On bipartite *Q*-polynomial distance-regular graphs with $c_2 \leq 2$

Štefko Miklavič, Safet Penjić

Andrej Marušič Institute University of Primorska

2015 International conference on Graph Theory Koper, May 26-28, 2015

Outline

1 Basic definition and results from Algebraic graph theory

- (a.1) Distance-regular graphs, examples, hypercubes
- (a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation
- 2 Bipartite Q-polynomial DRG with D ≥ 6 and c₂ ≤ 2 Case D ≥ 6 - Theorem 7. Case D ≥ 6 - Proof of Theorem 7.
- $\begin{array}{l} \textbf{3} \quad \mbox{Equitable partitions when } c_2 \leq 2 \\ & \mbox{The partition part I} \\ & \mbox{The partition part II} \end{array}$

4 Case D = 4

Theorem 35

Bipartite *Q*-polynomial DRG with $D \ge 6$ and $c_2 \le 2$ Equitable partitions when $c_2 \le 2$ Case D = 4 (a.1) Distance-regular graphs, examples, hypercubes

- a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation

Some notation before definition of DRG

Bipartite *Q*-polynomial DRG with $D \ge 6$ and $c_2 \le 2$ Equitable partitions when $c_2 \le 2$ Case D = 4

(a.1) Distance-regular graphs, examples, hypercubes

- (a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation

Distance-regular graphs

A connected graph Γ is called distance-regular (DRG) if there are numbers a_i, b_i, c_i (0 ≤ i ≤ D) s.t. if ∂(x, y) = h then

•
$$|\Gamma_1(y) \cap \Gamma_{h-1}(x)| = c_h$$

•
$$|\Gamma_1(y) \cap \Gamma_h(x)| = a_h$$

•
$$|\Gamma_1(y) \cap \Gamma_{h+1}(x)| = b_h$$

 Numbers a_i, b_i and c_i (0 ≤ i ≤ D) are called intersection numbers, and {b₀, b₁, ..., b_{D-1}; c₁, c₂, ..., c_D} is intersection array.

Bipartite *Q*-polynomial DRG with $D \ge 6$ and $c_2 \le 2$ Equitable partitions when $c_2 \le 2$ Case D = 4

(a.1) Distance-regular graphs, examples, hypercubes

- (a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation

- A connected graph Γ is called distance-regular (DRG) if there are numbers a_i, b_i, c_i (0 ≤ i ≤ D) s.t. if ∂(x, y) = h then
 - $|\Gamma_1(y) \cap \Gamma_{h-1}(x)| = c_h$
 - $|\Gamma_1(y) \cap \Gamma_h(x)| = a_h$
 - $|\Gamma_1(y) \cap \Gamma_{h+1}(x)| = b_h$
- Numbers a_i, b_i and c_i (0 ≤ i ≤ D) are called intersection numbers, and {b₀, b₁, ..., b_{D-1}; c₁, c₂, ..., c_D} is intersection array.

Bipartite *Q*-polynomial DRG with $D \ge 6$ and $c_2 \le 2$ Equitable partitions when $c_2 \le 2$ Case D = 4

(a.1) Distance-regular graphs, examples, hypercubes

- (a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation

- A connected graph Γ is called distance-regular (DRG) if there are numbers a_i, b_i, c_i (0 ≤ i ≤ D) s.t. if ∂(x, y) = h then
 - $|\Gamma_1(y) \cap \Gamma_{h-1}(x)| = c_h$
 - $|\Gamma_1(y) \cap \Gamma_h(x)| = a_h$
 - $|\Gamma_1(y) \cap \Gamma_{h+1}(x)| = b_h$
- Numbers a_i, b_i and c_i (0 ≤ i ≤ D) are called intersection numbers, and {b₀, b₁, ..., b_{D-1}; c₁, c₂, ..., c_D} is intersection array.

Bipartite *Q*-polynomial DRG with $D \ge 6$ and $c_2 \le 2$ Equitable partitions when $c_2 \le 2$ Case D = 4

(a.1) Distance-regular graphs, examples, hypercubes

- (a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation

- A connected graph Γ is called distance-regular (DRG) if there are numbers a_i, b_i, c_i (0 ≤ i ≤ D) s.t. if ∂(x, y) = h then
 - $|\Gamma_1(y) \cap \Gamma_{h-1}(x)| = c_h$
 - $|\Gamma_1(y) \cap \Gamma_h(x)| = a_h$
 - $|\Gamma_1(y) \cap \Gamma_{h+1}(x)| = b_h$
- Numbers a_i, b_i and c_i (0 ≤ i ≤ D) are called intersection numbers, and {b₀, b₁, ..., b_{D-1}; c₁, c₂, ..., c_D} is intersection array.

Bipartite *Q*-polynomial DRG with $D \ge 6$ and $c_2 \le 2$ Equitable partitions when $c_2 \le 2$ Case D = 4

(a.1) Distance-regular graphs, examples, hypercubes

- a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation

- A connected graph Γ is called distance-regular (DRG) if there are numbers a_i, b_i, c_i (0 ≤ i ≤ D) s.t. if ∂(x, y) = h then
 - $|\Gamma_1(y) \cap \Gamma_{h-1}(x)| = c_h$
 - $|\Gamma_1(y) \cap \Gamma_h(x)| = a_h$
 - $|\Gamma_1(y) \cap \Gamma_{h+1}(x)| = b_h$
- Numbers a_i, b_i and c_i (0 ≤ i ≤ D) are called intersection numbers, and {b₀, b₁, ..., b_{D-1}; c₁, c₂, ..., c_D} is intersection array.

Bipartite Q-polynomial DRG with $D \ge 6$ and $c_2 \le 2$ Equitable partitions when $c_2 \le 2$ Case D = 4

- (a.1) Distance-regular graphs, examples, hypercubes
- (a.2) *Q*-polynomial property of DRG
- (a.3) Result of Coughman, motivation

Distance-regular graphs - examples

• Line graph of Petersen's graph.

- (a.1) Distance-regular graphs, examples, hypercubes
- a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation

Distance-regular graphs - examples

 Line graph of Petersen's graph (diameter is three and intersection array is {4,2,1;1,1,4})

Bipartite Q-polynomial DRG with D > 6 and $c_2 < 2$ Equitable partitions when $c_2 < 2$

Case D = 4

Hamming graphs

- (a.1) Distance-regular graphs, examples, hypercubes

- The Hamming graph H(n, q) is the graph whose vertices are words (sequences or *n*-tuples) of length *n* from an alphabet of size q > 2. Two vertices are considered adjacent if the words (or *n*-tuples) differ in exactly one term. We observe that $|V(H(n,q))| = q^n.$

Bipartite Q-polynomial DRG with D > 6 and $c_2 < 2$ Equitable partitions when $c_2 < 2$

Case D = 4

Hamming graphs

- (a.1) Distance-regular graphs, examples, hypercubes

- The Hamming graph H(n, q) is the graph whose vertices are words (sequences or *n*-tuples) of length *n* from an alphabet of size q > 2. Two vertices are considered adjacent if the words (or *n*-tuples) differ in exactly one term. We observe that $|V(H(n,q))| = q^n.$
- The Hamming graph H(n, q) is distance-regular (with $a_i = i(q-2) \ (0 \le i \le n), \ b_i = (n-i)(q-1) \ (0 \le i \le n-1)$ and $c_i = i \ (1 \le i \le n)$).

Bipartite *Q*-polynomial DRG with $D \ge 6$ and $c_2 \le 2$ Equitable partitions when $c_2 \le 2$

Case $\overline{D} = 4$

(a.1) Distance-regular graphs, examples, hypercubes

- a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation

Hamming graphs H(3,2)

• Hamming graph H(3, 2).

Bipartite *Q*-polynomial DRG with $D \ge 6$ and $c_2 \le 2$ Equitable partitions when $c_2 \le 2$ Case D = 4

- (a.1) Distance-regular graphs, examples, hypercub
- (a.2) *Q*-polynomial property of DRG
- (a.3) Result of Coughman, motivation

Hamming graphs H(2,3)

• Hamming graph H(2,3).

(a.1) Distance-regular graphs, examples, hypercubes

- a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation

n-dimensional hypercubes (shortly *n*-cubes)

• Hamming graph H(n, q) in which words of length n are from an alphabet of size q = 2 are called *n*-dimensional hypercubes or shortly *n*-cubes.

Bipartite *Q*-polynomial DRG with $D \ge 6$ and $c_2 \le 2$ Equitable partitions when $c_2 \le 2$

Case D = 4

(a.1) Distance-regular graphs, examples, hypercubes

- a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation

4-dimensional hypercube (4-cubes)

• 4-dimensional hypercube

Bipartite Q-polynomial DRG with D > 6 and $c_2 < 2$ Equitable partitions when $c_2 < 2$

Case D = 4

(a.1) Distance-regular graphs, examples, hypercubes

More examples

That comes from classical objects:

- Hamming graphs,
- Johnson graphs,
- Grassmann graphs,
- bilinear forms graphs,
- sesquilinear forms graphs,
- dual polar graphs (the vertices are the maximal totally isotropic subspaces on a vector space over a finite field with a fixed (non-degenerate) bilinear form)

Bipartite Q-polynomial DRG with D > 6 and $c_2 < 2$ Equitable partitions when $c_2 < 2$

Case D = 4

(a.1) Distance-regular graphs, examples, hypercubes

More examples

That comes from classical objects:

- Hamming graphs,
- Johnson graphs,
- Grassmann graphs,
- bilinear forms graphs,
- sesquilinear forms graphs,
- dual polar graphs (the vertices are the maximal totally isotropic subspaces on a vector space over a finite field with a fixed (non-degenerate) bilinear form)
- Some non-classical examples:
 - Doob graphs,
 - twisted Grassman graphs,

Bipartite Q-polynomial DRG with D > 6 and $c_2 < 2$ Equitable partitions when $c_2 < 2$

Case D = 4

(a.1) Distance-regular graphs, examples, hypercubes

More examples

- That comes from classical objects:
 - Hamming graphs,
 - Johnson graphs,
 - Grassmann graphs,
 - bilinear forms graphs,
 - sesquilinear forms graphs,
 - dual polar graphs (the vertices are the maximal totally isotropic subspaces on a vector space over a finite field with a fixed (non-degenerate) bilinear form)
- Some non-classical examples:
 - Doob graphs,
 - twisted Grassman graphs,
- Distance-regular graphs give a way to study these classical objects from a combinatorial view point.

Bipartite *Q*-polynomial DRG with $D \ge 6$ and $c_2 \le 2$ Equitable partitions when $c_2 \le 2$ Case D = 4

(a.1) Distance-regular graphs, examples

- a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation

Distance-*i* matrix

- Let Mat_V(ℝ) denote the algebra of matrices over ℝ with rows and columns indexed by V.
- For $0 \le i \le D$, let A_i denote the matrix in $Mat_V(\mathbb{R})$ with (y, z)-entry

$$(\mathbf{A}_i)_{yz} = \begin{cases} 1 & \text{if } \partial(y, z) = i, \\ 0 & \text{if } \partial(y, z) \neq i \end{cases} \quad (y, z \in X).$$

• We call A_i the *i*th *distance-i matrix* of Γ .

Case D = 4

(a.1) Distance-regular graphs, examples, hypercubes

- a.2) *Q*-polynomial property of DRG
- (a.3) Result of Coughman, motivation

Distance-*i* matrix

- Let Mat_V(ℝ) denote the algebra of matrices over ℝ with rows and columns indexed by V.
- For $0 \le i \le D$, let A_i denote the matrix in $Mat_V(\mathbb{R})$ with (y, z)-entry

$$(\mathbf{A}_i)_{yz} = \begin{cases} 1 & \text{if } \partial(y,z) = i, \\ 0 & \text{if } \partial(y,z) \neq i \end{cases}$$
 $(y,z \in X).$

• We call **A**_i the *i*th *distance-i* matrix of Γ.

Primitive idempotents

- We refer to *E*₀, ..., *E_D* as the primitive idempotents of Γ.
- Primitive idempotents of Γ represents the orthogonal projectors onto $\mathcal{E}_i = \ker(\mathbf{A} \theta_i I)$ (along $\operatorname{im}(\mathbf{A} \theta_i I)$)

- (a.1) Distance-regular graphs, examples, hypercubes
- a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation

a.1) Distance-regular graphs, examples, hypercube

a.2) Q-polynomial property of DRG

(a.3) Result of Coughman, motivation

Primitive idempotents

- We refer to $\boldsymbol{E}_0, ..., \boldsymbol{E}_D$ as the primitive idempotents of Γ .
- Primitive idempotents of Γ represents the orthogonal projectors onto $\mathcal{E}_i = \ker(\mathbf{A} \theta_i I)$ (along $\operatorname{im}(\mathbf{A} \theta_i I)$)

Bipartite Q-polynomial DRG with D > 6 and $c_2 < 2$ Equitable partitions when $c_2 < 2$

Case D

Distance algebra

• If Γ is regular (and Γ is not distance-regular) we have:

- Adjacency algebra (ordinary "." product), $\mathcal{A} = \text{span}\{A^0, A^1, ..., A^d\} = \text{span}\{E_0, E_1, ..., E_d\}$
- Distance algebra (entry-wise "o" multiplication), $\mathcal{D} = \operatorname{span}\{A_0, A_1, ..., A_D\} \rightarrow \mathbb{C}$ 15/34

(a.1) Distance-regular graphs, examples, hypercubes

- a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation

Case wehen Γ is is distance-regular

- The following statements are equivalent:
 - (i) Γ is distance-regular,
 - (ii) \mathcal{D} is an algebra with the ordinary product,
 - (iii) \mathcal{A} is an algebra with the Hadamard product,

(iv)
$$\mathcal{A} = \mathcal{D}$$
.

(a.1) Distance-regular graphs, examples, hypercubes

a.2) Q-polynomial property of DRG

(a.3) Result of Coughman, motivation

- Let Γ denote any distance regular graph with diameter D ≥ 3, and let A denote the adjacency algebra for Γ. Let E denote a primitive idempotent of Γ.
- Since A has a basis A_0 , A_1 , ..., A_D of 0 1 matrices, A is closed under entry-wise matrix multiplication.
- Γ is said to be *Q*-polynomial with respect to *E* = *E*₁ whenever there exist an ordering *E*₀, *E*₁, ..., *E*_D of the primitive idempotents such that for each *i* (0 ≤ *i* ≤ *D*), the primitive idempotent *E_i* is a polynomial of degree exactly *i* in *E*₁, in the ℝ-algebra (*A*, ∘), where ∘ denote entry-wise multiplication.
- We say Γ is *Q*-polynomial whenever Γ is *Q*-polynomial with respect to at least one primitive idempotent.

(a.1) Distance-regular graphs, examples, hypercubes

a.2) Q-polynomial property of DRG

(a.3) Result of Coughman, motivation

- Let Γ denote any distance regular graph with diameter D ≥ 3, and let A denote the adjacency algebra for Γ. Let E denote a primitive idempotent of Γ.
- Since A has a basis A_0 , A_1 , ..., A_D of 0 1 matrices, A is closed under entry-wise matrix multiplication.
- Γ is said to be *Q*-polynomial with respect to *E* = *E*₁ whenever there exist an ordering *E*₀, *E*₁, ..., *E*_D of the primitive idempotents such that for each *i* (0 ≤ *i* ≤ *D*), the primitive idempotent *E_i* is a polynomial of degree exactly *i* in *E*₁, in the ℝ-algebra (*A*, ∘), where ∘ denote entry-wise multiplication.
- We say Γ is Q-polynomial whenever Γ is Q-polynomial with respect to at least one primitive idempotent.

(a.1) Distance-regular graphs, examples, hypercubes

a.2) *Q*-polynomial property of DRG

(a.3) Result of Coughman, motivation

- Let Γ denote any distance regular graph with diameter D ≥ 3, and let A denote the adjacency algebra for Γ. Let E denote a primitive idempotent of Γ.
- Since A has a basis A_0 , A_1 , ..., A_D of 0 1 matrices, A is closed under entry-wise matrix multiplication.
- Γ is said to be Q-polynomial with respect to E = E₁ whenever there exist an ordering E₀, E₁, ..., E_D of the primitive idempotents such that for each i (0 ≤ i ≤ D), the primitive idempotent E_i is a polynomial of degree exactly i in E₁, in the ℝ-algebra (A, ∘), where ∘ denote entry-wise multiplication.
- We say Γ is Q-polynomial whenever Γ is Q-polynomial with respect to at least one primitive idempotent.

(a.1) Distance-regular graphs, examples, hypercubes

a.2) Q-polynomial property of DRG

(a.3) Result of Coughman, motivation

- Let Γ denote any distance regular graph with diameter D ≥ 3, and let A denote the adjacency algebra for Γ. Let E denote a primitive idempotent of Γ.
- Since A has a basis A_0 , A_1 , ..., A_D of 0 1 matrices, A is closed under entry-wise matrix multiplication.
- Γ is said to be Q-polynomial with respect to E = E₁ whenever there exist an ordering E₀, E₁, ..., E_D of the primitive idempotents such that for each i (0 ≤ i ≤ D), the primitive idempotent E_i is a polynomial of degree exactly i in E₁, in the ℝ-algebra (A, ∘), where ∘ denote entry-wise multiplication.
- We say Γ is Q-polynomial whenever Γ is Q-polynomial with respect to at least one primitive idempotent.

Equitable partitions when $c_2 \le 2$ Equitable partitions when $c_2 \le 2$ Case D = 4

- (a.1) Distance-regular graphs, examples, hypercubes
- (a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation

Result of Coughman, motivation

Theorem (Caughman, 2004)

Let Γ denote a bipartite distance-regular graph with diameter $D \ge 12$. If Γ is *Q*-polynomial then Γ is either the ordinary 2*D*-cycle, or the *D*-dimensional hypercube, or the antipodal quotient of the 2*D*-dimensional hypercube, or the intersection numbers of Γ satisfy $c_i = (q^i - 1)/(q - 1), \ b_i = (q^D - q^i)/(q - 1) \ (0 \le i \le D)$ for some integer *q* at least 2.

- Note that if $c_2 \leq 2$, then the last of the above possibilities cannot occur.
- It is the aim of this presentation to further investigate graphs with D ≤ 11 and c₂ ≤ 2.

Equitable partitions when $c_2 \le 2$ Equitable partitions when $c_2 \le 2$ Case D = 4

- (a.1) Distance-regular graphs, examples, hypercubes
- (a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation

Result of Coughman, motivation

Theorem (Caughman, 2004)

Let Γ denote a bipartite distance-regular graph with diameter $D \ge 12$. If Γ is *Q*-polynomial then Γ is either the ordinary 2*D*-cycle, or the *D*-dimensional hypercube, or the antipodal quotient of the 2*D*-dimensional hypercube, or the intersection numbers of Γ satisfy $c_i = (q^i - 1)/(q - 1), \ b_i = (q^D - q^i)/(q - 1) \ (0 \le i \le D)$ for some integer *q* at least 2.

- Note that if $c_2 \leq 2$, then the last of the above possibilities cannot occur.
- It is the aim of this presentation to further investigate graphs with D ≤ 11 and c₂ ≤ 2.

Equitable partitions when $c_2 \le 2$ Equitable partitions when $c_2 \le 2$ Case D = 4

- (a.1) Distance-regular graphs, examples, hypercubes
- (a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation

Result of Coughman, motivation

Theorem (Caughman, 2004)

Let Γ denote a bipartite distance-regular graph with diameter $D \ge 12$. If Γ is *Q*-polynomial then Γ is either the ordinary 2*D*-cycle, or the *D*-dimensional hypercube, or the antipodal quotient of the 2*D*-dimensional hypercube, or the intersection numbers of Γ satisfy $c_i = (q^i - 1)/(q - 1), \ b_i = (q^D - q^i)/(q - 1) \ (0 \le i \le D)$ for some integer *q* at least 2.

- Note that if $c_2 \leq 2$, then the last of the above possibilities cannot occur.
- It is the aim of this presentation to further investigate graphs with D ≤ 11 and c₂ ≤ 2.

- (a.1) Distance-regular graphs, examples, hypercubes
- a.2) Q-polynomial property of DRG
- (a.3) Result of Coughman, motivation

Result of Coughman, motivation (cont.)

• Our main result is the following theorem.

Theorem 1.

Let Γ denote a bipartite *Q*-polynomial distance-regular graph with diameter $D \ge 4$, valency $k \ge 3$, and intersection number $c_2 \le 2$. Then one of the following holds:

- (i) Γ is the *D*-dimensional hypercube;
- (ii) Γ is the antipodal quotient of the 2D-dimensional hypercube;
- (iii) Γ is a graph with D = 5 not listed above.

Theorem 7.

Case $D \ge 6$ - Theorem 7. Case $D \ge 6$ - Proof of Theorem 7.

- Let Γ denote a *Q*-polynomial bipartite distance-regular graph with diameter *D* ≥ 6, valency *k* ≥ 3, and intersection numbers *b_i*, *c_i*.
- In this section we show that if $c_2 \leq 2$, then Γ is either the *D*-dimensional hypercube, or the antipodal quotient of the 2*D*-dimensional hypercube.

Case $D \ge 6$ - Theorem 7. Case $D \ge 6$ - Proof of Theorem 7.

Theorem 7.

- Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter D ≥ 6, valency k ≥ 3, and intersection numbers b_i, c_i.
- In this section we show that if $c_2 \leq 2$, then Γ is either the *D*-dimensional hypercube, or the antipodal quotient of the 2*D*-dimensional hypercube.

Case $D \ge 6$ - Theorem 7. Case $D \ge 6$ - Proof of Theorem 7.

Idea for proof of Theorem 7.

- Assume that Γ is not the D-dimensional hypercube or the antipodal quotient of the 2D-dimensional hypercube.
- Then there exist scalars $s^*, q \in \mathbb{R}$ such that

$$c_{i} = \frac{h(q^{i} - 1)(1 - s^{*}q^{D+i+1})}{1 - s^{*}q^{2i+1}}, \qquad b_{i} = \frac{h(q^{D} - q^{i})(1 - s^{*}q^{i+1})}{1 - s^{*}q^{2i+1}}$$

$$h = \frac{1 - s q}{(q - 1)(1 - s^* q^{D + 2})}$$
Case $D \ge 6$ - Theorem 7. Case $D \ge 6$ - Proof of Theorem 7.

Idea for proof of Theorem 7.

- Assume that Γ is not the D-dimensional hypercube or the antipodal quotient of the 2D-dimensional hypercube.
- Then there exist scalars $s^*, q \in \mathbb{R}$ such that

$$c_i = rac{h(q^i-1)(1-s^*q^{D+i+1})}{1-s^*q^{2i+1}}, \qquad b_i = rac{h(q^D-q^i)(1-s^*q^{i+1})}{1-s^*q^{2i+1}}$$
 $h = rac{1-s^*q^3}{(q-1)(1-s^*q^{D+2})}$

□ ▶ < ∄ ▶ < ≣ ▶ < ≣ ▶ E ∽ Q (~ 21/34

Case $D \ge 6$ - Theorem 7. Case $D \ge 6$ - Proof of Theorem 7.

Idea for proof of Theorem 7. (cont.)

• By [3, Lemma 4.1 and Lemma 5.1], scalars s* and q satisfy

$$q > 1$$
, and $-q^{-D-1} \le s^* < q^{-2D-1}$. (1)

• Assume first $c_2 = 1$. Abbreviate $\alpha = 1 + q - q^2 - q^{D-1} + q^D + q^{D+1}$ and observe $\alpha > 2$. By Lemma 6(iii) we find

$$s^* = \frac{\alpha \pm \sqrt{\alpha^2 - 4q^{D+1}}}{2q^{D+3}}$$

• Note that $\alpha^2 - 4q^{D+1} \ge 0$, and so we have

$$s^* \geq \frac{\alpha - \sqrt{\alpha^2 - 4q^{D+1}}}{2q^{D+3}}.$$

22/34

Case $D \ge 6$ - Theorem 7. Case $D \ge 6$ - Proof of Theorem 7.

Idea for proof of Theorem 7. (cont.)

• By [3, Lemma 4.1 and Lemma 5.1], scalars s^{*} and q satisfy

$$q > 1$$
, and $-q^{-D-1} \le s^* < q^{-2D-1}$. (1)

• Assume first $c_2 = 1$. Abbreviate $\alpha = 1 + q - q^2 - q^{D-1} + q^D + q^{D+1}$ and observe $\alpha > 2$. By Lemma 6(iii) we find

$$s^* = \frac{\alpha \pm \sqrt{\alpha^2 - 4q^{D+1}}}{2q^{D+3}}$$

• Note that $\alpha^2 - 4q^{D+1} \ge 0$, and so we have

$$s^* \geq \frac{\alpha - \sqrt{\alpha^2 - 4q^{D+1}}}{2q^{D+3}}.$$

22/34

Case $D \ge 6$ - Theorem 7. Case $D \ge 6$ - Proof of Theorem 7.

Idea for proof of Theorem 7. (cont.)

• By [3, Lemma 4.1 and Lemma 5.1], scalars s* and q satisfy

$$q > 1$$
, and $-q^{-D-1} \le s^* < q^{-2D-1}$. (1)

• Assume first $c_2 = 1$. Abbreviate $\alpha = 1 + q - q^2 - q^{D-1} + q^D + q^{D+1}$ and observe $\alpha > 2$. By Lemma 6(iii) we find

$$s^* = \frac{\alpha \pm \sqrt{\alpha^2 - 4q^{D+1}}}{2q^{D+3}}$$

• Note that $\alpha^2 - 4q^{D+1} \ge 0$, and so we have

$$s^* \geq rac{lpha - \sqrt{lpha^2 - 4q^{D+1}}}{2q^{D+3}}.$$

22/34

Case $D \ge 6$ - Theorem 7. Case $D \ge 6$ - Proof of Theorem 7.

Idea for proof of Theorem 7. (cont.)

Θ ...

• After some computation we show that

$$s^* \ge rac{lpha - \sqrt{lpha^2 - 4q^{D+1}}}{2q^{D+3}} > q^{-2D-1}$$

contradicting (1).

• Something similar we have also for $c_2 = 2$.

Case $D \ge 6$ - Theorem 7. Case $D \ge 6$ - Proof of Theorem 7.

Idea for proof of Theorem 7. (cont.)

• ...

• After some computation we show that

$$s^* \ge rac{lpha - \sqrt{lpha^2 - 4q^{D+1}}}{2q^{D+3}} > q^{-2D-1},$$

contradicting (1).

• Something similar we have also for $c_2 = 2$.

Case $D \ge 6$ - Theorem 7. Case $D \ge 6$ - Proof of Theorem 7.

Idea for proof of Theorem 7. (cont.)

Θ ...

• After some computation we show that

$$s^* \ge rac{lpha - \sqrt{lpha^2 - 4q^{D+1}}}{2q^{D+3}} > q^{-2D-1},$$

contradicting (1).

• Something similar we have also for $c_2 = 2$.

The partition - part I The partition - part II

Definition of D_i^i

- Assume that Γ = (X, R) is bipartite with diameter D ≥ 4, valency k ≥ 3 and intersection number c₂ = 2.
- In this section we describe certain partition of the vertex set *X*.

Definition 8

Let Γ denote a bipartite distance-regular graph with diameter $D \ge 4$, valency $k \ge 3$ and intersection number $c_2 = 2$. Fix vertices $x, y \in X$ such that $\partial(x, y) = 2$. For all integers i, j we define $D_j^i = D_j^i(x, y)$ by

$$D^i_j = \{w \in X \mid \partial(x,w) = i \text{ and } \partial(y,w) = j\}.$$

We observe $D_j^i = \emptyset$ unless $0 \le i, j \le D$. Moreover $|D_j^i| = p_{ij}^2$ for $0 \le i, j \le D$.

The partition - part I The partition - part II

Definition of D_i^i

- Assume that Γ = (X, R) is bipartite with diameter D ≥ 4, valency k ≥ 3 and intersection number c₂ = 2.
- In this section we describe certain partition of the vertex set *X*.

Definition 8

Let Γ denote a bipartite distance-regular graph with diameter $D \ge 4$, valency $k \ge 3$ and intersection number $c_2 = 2$. Fix vertices $x, y \in X$ such that $\partial(x, y) = 2$. For all integers i, j we define $D_j^i = D_j^i(x, y)$ by

$$D^i_j = \{w \in X \mid \partial(x,w) = i ext{ and } \partial(y,w) = j\}.$$

We observe $D_j^i = \emptyset$ unless $0 \le i, j \le D$. Moreover $|D_j^i| = p_{ij}^2$ for $0 \le i, j \le D$.

The partition - part I The partition - part II

Definition of D_i^i

- Assume that Γ = (X, R) is bipartite with diameter D ≥ 4, valency k ≥ 3 and intersection number c₂ = 2.
- In this section we describe certain partition of the vertex set *X*.

Definition 8.

Let Γ denote a bipartite distance-regular graph with diameter $D \ge 4$, valency $k \ge 3$ and intersection number $c_2 = 2$. Fix vertices $x, y \in X$ such that $\partial(x, y) = 2$. For all integers i, j we define $D_j^i = D_j^i(x, y)$ by

$$\mathcal{D}^i_j = \{w \in X \mid \partial(x,w) = i \hspace{0.2cm} ext{and} \hspace{0.2cm} \partial(y,w) = j\}.$$

We observe $D_j^i = \emptyset$ unless $0 \le i, j \le D$. Moreover $|D_j^i| = p_{ij}^2$ for $0 \le i, j \le D$.

The partition - part I The partition - part II

Definition of D_i^i - examples

• 4-cube with sets D_j^i ($b_0 = 4$, $b_1 = 3$, $b_2 = 2$, $b_3 = 1$; $c_1 = 1$, $c_2 = 2$, $c_3 = 3$, $c_4 = 4$).

he partition - part I he partition - part II

Case $c_2 = 2$

What if c₂ = 2?

Definition 13.

... For $1 \leq i \leq D$ we define $A_i = A_i(x, y)$, $C_i = C_i(x, y)$, $B_i(z) = B_i(z)(x, y)$, $B_i(v) = B_i(v)(x, y)$ by

$$\mathcal{A}_i = \{w \in \mathcal{D}_i^i \mid \partial(w, z) = i+1 \text{ and } \partial(w, v) = i+1\},$$

$$\mathcal{C}_i = \{ w \in \mathcal{D}_i^i \mid \partial(w, z) = i - 1 \text{ and } \partial(w, v) = i - 1 \},$$

 $\mathcal{B}_i(z)=\{w\in\mathcal{D}_i^i\mid\partial(w,z)=i-1 ext{ and } \partial(w,v)=i+1\},$

$$\mathcal{B}_i(v)=\{w\in\mathcal{D}_i^i\mid\partial(w,z)=i+1 ext{ and } \partial(w,v)=i-1\}.$$

We observe \mathcal{D}_i^i is a disjoint union of $\mathcal{A}_i, \mathcal{B}_i(z), \mathcal{B}_i(v), \mathcal{C}_i$.

The partition - part I The partition - part II

Case $c_2 = 2$

• What if *c*₂ = 2?

Definition 13.

... For $1 \leq i \leq D$ we define $A_i = A_i(x, y)$, $C_i = C_i(x, y)$, $B_i(z) = B_i(z)(x, y)$, $B_i(v) = B_i(v)(x, y)$ by

$$\mathcal{A}_i = \{ w \in \mathcal{D}_i^i \mid \partial(w, z) = i + 1 \text{ and } \partial(w, v) = i + 1 \},$$

$$\mathcal{C}_i = \{ w \in \mathcal{D}_i^i \mid \partial(w, z) = i - 1 \text{ and } \partial(w, v) = i - 1 \},$$

$$\mathcal{B}_i(z) = \{w \in \mathcal{D}_i^i \mid \partial(w, z) = i-1 \text{ and } \partial(w, v) = i+1\},$$

$$\mathcal{B}_i(v) = \{w \in \mathcal{D}_i^i \mid \partial(w, z) = i+1 \text{ and } \partial(w, v) = i-1\}.$$

We observe \mathcal{D}_i^i is a disjoint union of $\mathcal{A}_i, \mathcal{B}_i(z), \mathcal{B}_i(v), \mathcal{C}_i$.

The partition - part I The partition - part II

Case $c_2 = 2$ (cont.)

The partition - part I The partition - part II

Equitable partition

• We claim that the partition of $V\Gamma$ into nonempty sets $D_{i+1}^{i-1}, D_{i-1}^{i+1} \ (1 \le i \le D-1), \ \mathcal{A}_i \ (2 \le i \le D-1), \ \mathcal{B}_i(z), \mathcal{B}_i(v) \ (1 \le i \le D-1) \ \text{and} \ \mathcal{C}_i \ (3 \le i \le D) \ \text{is equitable.}$

• Main tool is "balanced set theorem".

Theorem (Terwilliger, 1995) (abridged version of theorem)

Let Γ denote a distance-regular graph with diameter $D \ge 3$. Let E denote a nontrivial primitive idempotent of Γ and let $\{\theta_i^*\}_{i=0}^D$ denote the corresponding dual eigenvalue sequence.... Then for all integers h, i, j $(1 \le h \le D)$, $(0 \le i, j \le D)$ and for all $x, y \in X$ such that $\partial(x, y) = h$,

$$\sum_{\substack{z \in X \\ \partial(x,z)=i \\ \partial(y,z)=j}} E\hat{z} - \sum_{\substack{z \in X \\ \partial(x,z)=j \\ \partial(y,z)=i}} E\hat{z} = p_{ij}^{h} \frac{\theta_{i}^{+} - \theta_{j}^{+}}{\theta_{0}^{*} - \theta_{h}^{*}} (E\hat{x} - E\hat{y})$$

The partition - part I The partition - part II

Equitable partition

- We claim that the partition of $V\Gamma$ into nonempty sets $D_{i+1}^{i-1}, D_{i-1}^{i+1} \ (1 \le i \le D-1), \ \mathcal{A}_i \ (2 \le i \le D-1), \ \mathcal{B}_i(z), \mathcal{B}_i(v) \ (1 \le i \le D-1) \ \text{and} \ \mathcal{C}_i \ (3 \le i \le D) \ \text{is equitable.}$
- Main tool is "balanced set theorem".

Theorem (Terwilliger, 1995) (abridged version of theorem)

Let Γ denote a distance-regular graph with diameter $D \geq 3$. Let E denote a nontrivial primitive idempotent of Γ and let $\{\theta_i^*\}_{i=0}^D$ denote the corresponding dual eigenvalue sequence.... Then for all integers h, i, j $(1 \leq h \leq D)$, $(0 \leq i, j \leq D)$ and for all $x, y \in X$ such that $\partial(x, y) = h$,

$$\sum_{\substack{z \in X \\ \partial(x,z)=i \\ \partial(y,z)=j}} E\hat{z} - \sum_{\substack{z \in X \\ \partial(x,z)=j \\ \partial(y,z)=i}} E\hat{z} = p_{ij}^{h} \frac{\theta_{i}^{z} - \theta_{j}^{z}}{\theta_{0}^{*} - \theta_{h}^{*}} (E\hat{x} - E\hat{y})$$

The partition - part I The partition - part II

Equitable partition

- We claim that the partition of $V\Gamma$ into nonempty sets $D_{i+1}^{i-1}, D_{i-1}^{i+1} \ (1 \le i \le D-1), \ \mathcal{A}_i \ (2 \le i \le D-1), \ \mathcal{B}_i(z), \mathcal{B}_i(v) \ (1 \le i \le D-1) \ \text{and} \ \mathcal{C}_i \ (3 \le i \le D) \ \text{is equitable.}$
- Main tool is "balanced set theorem".

Theorem (Terwilliger, 1995) (abridged version of theorem)

Let Γ denote a distance-regular graph with diameter $D \geq 3$. Let E denote a nontrivial primitive idempotent of Γ and let $\{\theta_i^*\}_{i=0}^D$ denote the corresponding dual eigenvalue sequence.... Then for all integers h, i, j $(1 \leq h \leq D)$, $(0 \leq i, j \leq D)$ and for all $x, y \in X$ such that $\partial(x, y) = h$,

$$\sum_{\substack{z\in X\ \partial(x,z)=i\ \partial(y,z)=j}} E\hat{z} - \sum_{\substack{z\in X\ \partial(x,z)=j\ \partial(y,z)=i}} E\hat{z} = p_{ij}^h rac{ heta_i^* - heta_j^*}{ heta_0^* - heta_h^*} (E\hat{x} - E\hat{y}).$$

Theorem 35

Case D = 4

- In this section we consider Q-polynomial bipartite distance-regular graph Γ with intersection number c₂ ≤ 2, valency k ≥ 3 and diameter D = 4.
- We show that Γ is either the 4-dimensional hypercube, or the antipodal quotient of the 8-dimensional hypercube.

Theorem 35

Case D = 4

- In this section we consider Q-polynomial bipartite distance-regular graph Γ with intersection number c₂ ≤ 2, valency k ≥ 3 and diameter D = 4.
- We show that Γ is either the 4-dimensional hypercube, or the antipodal quotient of the 8-dimensional hypercube.

Theorem 35

$c_2 = 1$

• For the case $c_2 = 1$ we have the following result.

Theorem (Miklavič, 2007)

There does not exist a Q-polynomial bipartite distance-regular graph with diameter D = 4, valency $k \ge 3$ and intersection number $c_2 = 1$.

Theorem 35

$c_2 = 1$

• For the case $c_2 = 1$ we have the following result.

Theorem (Miklavič, 2007)

There does not exist a *Q*-polynomial bipartite distance-regular graph with diameter D = 4, valency $k \ge 3$ and intersection number $c_2 = 1$.

Theorem 35

$c_2 = 2$ - Equitable partition

Theorem 35

$c_2 = 2$ - ingredients

 Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter D = 4, valency k ≥ 4 and intersection number c₂ = 2. Assume Γ is not the 4-dimensional hypercube or the antipodal quotient of the 8-dimensional hypercube.

•
$$|\mathcal{A}_2| = (k-2)(c_3-3)/2;$$

- $c_3 \ge 4$ if and only if $\mathcal{A}_2 \neq \emptyset$;
- pick w ∈ A₂ let λ denote number or neighbours of w in A₃;
 λ = (k-2)b₃(b₃ − 1)/(k-2)(k-3) 2b₃;
 (k-2)(k-3) 2b₃ divides (k 2)b₃(b₃ − 1)

Theorem 35

$c_2 = 2$ - ingredients

 Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter D = 4, valency k ≥ 4 and intersection number c₂ = 2. Assume Γ is not the 4-dimensional hypercube or the antipodal quotient of the 8-dimensional hypercube.

•
$$|\mathcal{A}_2| = (k-2)(c_3-3)/2;$$

• $c_3 \ge 4$ if and only if $\mathcal{A}_2 \neq \emptyset$;

pick w ∈ A₂ let λ denote number or neighbours of w in A₃;
λ = (k-2)b₃(b₃ − 1)/(k-2)(k-3) - 2b₃;
(k-2)(k-3) - 2b₃ divides (k - 2)b₃(b₃ − 1)

Theorem 35

$c_2 = 2$ - ingredients

 Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter D = 4, valency k ≥ 4 and intersection number c₂ = 2. Assume Γ is not the 4-dimensional hypercube or the antipodal quotient of the 8-dimensional hypercube.

•
$$|\mathcal{A}_2| = (k-2)(c_3-3)/2;$$

• $c_3 \ge 4$ if and only if $\mathcal{A}_2 \neq \emptyset$;

pick w ∈ A₂ let λ denote number or neighbours of w in A₃;
λ = (k-2)b₃(b₃ − 1)/(k-2)(k-3) - 2b₃;
(k-2)(k-3) - 2b₃ divides (k - 2)b₃(b₃ − 1)

Theorem 35

$c_2 = 2$ - ingredients

 Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter D = 4, valency k ≥ 4 and intersection number c₂ = 2. Assume Γ is not the 4-dimensional hypercube or the antipodal quotient of the 8-dimensional hypercube.

•
$$|\mathcal{A}_2| = (k-2)(c_3-3)/2;$$

•
$$c_3 \ge 4$$
 if and only if $\mathcal{A}_2 \neq \emptyset$;

pick w ∈ A₂ let λ denote number or neighbours of w in A₃;
λ = (k-2)b₃(b₃ - 1)/(k-2)(k-3) - 2b₃;
(k-2)(k-3) - 2b₃ divides (k-2)b₃(b₃ - 1)

Theorem 35

$c_2 = 2$ - ingredients

 Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter D = 4, valency k ≥ 4 and intersection number c₂ = 2. Assume Γ is not the 4-dimensional hypercube or the antipodal quotient of the 8-dimensional hypercube.

•
$$|\mathcal{A}_2| = (k-2)(c_3-3)/2;$$

• $c_3 \ge 4$ if and only if $\mathcal{A}_2 \neq \emptyset$;

pick w ∈ A₂ let λ denote number or neighbours of w in A₃;
λ = (k-2)b₃(b₃ − 1)/(k-2)(k-3) - 2b₃;
(k-2)(k-3) - 2b₃ divides (k-2)b₃(b₃ − 1)

Theorem 35

$c_2 = 2$ - ingredients

 Let Γ denote a Q-polynomial bipartite distance-regular graph with diameter D = 4, valency k ≥ 4 and intersection number c₂ = 2. Assume Γ is not the 4-dimensional hypercube or the antipodal quotient of the 8-dimensional hypercube.

•
$$|\mathcal{A}_2| = (k-2)(c_3-3)/2;$$

•
$$c_3 \ge 4$$
 if and only if $\mathcal{A}_2 \neq \emptyset$;

pick w ∈ A₂ let λ denote number or neighbours of w in A₃;
λ = (k-2)b₃(b₃ - 1)/(k-2)(k-3) - 2b₃;
(k-2)(k-3) - 2b₃ divides (k-2)b₃(b₃ - 1)

1 -

))

• Each vertex in
$$\mathcal{B}_3(v)$$
 has exactly $\frac{(c_3-3)(b_3-\lambda)}{b_3}$ neighbours in \mathcal{A}_2 .

•
$$(k-2)(k-3) - 2b_3$$
 divides $(k-4)b_3(b_3-1)$

•
$$(k-2)(k-3) - 2b_3$$
 divides $2b_3(b_3 - 1)$;

•
$$(k-2)(k-3) = 2b_3^2;$$

•
$$\lambda = (k-2)/2;$$

•
$$q = -(\sqrt{5}+3)/2;$$

•
$$s^* = 72\sqrt{5} - 161$$
.

1 -

))

• Each vertex in
$$\mathcal{B}_3(v)$$
 has exactly $\frac{(c_3-3)(b_3-\lambda)}{b_3}$ neighbours in \mathcal{A}_2 .

•
$$(k-2)(k-3) - 2b_3$$
 divides $(k-4)b_3(b_3-1)$

•
$$(k-2)(k-3) - 2b_3$$
 divides $2b_3(b_3-1)$;

•
$$(k-2)(k-3) = 2b_3^2$$

•
$$\lambda = (k-2)/2;$$

•
$$q = -(\sqrt{5} + 3)/2;$$

•
$$s^* = 72\sqrt{5} - 161$$
.

Theorem 35

1

 $\gamma \rangle \langle I$

1)

$c_2 = 2$ - ingredients (cont.)

•
$$(k-2)(k-3) - 2b_3$$
 divides $(k-4)b_3(b_3-1)$

•
$$(k-2)(k-3) - 2b_3$$
 divides $2b_3(b_3-1)$;

•
$$(k-2)(k-3) = 2b_3^2$$

•
$$\lambda = (k-2)/2;$$

•
$$q = -(\sqrt{5} + 3)/2;$$

•
$$s^* = 72\sqrt{5} - 161$$
.

Theorem 35

$c_2 = 2$ - ingredients (cont.)

•
$$s^* = 72\sqrt{5} - 161$$
.

1

•
$$(k-2)(k-3) = 2b_3^2;$$

•
$$\lambda = (k-2)/2;$$

•
$$q = -(\sqrt{5} + 3)/2;$$

•
$$s^* = 72\sqrt{5-161}$$
.

• • •

1

• • •

•
$$\lambda = (k - 2)/2;$$

•
$$q = -(\sqrt{5}+3)/2;$$

•
$$s^* = 72\sqrt{5} - 161$$
.

Theorem 35

$c_2 = 2$ - ingredients (cont.)

 ロト 4 回 ト 4 三 ト 4 三 ト 三 の Q (や 33 / 34

Theorem 35

$c_2 = 2$

Theorem 35.

Let Γ denote a *Q*-polynomial bipartite distance-regular graph with diameter D = 4, valency $k \ge 3$ and intersection number $c_2 = 2$. Then Γ is either the 4-dimensional hypercube, or the antipodal quotient of the 8-dimensional hypercube.

 Assume first that c₃ ≥ 4. Then by Lemma 34 we have q = -(√5 + 3)/2 and s* = 72√5 - 161. Lemma 6(iii) now implies k = -6, a contradiction. Therefore c₃ = 3. But now [4, Theorem 4.6] implies that Γ is either the 4-dimensional hypercube, or the antipodal quotient of the 8-dimensional hypercube.
Basic definition and results from Algebraic graph theory Bipartite *Q*-polynomial DRG with $D \ge 6$ and $c_2 \le 2$ Equitable partitions when $c_2 \le 2$ ______ Case D = 4

Theorem 35

$c_2 = 2$

Theorem 35.

Let Γ denote a *Q*-polynomial bipartite distance-regular graph with diameter D = 4, valency $k \ge 3$ and intersection number $c_2 = 2$. Then Γ is either the 4-dimensional hypercube, or the antipodal quotient of the 8-dimensional hypercube.

 Assume first that c₃ ≥ 4. Then by Lemma 34 we have q = -(√5 + 3)/2 and s* = 72√5 - 161. Lemma 6(iii) now implies k = -6, a contradiction. Therefore c₃ = 3. But now [4, Theorem 4.6] implies that Γ is either the 4-dimensional hypercube, or the antipodal quotient of the 8-dimensional hypercube. Basic definition and results from Algebraic graph theory Bipartite Q-polynomial DRG with $D \ge 6$ and $c_2 \le 2$ Equitable partitions when $c_2 < 2$ Case D = 4

[1] E. Bannai, T. Ito, Algebraic Combinatorics I: Association Schemes, The Benjamin-Cummings Lecture Notes Ser. 58, Menlo Park, CA, 1984.

- [2] A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989.
- [3] J. S. Caughman, Bipartite Q-polynomial distance-regular graphs, Graphs Combin., 20 (2004), 47-57.
- [4] B. Curtin, Almost 2-homogeneous Bipartite Distance-regular Graphs, European J. Combin. 21 (2000), 865-876.
- 5] E. R. van Dam, J. H. Koolen, and H. Tanaka, Distance-regular graphs, preprint, arXiv:1410.6294.
- [6] Š. Miklavič, On bipartite Q-polynomial distance-regular graphs with $c_2 = 1$, Discrete Math., **307** (2007), 544-553.
- [7] P. Terwilliger, A new inequality for distance-regular graphs, Discrete Math., 137 (1995), 319-332.