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Tomaž Pisanski
(University of Primorska and University of Ljubljana)

2015 International Conference on Graph Theory
UP FAMNIT, Koper, May 26–28, 2015
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Thanks

Thanks to my former students Alen Orbanić, Maŕıa del
Ŕıo-Francos and their and my co-authors, in particular to Jan

Karabáš and many others whose work I am freely using in this talk.
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Snub Cube - Chirality in the sense of Conway

Snube cube is vertex-transitive (uniform) chiral polyhedron. It
comes in two oriented forms.
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Motivation

We would like to have a single combinatorial mechanism that
would enable us to deal with such phenomena. Our goal is to unify
several existing structures in such a way that the power of each
individual structure is preserved.
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Example: The Cube

Example
The cube may be considered as

an oriented map: R, r,
as a map: r0, r1, r2

as a polyhedron
. . . .

Question
What is the dual of a cube and how can we
describe it?

Question
How can we tell that the cube is a regular map
and amphichiral oriented map?
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Plan

We define generalized action graphs as semi-directed graphs in
which the edge set is partitioned into directed 2-factors (forming
an action digraph) and undirected 1-factors (forming a monodromy
graph) and use them to describe several combinatorial structures,
such as maps and oriented maps. The quotient of the action graph
with respect to its automorphism group (or some of its subgroup)
is called the symmetry type graph and is very useful in connection
with map symmetries and orientation preserving symmetries.
Several usual cases of regular, edge-transitive, vertex-transitive,
chiral, etc. maps and oriented maps are revisited. Our symmetry
type graphs are closely related to Delaney-Dress symbols and
orbifolds. The theory is very general and applies to a variety of
discrete structures such as hypermaps, abstract polytopes and
maniplexes.
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Pregraphs and Graphs

a b c d e f g h i
r b a c e d g f i h
i 3 2 2 2 1 2 1 1 1

A pre-graph Γ is a quadruple
(V,D, i, r) where V and D are
disjoint non-empty sets

V being the set of vertices,
D the set of darts,
i : D → V is a mapping that
assigns to each dart its initial
vertex and
r : D → D is an involution
assigning each dart its reverse
dart.
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Pregraphs and Graphs

a b d e f g h i
r b a e d g f i h
i 3 2 2 1 2 1 1 1

Let Γ = (V,D, i, r) be a pre-graph.
The orbits of r are called edges of Γ.
The edges corresponding to fixed
points of r are called pending edges
or semi-edges, while other edges are
called proper edges.
A pre-graph Γ = (V,D, i, r) is graph,
if r is fixed-point free.
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Digraphs

a d g h
j 3 1 2 1
t 2 2 1 1

A digraph Γ is a quadruple
(V,A, j, t) where V and A are
disjoint non-empty sets

V being the set of vertices,
A the set of arcs,
j : A→ V is a mapping that
assigns to each dart its initial
vertex and
t : A→ V is a mapping that
assigns to each dart its terminal
vertex.
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Partially Directed Graphs

A partially directed graph Γ is a
hextuple (V,D,A, i, r, j, t) where
(V,D, i, r) is a pre-graph and
(V,A, j, t) is a digraph.
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Morphisms, Isomorphisms, Automorphisms

A morphism ϑ between two partially directed graphs
(V,D,A, i, r, j, t) and (V ′, D′, A′, i′, r′, j′, t′) satisfies the
following, for any d ∈ D and a ∈ A:

i′(ϑ(d)) = ϑ(i(d))

r′(ϑ(d)) = ϑ(r(d))

j′(ϑ(a)) = ϑ(j(a))

t′(ϑ(a)) = ϑ(t(a))
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Action graphs

We generalize and adapt the notion of action graph, first
introduced by A. Malnič in 2002 as follows.

Let Φ be a finite non-empty set of flags or vertices.
Let R = [R1, R2, . . . , Rm], where m ≥ 0 be a collection of
permutations ∀i ∈ I : Ri ∈ Sym(V ), I = {1, 2, . . . ,m},
called (the set of) rotations.
Let % = [r1, r2, . . . , rn] be a collection of involutions on Φ, i.e.
∀j ∈ J : rj ∈ Sym(V ), r2

j = Id, J = {1, 2, . . . ,m}, called
reflections.

The structure Γ = (Φ;R; %, I, J) is called an action graph on the
vertex set Φ of type (I, J) with signature (m,n),m = |I|, n = |J |.
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Action graphs

In practice we omit the type or replace it by signature when it is
not needed.
The subgroup Mon Γ = 〈R; %〉 ≤ Sym(Φ) is called the monodromy
group of Γ.
The elements of Mon Γ act from right on the elements of Φ, as it
is defined by the convention.
The action graph Γ is connected if Mon Γ acts transitively on Φ.
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Action graphs

The action graph Γ = (Φ;R, ρ) can be viewed as a partially
directed regular graph on the vertex set Φ with edges coloured by
the corresponding generators of Mon Γ. The incidence relation in
Γ reads as u ∼ v ⇐⇒ v = u.g, where g is a generator of Mon Γ.
The valence of Γ with signature (m,n) is 2m+ n. A fixed point of
Ri is exhibited as a loop, while a fixed point of rj is considered as
a semiedge.
We will always represent a pair of the opposite arcs arising from
the action of reflections by the undirected edge; hence Γ is
partially directed.
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Example - Cayley graphs as action graphs

Example
A (directed) Cayley graph with m+ n generators, out of which
there are n involutions, can be regarded as an action graph with
signature (m+ k, n− k), 0 ≤ k ≤ n. Note that an involution may
play different roles. It may be counted as permutation or as
involution. This explains different signatures.
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Example - Abstract polytopes as action graphs

Example
An abstract polytope of rank n is an action graph with signature
(0, n). The vertices are flags and the n involutions represent
exchange maps on the flags of the polytope:
Γ = (Φ; ∅, {r0, r1, . . . , rn−1}), rirj = rjri, |i− j| > 2. For Γ to
represent an abstract polytopes two further technical conditions
have to be met: the diamond condition and strong connectivity.

Instead of abstract polytopes one could study more general
maniplexes (without diamond condition and strong connectivity).
Maniplexes were introduced by Steve Wilson in 2012. See also
crystallizations by Ferri and Gagliardi, introduced in the 70s, not to
forget Lins and his work in the 90s.
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Maniplex vs. Abstract Polytope

Dodecahedral Space

v = 5, e = 10, f = 6, F = 1

There are 120 flags! Triple
(vertex-edge-face) gives rise to

two flags!

Proposition
Every abstract polytope is a
maniplex.

Proposition
There exist a maniplex that is not an
abstract polytope, e.g. the Poincaré
Homology Sphere,
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Dodecahedral Space is a Maniplex

Dodecahedral Space alias Poincaré Homology 3-Sphere.

The 120 flags are vertices of the dual of the barycentric subdivision
of the ordinary dodecahedron on the sphere. The flag graph of the
dodecahedron is a trivalent 0-,1-,2- edge-colored spanning
subgraph of the flag graph of the dodecahedral space. 3-edges
connect corresponding flags in antipodal pentagonal faces.
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Question about maniplexes.

Question
Is there an easy way to tell from action graph whether a given
maniplex is a polytope?

E.g. if an i-edge has both end vertices in the same J-face and
i /∈ J , the maniplex is not a polytope.
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Oriented maps as Action Graphs

Example
An oriented map M is an action
graph with signature (1, 1). The
usual expression M = (D;R,L) of
an oriented map due to Edmonds, in
terms of darts, rotation, and
dart-reversing involution, is the same
as M = (D;R; r).
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Maps as Action Graphs

Example
A map M is an action graph with signature
(0, 3), i.e. M = Γ(Φ, ∅; r0, r1, r2). The
permutations r0, r1, r2 and r0r2 are
fixed-point free involutions.
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Hypermaps as Action Graphs

Example
A three-involution representation of a hypermap is an action graph
with signature (0, 3).
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Oriented maniplexes as action graphs

Recall that a maniples is an action graph with signature (0, n).
The vertices are flags and the n involutions represent exchange
maps on the flags of the polytope:
Γ = (Φ; ∅, {r0, r1, . . . , rn−1}), rirj = rjri, |i− j| > 2.
A maniples is orientable if the underlying graph of Γ is bipartite. In
this case the flags fall into two classes Φ− and Φ+. Define the
following action graph:
Γ+− = (Φ; rn−2rn−1, {r0rn−1, r1rn−1, . . . , rn−3rn−1}), rirj =
rjri, |i− j| > 2..
The action graph Γ+− is disconnected. We may distinguish the
two connected components: Γ+ and Γ−. Hence we have:
Γ+ = (Φ+; rn−2rn−1, {r0rn−1, r1rn−1, . . . , rn−3rn−1})
= (Φ+;R, {s0, s1, . . . , sn−3}), sisj = sjsi, |i− j| > 2
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Morphisms of Action Graphs

A morphism of action graphs ϑ : Γ1 → Γ2 is defined for a pair Γ1,
Γ2 provided that both action graphs have the same signature. The
morphism ϑ is defined by a mapping ϑ : V1 → V2 between the
corresponding sets of vertices of action graphs Γ1(V1;R1; %1) and
Γ2(V2;R2; %2) such that for all i ∈ I and all j ∈ J :

(ϑv)Ri = ϑ(vRi),
(ϑv)rj = ϑ(vrj).

(1)

According to widely used convention, morphisms have left action
on the vertex set V .
A morphism for which ϑ : V1 → V2 is a bijection is called an
isomorphism.
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Automorphisms of Action Graphs

The morphism α : Γ(V ;R; %)→ Γ(V ;R; %) is an automorphism if
the mapping ϑ : V → V is a bijection.

Tomaž Pisanski (University of Primorska and University of Ljubljana)Some applications of generalized action graphs and monodromy graphs



The Automorphism group Auto Γ

The group of automorphisms Auto Γ of the action graph consists
of all (edge-colour-preserving) automorphisms of Γ. In other
words, Auto Γ is the centraliser of the corresponding monodromy
group Mon Γ in the symmetry group Sym(V ).
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Important properties of automorphisms.

Theorem
The automorphism group of an action graph is the centraliser of
the corresponding monodromy group in symmetry group over
action graph vertices.

Let us note that in both cases the collections R and % are taken as
ordered collections.
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Automorphisms of oriented maps

Example
An oriented map M is an action graph with signature (1, 1). The
automorphism group Auto M corresponds with the group of
orientation-preserving automorphisms. A map M (in
three-involutory representation) is an action graph with signature
(0, 3). The automorphism group Auto M is the same as the
automorphism group as defined in Jones and Thornton.

Tomaž Pisanski (University of Primorska and University of Ljubljana)Some applications of generalized action graphs and monodromy graphs



Extended Morphisms.

Let ϑ : V1 → V2 be a mapping. The morphism

ε = (ϑ, î, ĵ, K1) : Γ(V1;R1; %1, I1, J1)→ Γ(V2;R2; %2, I2, J2)

is an extended morphism, if there exist mappings on index sets
ı̂ : I1 → I2 and ĵ : J1 → J2 and a subset K1 ⊆ I1 and K2 = î(K1)
such that if v ∈ V1, i ∈ I1 and j ∈ J1, then

(ϑv)Rı̂(i) = ϑ(vRi), if i /∈ K1,

(ϑv)R−1
ı̂(i) = ϑ(vRi), if i ∈ K1.

(ϑv)rĵ(j) = ϑ(vrj),
(2)

An extended automorphism is orientation preserving if K1 = ∅ and
is orientation reversing if K1 = I1.
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Extended Isomorphisms and automorphisms.

An extended morphism ε = (ϑ, î, ĵ, K1) is an extended
isomorphism if and only if ϑ, î, ĵ are bijections.
An extended isomorphism of an action graph to itself is an
extended automorphism.
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Automorphism groups.

The group of extended automorphisms Aute Γ of the action graph
consists of all automorphisms of Γ. Note that here we consider the
collections R and % to be just multisets.

Proposition
Let Γ be an action graph. Then

Auto Γ ≤ Aute Γ ≤ Aut Γ,

where Aut Γ is the group of automorphisms of the underlying
graph of Γ.

Note: we have to modify definitions, if Γ has multiple edges.

Tomaž Pisanski (University of Primorska and University of Ljubljana)Some applications of generalized action graphs and monodromy graphs



Extended Morphisms - revisided.

orientation preserving orientation reversing
color preserving automorphism Auto Γ R maps to R−1

ri to rj or Aute Γ
color respecting Ri to Rj , i 6= j extended automorphism

In general, there are four groups of automorphisms possible!
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Extended Automorphisms - The Case of Oriented Maps.

Example
Let Γ be an action graph of an oriented map Γ(V ;R; r). The
morphism Γ(V ;R; r) 7→ Γ(V ;R−1; r) correspond to an
orientation-reversing isomorphism; i.e. the operation of ‘taking the
mirror-image’.
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Extended Automorphisms - The Case of Maps.

Example
The mappings Γ(V ; ∅; r0, r1, r2) 7→ Γ(V ; ∅; r2, r1, r0) which
extends to automorphisms of action graphs corresponds to
(self-)dualities of a map.
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The Fundamental Lemma of Action Graphs.

Lemma (Fundamental Lemma of Action Graphs)
The action of automorphism group Auto Γ(V ;R; %) is semi-regular
on V .
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Some Consequences.

The Fundamental Lemma of Action Graphs has several interesting
consequences:

Corollary
a) |Auto Γ| is a divisor of |V |;
b) The projection Γ→ Γ/Auto Γ is a regular covering projection;

Definition
The quotient T (Γ) = Γ→ Γ/Auto Γ is an action graph called the
symmetry type graph.
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Regular Action Graphs.

The action graph Γ is regular if Auto Γ(V ;R; %) acts regularly on
V .
Proposition
|Auto Γ(V ;R; %)| ≤ |V |, more precisely: |Auto Γ(V ;R; %)| divides
|V | and equality is reached if and only if Γ is regular.

Corollary
Let M be a oriented map on e edges. Then |Auto(M)| divides 2e
and M is regular if and only if |Auto(M)| = 2e.

Corollary
Let M be a map on e edges. Then |Auto(M)| divides 4e and M
is regular if and only if |Auto(M)| = 4e.
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Regular Action Graphs are Cayley Graphs

Proposition
An action graph Γ(V ;R; %) is regular if
and only if it is a (colored Cayley graph).

Proposition
An action graph Γ(V ;R; %) is regular if
and only if its symmetry type graph
T (Γ(V ;R; %)) is a 1-vertex graph.

Example
See symmetry type graphs of a generic
Cayley graph, of a regular oriented map
and of a regular map.
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Symmetry type graphs with respect to subgroups.

Remark
It is possible to develop theory of G-action graphs Γ/G, with
respect to a subgroup of the full automorphism group G ≤ Auto Γ.

Tomaž Pisanski (University of Primorska and University of Ljubljana)Some applications of generalized action graphs and monodromy graphs



Incidence Geometry.

An incidence geometry of rank r is a properly vertex-colored graph
(Γ, c, T ), where Γ is a graph and c : V (Γ)→ T is a proper vertex
coloring with |T | = r. Note that each vertex, alias geometry
element, v ∈ V (Γ) is of precise type c(v) ∈ T and that only
elements of different type may be incident: u ∼ v implies
c(u) 6= c(v).
Sometimes such a structure is called pre-geometry and for a
geometry some further conditions are required.
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Coset Geometry.

Let G be a group and let H1, H2, . . . ,Hr be r of its subgroups.
The structure (G;H1, H2, . . . ,Hr) is called a rank r coset
geometry.
Each coset geometry gives rise to an incidence geometry as
follows. The vertices of G represents the right cosets Hjai with
two cosets being adjacent if and only if their intersection is
disjoint. Furthermore, the coloring function c is given by
c(Hjai) = Hj (or, if we want to make it simple: c(Hjai) = j).
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Coset Geometry and Regular Maps

Example
Any regular map gives rise to a coset geometry. The group G is
generated by the three involutions 〈r0, r1, r2〉 and the subgroups
corresponding to vertices, edges, and faces are generated by
〈r1, r2〉, 〈r0, r2〉, and 〈r0, r1〉, respectively.
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Action Geometry.

We may generalize the notion of coset geometries from groups to
action graphs via Cayley graphs. Let Γ(V ;R; %) be an action
graph and let us have Si ⊆ R and σi ⊆ % for i = 1, 2, . . . , r. Then
∆i = (V ;Si;σi) is (possibly disconnected) action graph. By
Fi(Si, σi) we denote the partition of vertex set V into connected
components (of ∆i). The partition Fi corresponds to orbits of
〈Si, σi〉 on V . The elements of Fi will be called i-faces of
(Γ; ∆1,∆2, . . . ,∆r). The structure (Γ; ∆1,∆2, . . . ,∆r) is called a
rank r action geometry.
Using the same idea as with the coset geometries we my associate
a rank r incidence geometry to each rank r action geometry.
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From Coset Geometry to Action Geometry.

Example

Each non-trivial group G gives rise to a unique action graph
Γ(G) = (G,G− {Id}, ∅) via the right regular representation. Note
that in this case the action graph can be regarded as a particular
Cayley graph for G. In the same way the coset geometry
(G;H1, H2, . . . ,Hr) gives rise to the action geometry

(Γ(G); Γ(H1),Γ(H2), . . . ,Γ(Hr)).

It is not hard to see that the underlying incidence geometries are
isomorphic.

Remark
Several action geometries may give rise to the same incidence
geometry.
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Map as an Action Graph and an Incidence Geometry

Example

Let us take an action graph M = (V ; ∅; r0, r1, r2), corresponding
to a three-involutory representation of map. Then F (r1, r2)
corresponds to vertices of M , F (r0, r2) corresponds to edges of
M , and F (r0, r1) corresponds to faces of M . The set of vertices
of action graph, V is the set of flags of M . The corresponding
incidence structure is displayed on Figure below.

Figure :
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Oriented Map as Action Graph.

Example

Let us take an action graph M = (V ;R; r) corresponding to an
oriented map. The vertex set V then corresponds to set of darts of
M , F (R) corresponds to vertices of M and F (r) corresponds to
edges of M . The incidence structure over M correspond to a graph
G, although we (V ;R; r) is well-defined embedding of G. We will
show a standard technique used to define an action graph such
that the corresponding geometry will employ faces of M as well.
Take the action graph M∗ = (V ;R,R∗; r) such that R∗ = R−1r.
Then F (R) correspond to the vertices, F (r) correspond to the
edges, and F (R∗) correspond to the faces of M , respectively. The
corresponding incidence geometry is now well-defined.
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Trivalent graphs of Class 1 - Hypermaps

Example
Heawood graph is a bipartite
trivalent graph. Any of its
3-edge-colorings gives rise to a
hyper map.
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Linegraphs of bipartite trivalent graphs as Action graphs

Example
The line graph of the Heawood
graph is a quartic graph on 21
vertices. It inherits a
2-factorization composed of a
blue and red triangular
2-factor. Any cyclic orientation
of triangles gives rise to an
action graph of signature
(2,0). They all, in turn, give
rise to the same incidence
geometry - the Fano plane
alias the Heawod graph with a
given blue-red vertex coloring.
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Constellations.

Example

Constellations of Lando and Zvonkin can be regarded as special
action graphs. Namley an action graph Γ = (Φ;R1, R2, . . . , Rn; ∅)
is a constellation if

∏n
i=1Ri = Id.
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Need for Cryptomorphism - Constellations

Sometimes the most concise choice of signatures for action graphs
is not the best. By adding redundant permutations we may get a
cryptomorphic description of essentially the same structure which
may have richer extended group of automorphisms.

Example
If Γ = (Φ;R1, R2, . . . , Rn; ∅) is not a constellation we may adjoin
another permutation Rn+1 = (R1R2 . . . Rn)−1 and the action
graph Γ = (Φ;R1, R2, . . . , Rn, Rn+1; ∅) becomes a constellation.
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Need for Cryptomorphism - Maps

Example
A general map may be described as M = (V ; ∅; r0, r1, r2). It is
easy to move from M to its dual map Md using this model, but it
is much more complicated to move from M to its Petrie dual. It is
therefore easier to add an extra involution rP and have
M ′ = (V ; ∅; r0, r1, r2, rP ) with additional requirement that
r0r1rP = Id. These two definitions are cryptomorphic. Given M
we may define rP = r0r2. In the same way M ′ defines back M .
However, using M ′ it is easy to apply any of the six permutations
on {0, 2, P} to move from M to its dual, its Petrie dual, etc.
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Need for Cryptomorphism - Oriented Maps

Example
(See Example 31.) In the model (V ;R, r) of oriented map the
faces are not easily visible. We may define them as F = R−1r.
Sometimes it would be more convenient to use the model
(V ;R,F, r) with additional requirement that RF = r. The dual
map is simply obtained by swapping permutations R and F .

Maybe we should talk about categories and functors here.
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From orientable maps to oriented maps

Theorem
Map M is orientable if and only if its flag-graph is bipartite.

Each orientable map M = (Φ; r0, r1, r2) give rise to a pair of
oppositely oriented maps M+ = (D+, R, r) and
M− = (D,R, r).where D+ contains all black flags of M and D−
contains all white flags of M . Furthermore R = r2r1, r = r2r0.
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From oriented maps to orientable maps

Theorem
Each oriented map M+ = (D,R, r) and its reverse
M− = (D,R−1, r) give rise to the same orientable map
M = (Φ, r0, r1, r2)

Φ = D− ∪D+, r0(d+) = r(d)−, r0(d−) = r(d+), r1(d+) =
R(d)−, r1(d−) = R−1(d)+, r2(d−) = d+, r(d+) = d−
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Chiral maps in the sense of Conway

Definition
An oriented map (D,R, r) is chiral in the sense of Conway if it is
not isomorphic (as oriented map) to its reverse (D,R−1, r)

This definition carries over to an orientable map.

Definition
An orientable map M is chiral if the two oriented maps D− and
D+ are not isomorphic (as oriented maps). in the sense of Conway
if it is not isomorphic (as oriented map) to its reverse (D,R−1, r)
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Information Stored in Symmetry Type Graphs

Theorem
Let (Γ; ∆1,∆2, . . . ,∆r) be an action geometry and let T (Γ) be its
symmetry type graph. The number of connected components of
T (∆i) denotes the number of orbits of i− faces of Γ.

ctually, we have to define also J-flags, where J is a subset of
types. Then we can tell when a map is vertex-, edge-, or
face-transitive. Using this notation we may describe examples of
maps that are vertex- and edge-transitive but are not
arc-transitive. Using indices, we get the reverse correspondence:
vertex-transitive is 12-transitive, edge-transitive is 02-transitive,
face-transitive is 01-transitive.
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Edge-Transitive Maps and Symmetry Type Graphs

Edge-transitive maps are very well
understood. It is well-known they come in
14 types.. (Graver, Watkins; Širan, Tucker,
Watkins; Orbanić. etc.). There are five
possible quotients of an edge quadrangle.
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Edge-Transitive Maps and Symmetry Type Graphs

Edge-transitive maps are very well
understood. It is well-known they
come in 14 types. There are five
possible quotients of an edge. By
adding all possible 1-edges to each
quotient of the edge quadrangle we
obtain the 14 types.

Tomaž Pisanski (University of Primorska and University of Ljubljana)Some applications of generalized action graphs and monodromy graphs



Strong and weak Edge-Transitive Oriented Maps

The vertices of the action graphs and symmetry type graphs of
maps are flags while the vertices of action graphs and symmetry
type graphs of oriented maps are darts.
An oriented map may be edge-transitive in the strong sense if the
group of orientation preserving automorphisms acts transitively on
the edges. On the other hand, if the map is edge-transitive as a
map but not as an oriented map, then we say that it is
edge-transitive in the weak sense.
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Edge-transitive oriented maps.

Proposition (Karabaš, Nedela)
There are 8 symmetry type graphs (8 = 3{strong}+ 5{weak})
admitting edge-transitive oriented maps.
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Edge-transitive oriented maps.

Proposition
An oriented map Γ is edge-transitive in the strong sense if and only
if T (Γ) is one of the following
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Edge-transitive oriented maps proof.

Lemma
The action graph Γ is edge-transitive in the strong sense if and
only if the subgraph of T (Γ) induced by involution r is connected.

Lemma
The action graph Γ is edge-transitive in the weak sense if and only
if the subgraph of T (Γ) induced by involutions is connected, or if
there exist an extended involution on T (Γ) exchanging the two
edges corresponding to r.
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Small oriented symmetry type graphs.

**E1 **E3*

**E3

E2

E4*

E4E5

E6

All oriented k-orbit symmetry
type graphs (of oriented maps)
for k = 1, 2, 3, 4. (**)
Edge-transitive in the strong
sense: 3 cases E1, E3, E3*.
() Edge-transitive in the weak
sense: 5 cases: E2, E4, E4*,
E5, E6.

Exercise
Determine dual pairs of
oriented symmetry types. Hint:
among the edge-transitive ones
there are two dual pairs.
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Smallest chiral symmetry type graph.

A chiral symmetry type graph is not isomorphic to its reverse.
Hence any oriented map of this type is chiral (in the sense of
Conway).
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Thanks for your attention.
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