldsymbol{E}_{0}, \boldsymbol{E}_{1}, \ldots, \boldsymbol{E}_{d}\right\}$
- Distance algebra (entry-wise " o " multiplication), $\mathcal{D}=\operatorname{span}\left\{\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{D}\right\}$

Case wehen Γ is is distance-regular

- The following statements are equivalent:
(i) Γ is distance-regular,
(ii) \mathcal{D} is an algebra with the ordinary product,
(iii) \mathcal{A} is an algebra with the Hadamard product, (iv) $\mathcal{A}=\mathcal{D}$.

Q-polynomial property

- Let Γ denote any distance regular graph with diameter $D \geq 3$, and let \boldsymbol{A} denote the adjacency algebra for Γ. Let \boldsymbol{E} denote a primitive idempotent of Γ.
- Since \mathcal{A} has a basis $A_{0}, A_{1}, \ldots, A_{D}$ of $0-1$ matrices, \mathcal{A} is closed under entry-wise matrix multiplication
- Γ is said to be Q-polynomial with respect to $E=E_{1}$ whenever there exist an ordering $E_{0}, E_{1}, \ldots, E_{D}$ of the primitive idempotents such that for each $i(0 \leq i \leq D)$, the primitive idempotent \boldsymbol{E}_{i} is a polynomial of degree exactly i in \boldsymbol{E}_{1}, in the \mathbb{R}-algebra (\mathcal{A}, \circ), where \circ denote entry-wise multiplication.
- We say 「 is Q-polynomial whenever「 is Q-polynomial with respect to at least one primitive idempotent.

Q-polynomial property

- Let Γ denote any distance regular graph with diameter $D \geq 3$, and let \boldsymbol{A} denote the adjacency algebra for Γ. Let \boldsymbol{E} denote a primitive idempotent of Γ.
- Since \mathcal{A} has a basis $\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{D}$ of $0-1$ matrices, \mathcal{A} is closed under entry-wise matrix multiplication.

Q-polynomial property

- Let Γ denote any distance regular graph with diameter $D \geq 3$, and let \boldsymbol{A} denote the adjacency algebra for Γ. Let \boldsymbol{E} denote a primitive idempotent of Γ.
- Since \mathcal{A} has a basis $\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{D}$ of $0-1$ matrices, \mathcal{A} is closed under entry-wise matrix multiplication.
- Γ is said to be Q-polynomial with respect to $E=E_{1}$ whenever there exist an ordering $E_{0}, E_{1}, \ldots, E_{D}$ of the primitive idempotents such that for each $i(0 \leq i \leq D)$, the primitive idempotent E_{i} is a polynomial of degree exactly i in E_{1}, in the \mathbb{R}-algebra (\mathcal{A}, \circ), where \circ denote entry-wise multiplication.
We say 「 is Q-polynomial whenever 「 is Q-polynomial with
respect to at least one primitive idempotent.

Q-polynomial property

- Let Γ denote any distance regular graph with diameter $D \geq 3$, and let \boldsymbol{A} denote the adjacency algebra for Γ. Let \boldsymbol{E} denote a primitive idempotent of Γ.
- Since \mathcal{A} has a basis $\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{D}$ of $0-1$ matrices, \mathcal{A} is closed under entry-wise matrix multiplication.
- Γ is said to be Q-polynomial with respect to $\boldsymbol{E}=\boldsymbol{E}_{1}$ whenever there exist an ordering $E_{0}, \boldsymbol{E}_{1}, \ldots, E_{D}$ of the primitive idempotents such that for each $i(0 \leq i \leq D)$, the primitive idempotent E_{i} is a polynomial of degree exactly i in E_{1}, in the \mathbb{R}-algebra (\mathcal{A}, \circ), where \circ denote entry-wise multiplication.
- We say Γ is Q-polynomial whenever Γ is Q-polynomial with respect to at least one primitive idempotent.

Basic definition and results from Algebraic graph theory

Result of Coughman, motivation

Theorem (Caughman, 2004)

Let Γ denote a bipartite distance-regular graph with diameter $D \geq$ 12. If Γ is Q-polynomial then Γ is either the ordinary $2 D$-cycle, or the D-dimensional hypercube, or the antipodal quotient of the $2 D$-dimensional hypercube, or the intersection numbers of Γ satisfy $c_{i}=\left(q^{i}-1\right) /(q-1), b_{i}=\left(q^{D}-q^{i}\right) /(q-1)(0 \leq i \leq D)$ for some integer q at least 2 .
> - Note that if $c_{2} \leq 2$, then the last of the above possibilities cannot occur

> It is the aim of this presentation to further investigate graphs with $D \leq 11$ and $c_{2} \leq 2$

Result of Coughman, motivation

Theorem (Caughman, 2004)

Let Γ denote a bipartite distance-regular graph with diameter $D \geq$ 12. If Γ is Q-polynomial then Γ is either the ordinary $2 D$-cycle, or the D-dimensional hypercube, or the antipodal quotient of the $2 D$-dimensional hypercube, or the intersection numbers of Γ satisfy $c_{i}=\left(q^{i}-1\right) /(q-1), b_{i}=\left(q^{D}-q^{i}\right) /(q-1)(0 \leq i \leq D)$ for some integer q at least 2 .

- Note that if $c_{2} \leq 2$, then the last of the above possibilities cannot occur.

- It is the aim of this presentation to further investigate graphs with $D \leq 11$ and $c_{2} \leq 2$

Result of Coughman, motivation

Theorem (Caughman, 2004)

Let Γ denote a bipartite distance-regular graph with diameter $D \geq$ 12. If Γ is Q-polynomial then Γ is either the ordinary $2 D$-cycle, or the D-dimensional hypercube, or the antipodal quotient of the $2 D$-dimensional hypercube, or the intersection numbers of Γ satisfy $c_{i}=\left(q^{i}-1\right) /(q-1), b_{i}=\left(q^{D}-q^{i}\right) /(q-1)(0 \leq i \leq D)$ for some integer q at least 2 .

- Note that if $c_{2} \leq 2$, then the last of the above possibilities cannot occur.
- It is the aim of this presentation to further investigate graphs with $D \leq 11$ and $c_{2} \leq 2$.

Result of Coughman, motivation (cont.)

- Our main result is the following theorem.

Theorem 1.

Let Γ denote a bipartite Q-polynomial distance-regular graph with diameter $D \geq 4$, valency $k \geq 3$, and intersection number $c_{2} \leq 2$. Then one of the following holds:
(i) Γ is the D-dimensional hypercube;
(ii) Γ is the antipodal quotient of the $2 D$-dimensional hypercube;
(iii) Γ is a graph with $D=5$ not listed above.

- Let 「 denote a Q-polynomial bipartite distance-regular graph with diameter $D \geq 6$, valency $k \geq 3$, and intersection numbers b_{i}, c_{i}.

In this section we show that if $c_{2} \leq 2$, then Γ is either the D-dimensional hypercube, or the antipodal quotient of the 2D-dimensional hypercube.

Theorem 7.

- Let 「 denote a Q-polynomial bipartite distance-regular graph with diameter $D \geq 6$, valency $k \geq 3$, and intersection numbers b_{i}, c_{i}.
- In this section we show that if $c_{2} \leq 2$, then Γ is either the D-dimensional hypercube, or the antipodal quotient of the 2D-dimensional hypercube.

Idea for proof of Theorem 7.

- Assume that 「 is not the D-dimensional hypercube or the antipodal quotient of the $2 D$-dimensional hypercube.
- Then there exist scalars $s^{*}, q \in \mathbb{R}$ such that

Idea for proof of Theorem 7.

- Assume that 「 is not the D-dimensional hypercube or the antipodal quotient of the $2 D$-dimensional hypercube.
- Then there exist scalars $s^{*}, q \in \mathbb{R}$ such that

$$
\begin{gathered}
c_{i}=\frac{h\left(q^{i}-1\right)\left(1-s^{*} q^{D+i+1}\right)}{1-s^{*} q^{2 i+1}}, \quad b_{i}=\frac{h\left(q^{D}-q^{i}\right)\left(1-s^{*} q^{i+1}\right)}{1-s^{*} q^{2 i+1}} \\
h=\frac{1-s^{*} q^{3}}{(q-1)\left(1-s^{*} q^{D+2}\right)}
\end{gathered}
$$

Idea for proof of Theorem 7. (cont.)

- By [3, Lemma 4.1 and Lemma 5.1], scalars s^{*} and q satisfy

$$
\begin{equation*}
q>1, \quad \text { and } \quad-q^{-D-1} \leq s^{*}<q^{-2 D-1} . \tag{1}
\end{equation*}
$$

- Assume first $c_{2}=1$. Abbreviate

Lemma 6(iii) we find

- Note that $\alpha^{2}-4 q^{D+1} \geq 0$, and so we have

Idea for proof of Theorem 7. (cont.)

- By [3, Lemma 4.1 and Lemma 5.1], scalars s^{*} and q satisfy

$$
\begin{equation*}
q>1, \quad \text { and } \quad-q^{-D-1} \leq s^{*}<q^{-2 D-1} . \tag{1}
\end{equation*}
$$

- Assume first $c_{2}=1$. Abbreviate $\alpha=1+q-q^{2}-q^{D-1}+q^{D}+q^{D+1}$ and observe $\alpha>2$. By Lemma 6(iii) we find

$$
s^{*}=\frac{\alpha \pm \sqrt{\alpha^{2}-4 q^{D+1}}}{2 q^{D+3}}
$$

- Note that $\alpha^{2}-4 q^{D+1} \geq 0$, and so we have

Idea for proof of Theorem 7. (cont.)

- By [3, Lemma 4.1 and Lemma 5.1], scalars s^{*} and q satisfy

$$
\begin{equation*}
q>1, \quad \text { and } \quad-q^{-D-1} \leq s^{*}<q^{-2 D-1} . \tag{1}
\end{equation*}
$$

- Assume first $c_{2}=1$. Abbreviate $\alpha=1+q-q^{2}-q^{D-1}+q^{D}+q^{D+1}$ and observe $\alpha>2$. By Lemma 6(iii) we find

$$
s^{*}=\frac{\alpha \pm \sqrt{\alpha^{2}-4 q^{D+1}}}{2 q^{D+3}} .
$$

- Note that $\alpha^{2}-4 q^{D+1} \geq 0$, and so we have

$$
s^{*} \geq \frac{\alpha-\sqrt{\alpha^{2}-4 q^{D+1}}}{2 q^{D+3}}
$$

Basic definition and results from Algebraic graph theory

Idea for proof of Theorem 7. (cont.)

-
- After some computation we show that

contradicting (1).
- Something similar we have also for $c_{2}=2$.

Basic definition and results from Algebraic graph theory

Idea for proof of Theorem 7. (cont.)

- After some computation we show that

$$
s^{*} \geq \frac{\alpha-\sqrt{\alpha^{2}-4 q^{D+1}}}{2 q^{D+3}}>q^{-2 D-1}
$$

contradicting (1).

- Something similar we have also for $c_{2}=2$.

Idea for proof of Theorem 7. (cont.)

- After some computation we show that

$$
s^{*} \geq \frac{\alpha-\sqrt{\alpha^{2}-4 q^{D+1}}}{2 q^{D+3}}>q^{-2 D-1}
$$

contradicting (1).

- Something similar we have also for $c_{2}=2$.

Definition of D_{j}^{j}

- Assume that $\Gamma=(X, R)$ is bipartite with diameter $D \geq 4$, valency $k \geq 3$ and intersection number $c_{2}=2$.
n this section we describe certain partition of the vertex set

Definition of D_{j}^{j}

- Assume that $\Gamma=(X, R)$ is bipartite with diameter $D \geq 4$, valency $k \geq 3$ and intersection number $c_{2}=2$.
- In this section we describe certain partition of the vertex set X.

Let Γ denote a bipartite distance-regular graph with diameter $D \geq 4$ valency $k \geq 3$ and intersection number $c_{2}=2$. Fix vertices $x, y \in X$ such that $\partial(x, y)=2$. For all integers i, j we define $D_{j}^{i}=D_{j}^{i}(x, y)$ by

$$
D_{j}^{i}=\{w \in X \mid \partial(x, w)=i \text { and } \partial(y, w)=j\}
$$

We observe $D_{j}^{i}=\emptyset$ unless $0 \leq i, j \leq D$. Moreover $\left|D_{j}^{i}\right|=p_{i j}^{2}$ for

Definition of D_{j}^{j}

- Assume that $\Gamma=(X, R)$ is bipartite with diameter $D \geq 4$, valency $k \geq 3$ and intersection number $c_{2}=2$.
- In this section we describe certain partition of the vertex set X.

Definition 8.

Let Γ denote a bipartite distance-regular graph with diameter $D \geq 4$, valency $k \geq 3$ and intersection number $c_{2}=2$. Fix vertices $x, y \in X$ such that $\partial(x, y)=2$. For all integers i, j we define $D_{j}^{i}=D_{j}^{i}(x, y)$ by

$$
D_{j}^{i}=\{w \in X \mid \partial(x, w)=i \text { and } \partial(y, w)=j\}
$$

We observe $D_{j}^{i}=\emptyset$ unless $0 \leq i, j \leq D$. Moreover $\left|D_{j}^{i}\right|=p_{i j}^{2}$ for $0 \leq i, j \leq D$.

Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with $D \geq 6$ and $c_{2} \leq 2$
Equitable partitions when $c_{2} \leq 2$
Case $D=4$

Definition of D_{j}^{j} - examples

- 4-cube with sets $D_{j}^{i}\left(b_{0}=4, b_{1}=3, b_{2}=2, b_{3}=1 ; c_{1}=1\right.$, $\left.c_{2}=2, c_{3}=3, c_{4}=4\right)$.

Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with $D \geq 6$ and $c_{2} \leq 2$
Equitable partitions when $c_{2} \leq 2$
Case $D=4$

The partition - part I
The partition - part II

Case $c_{2}=2$

- What if $c_{2}=2$?

Definition 13.

$$
\begin{aligned}
& \ldots \text { For } 1 \leq i \leq D \text { we define } \mathcal{A}_{i}=\mathcal{A}_{i}(x, y), \mathcal{C}_{i}=\mathcal{C}_{i}(x, y), \mathcal{B}_{i}(z)= \\
& \mathcal{B}_{i}(z)(x, y), \mathcal{B}_{i}(v)=\mathcal{B}_{i}(v)(x, y) \text { by } \\
& \qquad \mathcal{A}_{i}=\left\{w \in \mathcal{D}_{i}^{i} \mid \partial(w, z)=i+1 \text { and } \partial(w, v)=i+1\right\} \\
& \qquad \mathcal{C}_{i}=\left\{w \in \mathcal{D}_{i}^{i} \mid \partial(w, z)=i-1 \text { and } \partial(w, v)=i-1\right\}, \\
& \mathcal{B}_{i}(z)=\left\{w \in \mathcal{D}_{i}^{i} \mid \partial(w, z)=i-1 \text { and } \partial(w, v)=i+1\right\}, \\
& \mathcal{B}_{i}(v)=\left\{w \in \mathcal{D}_{i}^{i} \mid \partial(w, z)=i+1 \text { and } \partial(w, v)=i-1\right\} . \\
& \text { We observe } \mathcal{D}_{i}^{i} \text { is a disjoint union of } \mathcal{A}_{i}, \mathcal{B}_{i}(z), \mathcal{B}_{i}(v), \mathcal{C}_{i} .
\end{aligned}
$$

Case $c_{2}=2$

- What if $c_{2}=2$?

Definition 13.

\ldots For $1 \leq i \leq D$ we define $\mathcal{A}_{i}=\mathcal{A}_{i}(x, y), \mathcal{C}_{i}=\mathcal{C}_{i}(x, y), \mathcal{B}_{i}(z)=$ $\mathcal{B}_{i}(z)(x, y), \mathcal{B}_{i}(v)=\mathcal{B}_{i}(v)(x, y)$ by

$$
\begin{gathered}
\mathcal{A}_{i}=\left\{w \in \mathcal{D}_{i}^{i} \mid \partial(w, z)=i+1 \text { and } \partial(w, v)=i+1\right\} \\
\mathcal{C}_{i}=\left\{w \in \mathcal{D}_{i}^{i} \mid \partial(w, z)=i-1 \text { and } \partial(w, v)=i-1\right\} \\
\mathcal{B}_{i}(z)=\left\{w \in \mathcal{D}_{i}^{i} \mid \partial(w, z)=i-1 \text { and } \partial(w, v)=i+1\right\} \\
\mathcal{B}_{i}(v)=\left\{w \in \mathcal{D}_{i}^{i} \mid \partial(w, z)=i+1 \text { and } \partial(w, v)=i-1\right\}
\end{gathered}
$$

We observe \mathcal{D}_{i}^{i} is a disjoint union of $\mathcal{A}_{i}, \mathcal{B}_{i}(z), \mathcal{B}_{i}(v), \mathcal{C}_{i}$.

Case $c_{2}=2$ (cont.)

- Partition of graph Γ, which involves $4(D-1)+2 \ell$ cells

Equitable partition

- We claim that the partition of $V \Gamma$ into nonempty sets
$D_{i+1}^{i-1}, D_{i-1}^{i+1}(1 \leq i \leq D-1), \mathcal{A}_{i}(2 \leq i \leq D-1)$, $\mathcal{B}_{i}(z), \mathcal{B}_{i}(v)(1 \leq i \leq D-1)$ and $\mathcal{C}_{i}(3 \leq i \leq D)$ is equitable.

Equitable partition

- We claim that the partition of $V \Gamma$ into nonempty sets

$$
\begin{aligned}
& D_{i+1}^{i-1}, D_{i-1}^{i+1}(1 \leq i \leq D-1), \mathcal{A}_{i}(2 \leq i \leq D-1) \\
& \mathcal{B}_{i}(z), \mathcal{B}_{i}(v)(1 \leq i \leq D-1) \text { and } \mathcal{C}_{i}(3 \leq i \leq D) \text { is equitable. }
\end{aligned}
$$

- Main tool is "balanced set theorem".

Equitable partition

- We claim that the partition of $V \Gamma$ into nonempty sets
$D_{i+1}^{i-1}, D_{i-1}^{i+1}(1 \leq i \leq D-1), \mathcal{A}_{i}(2 \leq i \leq D-1)$, $\mathcal{B}_{i}(z), \mathcal{B}_{i}(v)(1 \leq i \leq D-1)$ and $\mathcal{C}_{i}(3 \leq i \leq D)$ is equitable.
- Main tool is "balanced set theorem".

Theorem (Terwilliger, 1995) (abridged version of theorem)

Let Γ denote a distance-regular graph with diameter $D \geq 3$. Let E denote a nontrivial primitive idempotent of Γ and let $\left\{\theta_{i}^{*}\right\}_{i=0}^{D}$ denote the corresponding dual eigenvalue sequence.... Then for all integers $h, i, j(1 \leq h \leq D),(0 \leq i, j \leq D)$ and for all $x, y \in X$ such that $\partial(x, y)=h$,

$$
\sum_{\substack{z \in X \\(x, z)=i \\ \partial(y, z)=j}} E \hat{z}-\sum_{\substack{z \in X \\ \partial(x,)=j \\ \partial(y, z)=i}} E \hat{z}=p_{i j}^{h} \frac{\theta_{i}^{*}-\theta_{j}^{*}}{\theta_{0}^{*}-\theta_{h}^{*}}(E \hat{x}-E \hat{y}) .
$$

Case $D=4$

- In this section we consider Q-polynomial bipartite distance-regular graph Γ with intersection number $c_{2} \leq 2$, valency $k \geq 3$ and diameter $D=4$.
We show that Γ is either the 4-dimensional hypercube, or the antipodal quotient of the 8-dimensional hypercube.

Case $D=4$

- In this section we consider Q-polynomial bipartite distance-regular graph Γ with intersection number $c_{2} \leq 2$, valency $k \geq 3$ and diameter $D=4$.
- We show that Γ is either the 4-dimensional hypercube, or the antipodal quotient of the 8 -dimensional hypercube.
- For the case $c_{2}=1$ we have the following result.
\square
Theorem (Mikavič, 2007)
There does not exist a Q-polynomial bipartite distance-regular graph with diameter $D=4$, valency $k \geq 3$ and intersection number $c_{2}=1$.

$c_{2}=1$

- For the case $c_{2}=1$ we have the following result.

Theorem (Miklavič, 2007)

There does not exist a Q-polynomial bipartite distance-regular graph with diameter $D=4$, valency $k \geq 3$ and intersection number $c_{2}=1$.

Basic definition and results from Algebraic graph theory
Bipartite Q-polynomial DRG with $D \geq 6$ and $c_{2} \leq 2$
$\begin{aligned} \text { Equitable partitions when } c_{2} & \leq 2 \\ \text { Case } D & =4\end{aligned}$

$c_{2}=2$ - Equitable partition

$c_{2}=2$ - ingredients

- Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter $D=4$, valency $k \geq 4$ and intersection number $c_{2}=2$. Assume Γ is not the 4 -dimensional hypercube or the antipodal quotient of the 8-dimensional hypercube.

$c_{2}=2$ - ingredients

- Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter $D=4$, valency $k \geq 4$ and intersection number $c_{2}=2$. Assume Γ is not the 4 -dimensional hypercube or the antipodal quotient of the 8-dimensional hypercube.
- $\left|\mathcal{A}_{2}\right|=(k-2)\left(c_{3}-3\right) / 2$;

$c_{2}=2$ - ingredients

- Let 「 denote a Q-polynomial bipartite distance-regular graph with diameter $D=4$, valency $k \geq 4$ and intersection number $c_{2}=2$. Assume Γ is not the 4 -dimensional hypercube or the antipodal quotient of the 8-dimensional hypercube.
- $\left|\mathcal{A}_{2}\right|=(k-2)\left(c_{3}-3\right) / 2$;
- $c_{3} \geq 4$ if and only if $\mathcal{A}_{2} \neq \emptyset$;
- pick $w \in \mathcal{A}_{2}$ let λ denote number or neighbours of w in \mathcal{A}_{3};

$c_{2}=2$ - ingredients

- Let 「 denote a Q-polynomial bipartite distance-regular graph with diameter $D=4$, valency $k \geq 4$ and intersection number $c_{2}=2$. Assume Γ is not the 4 -dimensional hypercube or the antipodal quotient of the 8 -dimensional hypercube.
- $\left|\mathcal{A}_{2}\right|=(k-2)\left(c_{3}-3\right) / 2$;
- $c_{3} \geq 4$ if and only if $\mathcal{A}_{2} \neq \emptyset$;
- pick $w \in \mathcal{A}_{2}$ let λ denote number or neighbours of w in \mathcal{A}_{3};

$c_{2}=2$ - ingredients

- Let 「 denote a Q-polynomial bipartite distance-regular graph with diameter $D=4$, valency $k \geq 4$ and intersection number $c_{2}=2$. Assume Γ is not the 4 -dimensional hypercube or the antipodal quotient of the 8-dimensional hypercube.
- $\left|\mathcal{A}_{2}\right|=(k-2)\left(c_{3}-3\right) / 2$;
- $c_{3} \geq 4$ if and only if $\mathcal{A}_{2} \neq \emptyset$;
- pick $w \in \mathcal{A}_{2}$ let λ denote number or neighbours of w in \mathcal{A}_{3};
- $\lambda=\frac{(k-2) b_{3}\left(b_{3}-1\right)}{(k-2)(k-3)-2 b_{3}}$;

$c_{2}=2$ - ingredients

- Let 「 denote a Q-polynomial bipartite distance-regular graph with diameter $D=4$, valency $k \geq 4$ and intersection number $c_{2}=2$. Assume Γ is not the 4 -dimensional hypercube or the antipodal quotient of the 8 -dimensional hypercube.
- $\left|\mathcal{A}_{2}\right|=(k-2)\left(c_{3}-3\right) / 2$;
- $c_{3} \geq 4$ if and only if $\mathcal{A}_{2} \neq \emptyset$;
- pick $w \in \mathcal{A}_{2}$ let λ denote number or neighbours of w in \mathcal{A}_{3};
- $\lambda=\frac{(k-2) b_{3}\left(b_{3}-1\right)}{(k-2)(k-3)-2 b_{3}}$;
- $(k-2)(k-3)-2 b_{3}$ divides $(k-2) b_{3}\left(b_{3}-1\right)$

$c_{2}=2$ - ingredients (cont.)

- Each vertex in $\mathcal{B}_{3}(v)$ has exactly $\frac{\left(c_{3}-3\right)\left(b_{3}-\lambda\right)}{b_{3}}$ neighbours in \mathcal{A}_{2}.
- $(k-2)(k-3)-2 b_{3}$ divides $(k-4) b_{3}\left(b_{3}-1\right)$
- $(k-2)(k-3)-2 b_{3}$ divides $2 b_{3}\left(b_{3}-1\right)$;
- $(k-2)(k-3)=2 b_{3}^{2}$;
- $\lambda=(k-2) / 2$;
- $q=-(\sqrt{5}+3) / 2$;
- $s^{*}=72 \sqrt{5}-161$.

$c_{2}=2$ - ingredients (cont.)

- Each vertex in $\mathcal{B}_{3}(v)$ has exactly $\frac{\left(c_{3}-3\right)\left(b_{3}-\lambda\right)}{b_{3}}$ neighbours in \mathcal{A}_{2}.
- $(k-2)(k-3)-2 b_{3}$ divides $(k-4) b_{3}\left(b_{3}-1\right)$
- $(k-2)(k-3)-2 b_{3}$ divides $2 b_{3}\left(b_{3}-1\right)$;

$c_{2}=2$ - ingredients (cont.)

- Each vertex in $\mathcal{B}_{3}(v)$ has exactly $\frac{\left(c_{3}-3\right)\left(b_{3}-\lambda\right)}{b_{3}}$ neighbours in \mathcal{A}_{2}.
- $(k-2)(k-3)-2 b_{3}$ divides $(k-4) b_{3}\left(b_{3}-1\right)$
- $(k-2)(k-3)-2 b_{3}$ divides $2 b_{3}\left(b_{3}-1\right)$;

$c_{2}=2$ - ingredients (cont.)

- Each vertex in $\mathcal{B}_{3}(v)$ has exactly $\frac{\left(c_{3}-3\right)\left(b_{3}-\lambda\right)}{b_{3}}$ neighbours in \mathcal{A}_{2}.
- $(k-2)(k-3)-2 b_{3}$ divides $(k-4) b_{3}\left(b_{3}-1\right)$
- $(k-2)(k-3)-2 b_{3}$ divides $2 b_{3}\left(b_{3}-1\right)$;
- $(k-2)(k-3)=2 b_{3}^{2}$;

$c_{2}=2$ - ingredients (cont.)

- Each vertex in $\mathcal{B}_{3}(v)$ has exactly $\frac{\left(c_{3}-3\right)\left(b_{3}-\lambda\right)}{b_{3}}$ neighbours in \mathcal{A}_{2}.
- $(k-2)(k-3)-2 b_{3}$ divides $(k-4) b_{3}\left(b_{3}-1\right)$
- $(k-2)(k-3)-2 b_{3}$ divides $2 b_{3}\left(b_{3}-1\right)$;
- $(k-2)(k-3)=2 b_{3}^{2}$;
- $\lambda=(k-2) / 2$;

- $s^{*}=72 \sqrt{5}-161$.

$c_{2}=2$ - ingredients (cont.)

- Each vertex in $\mathcal{B}_{3}(v)$ has exactly $\frac{\left(c_{3}-3\right)\left(b_{3}-\lambda\right)}{b_{3}}$ neighbours in \mathcal{A}_{2}.
- $(k-2)(k-3)-2 b_{3}$ divides $(k-4) b_{3}\left(b_{3}-1\right)$
- $(k-2)(k-3)-2 b_{3}$ divides $2 b_{3}\left(b_{3}-1\right)$;
- $(k-2)(k-3)=2 b_{3}^{2}$;
- $\lambda=(k-2) / 2$;
- $q=-(\sqrt{5}+3) / 2$;

$c_{2}=2$ - ingredients (cont.)

- Each vertex in $\mathcal{B}_{3}(v)$ has exactly $\frac{\left(c_{3}-3\right)\left(b_{3}-\lambda\right)}{b_{3}}$ neighbours in \mathcal{A}_{2}.
- $(k-2)(k-3)-2 b_{3}$ divides $(k-4) b_{3}\left(b_{3}-1\right)$
- $(k-2)(k-3)-2 b_{3}$ divides $2 b_{3}\left(b_{3}-1\right)$;
- $(k-2)(k-3)=2 b_{3}^{2}$;
- $\lambda=(k-2) / 2$;
- $q=-(\sqrt{5}+3) / 2$;
- $s^{*}=72 \sqrt{5}-161$.

Theorem 35.

Let 「 denote a Q-polynomial bipartite distance-regular graph with diameter $D=4$, valency $k \geq 3$ and intersection number $c_{2}=$ 2. Then Γ is either the 4-dimensional hypercube, or the antipodal quotient of the 8 -dimensional hypercube.

```
Assume first that c3 \geq4. Then by Lemma }34\mathrm{ we have
q=-(\sqrt{}{5}+3)/2 and s* = 72\sqrt{}{5}-161. Lemma 6(iii) now
implies k=-6, a contradiction. Therefore c}\mp@subsup{c}{3}{}=3\mathrm{ . But now
[4, Theorem 4.6] implies that \Gamma is either the 4-dimensional
hypercube, or the antipodal quotient of the 8-dimensional
hypercube
```


Theorem 35.

Let 「 denote a Q-polynomial bipartite distance-regular graph with diameter $D=4$, valency $k \geq 3$ and intersection number $c_{2}=$ 2. Then Γ is either the 4-dimensional hypercube, or the antipodal quotient of the 8 -dimensional hypercube.

- Assume first that $c_{3} \geq 4$. Then by Lemma 34 we have $q=-(\sqrt{5}+3) / 2$ and $s^{*}=72 \sqrt{5}-161$. Lemma 6(iii) now implies $k=-6$, a contradiction. Therefore $c_{3}=3$. But now [4, Theorem 4.6] implies that Γ is either the 4-dimensional hypercube, or the antipodal quotient of the 8-dimensional hypercube.
［1］E．Bannai，T．Ito，Algebraic Combinatorics I：Association Schemes，The Benjamin－Cummings Lecture Notes Ser．58，Menlo Park，CA， 1984.

围［2］A．E．Brouwer，A．M．Cohen，and A．Neumaier，Distance－Regular Graphs，Springer－Verlag，Berlin，Heidelberg， 1989.

图［3］J．S．Caughman，Bipartite Q－polynomial distance－regular graphs， Graphs Combin．， 20 （2004），47－57．
［4］B．Curtin，Almost 2－homogeneous Bipartite Distance－regular Graphs，European J．Combin． 21 （2000），865－876．
围［5］E．R．van Dam，J．H．Koolen，and H．Tanaka，Distance－regular graphs，preprint，arXiv：1410．6294．
［0］［6］Š．Miklavič，On bipartite Q－polynomial distance－regular graphs with $c_{2}=1$ ，Discrete Math．， 307 （2007），544－553．

圊［7］P．Terwilliger，A new inequality for distance－regular graphs， Discrete Math．， 137 （1995），319－332．

